Transcendence in Positive Characteristic Galois Group Examples and Applications

W. Dale Brownawell Matthew Papanikolas

Penn State University Texas A&M University

Arizona Winter School 2008 March 18, 2008

AWS 2008 (Lecture 4)

Galois Group Examples and Applications

March 18, 2008 2 / 28

< 6 ×

3 → 4 3

Preliminaries

Notation

• Transcendence degree theorem

Scalar quantities

Let p be a fixed prime; q a fixed power of p.

${\sf A} \mathrel{\mathop:}= \mathbb{F}_q[heta]$	\longleftrightarrow	\mathbb{Z}
$k \mathrel{\mathop:}= \mathbb{F}_q(\theta)$	\longleftrightarrow	\mathbb{Q}
\overline{k}	\longleftrightarrow	$\overline{\mathbb{Q}}$
$k_{\infty} := \mathbb{F}_q((1/\theta))$	\longleftrightarrow	\mathbb{R}
$\mathbb{C}_\infty:=\widehat{\overline{k_\infty}}$	\longleftrightarrow	\mathbb{C}
$ f _{\infty}=q^{\deg f}$	\longleftrightarrow	.

э

DQC

イロト イポト イヨト イヨト

Functions

Rational functions:

 $\mathbb{F}_q(t), \quad \overline{k}(t), \quad \mathbb{C}_{\infty}(t).$

• Analytic functions:

$$\mathbb{T} := \bigg\{ \sum_{i \ge 0} a_i t^i \in \mathbb{C}_{\infty}[[t]] \ \bigg| \ |a_i|_{\infty} \to 0 \bigg\}.$$

and

 $\mathbb{L}:=\text{fraction field of }\mathbb{T}.$

• Entire functions:

$$\mathbb{E} := \left\{ \sum_{i \ge 0} a_i t^i \in \mathbb{C}_{\infty}[[t]] \mid \frac{\sqrt[i]{|a_i|_{\infty}} \to 0,}{[k_{\infty}(a_0, a_1, a_2, \dots) : k_{\infty}] < \infty} \right\}.$$

э

< ロト < 同ト < ヨト < ヨト

Galois groups and transcendence degree

Theorem (P. 2008)

Let M be a t-motive, and let Γ_M be its associated group via Tannakian duality. Suppose that $\Phi \in \operatorname{GL}_r(\overline{k}(t)) \cap \operatorname{Mat}_r(\overline{k}[t])$ represents multiplication by σ on M and that det $\Phi = c(t - \theta)^s$, $c \in \overline{k}^{\times}$. Let Ψ be a rigid analytic trivialization of Φ in $\operatorname{GL}_r(\mathbb{T}) \cap \operatorname{Mat}_r(\mathbb{E})$. That is,

 $\Psi^{(-1)} = \Phi \Psi.$

Finally let

$$L = \overline{k}(\Psi(\theta)) \subseteq \overline{k_{\infty}}.$$

Then

tr. deg_{$$\overline{k}$$} $L = \dim \Gamma_M$ (= dim Γ_{Ψ}).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Carlitz logarithms

- Difference equations for Carlitz logarithms
- Calculation of the Galois group
- Algebraic independence
- An explicit example: $\log_{\mathcal{C}}(\zeta_{\theta})$

4 A N

nac

Carlitz logarithms

• Recall the Carlitz exponential:

$$\exp_C(z) = z + \sum_{i=1}^{\infty} \frac{z^{q^i}}{(\theta^{q^i} - \theta)(\theta^{q^i} - \theta^q)\cdots(\theta^{q^i} - \theta^{q^{i-1}})}.$$

э

DQC

A D F A B F A B F A B F

Carlitz logarithms

• Recall the Carlitz exponential:

$$\exp_{C}(z) = z + \sum_{i=1}^{\infty} \frac{z^{q^{i}}}{(\theta^{q^{i}} - \theta)(\theta^{q^{i}} - \theta^{q})\cdots(\theta^{q^{i}} - \theta^{q^{i-1}})}.$$

• Its formal inverse is the Carlitz logarithm,

$$\log_{\mathcal{C}}(z) = z + \sum_{i=1}^{\infty} \frac{z^{q^{i}}}{(\theta - \theta^{q})(\theta - \theta^{q^{2}}) \cdots (\theta - \theta^{q^{i}})}.$$

• $\log_{\mathcal{C}}(z)$ converges for $|z|_{\infty} < |\theta|^{q/(q-1)}$ and satisfies

$$\theta \log_C(z) = \log_C(\theta z) + \log_C(z^q).$$

4 6 1 1 4

The function $L_{\alpha}(t)$

• For $\alpha \in \overline{k}$, $|\alpha|_{\infty} < |\theta|^{q/(q-1)}$, we define

$$L_{\alpha}(t) = \alpha + \sum_{i=1}^{\infty} \frac{\alpha^{q^i}}{(t-\theta^q)(t-\theta^{q^2})\cdots(t-\theta^{q^i})} \in \mathbb{T},$$

Connection with Carlitz logarithms:

$$L_{\alpha}(\theta) = \log_{\mathcal{C}}(\alpha).$$

• Functional equation:

$$L_{\alpha}^{(-1)} = \alpha^{(-1)} + \frac{L_{\alpha}}{t-\theta}.$$

Difference equations for Carlitz logarithms

• Suppose $\alpha_1, \ldots, \alpha_r \in \overline{k}$, $|\alpha_i|_{\infty} < |\theta|_{\infty}^{q/(q-1)}$ for each *i*.

4 6 1 1 4

TH 16

Difference equations for Carlitz logarithms

- Suppose $\alpha_1, \ldots, \alpha_r \in \overline{k}$, $|\alpha_i|_{\infty} < |\theta|_{\infty}^{q/(q-1)}$ for each *i*.
- If we set

$$\Phi = \begin{bmatrix} t-\theta & 0 & \cdots & 0\\ \alpha_1^{(-1)}(t-\theta) & 1 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ \alpha_r^{(-1)}(t-\theta) & 0 & \cdots & 1 \end{bmatrix},$$

then Φ represents multiplication by σ on a *t*-motive *M* with

$$0 \to {\pmb{C}} \to {\pmb{M}} \to {\pmb{1}}^r \to 0.$$

Difference equations for Carlitz logarithms

- Suppose $\alpha_1, \ldots, \alpha_r \in \overline{k}$, $|\alpha_i|_{\infty} < |\theta|_{\infty}^{q/(q-1)}$ for each *i*.
- If we set

$$\Phi = \begin{bmatrix} t-\theta & 0 & \cdots & 0\\ \alpha_1^{(-1)}(t-\theta) & 1 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ \alpha_r^{(-1)}(t-\theta) & 0 & \cdots & 1 \end{bmatrix},$$

then Φ represents multiplication by σ on a *t*-motive *M* with

$$0 \to C \to M \to \mathbf{1}^r \to 0.$$

We let

$$\Psi = \begin{bmatrix} \Omega & 0 & \cdots & 0 \\ \Omega L_{\alpha_1} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \Omega L_{\alpha_r} & 0 & \cdots & 1 \end{bmatrix}$$

Then

500

• Specialize Ψ at $t = \theta$ and find

$$\Psi(\theta) = \begin{bmatrix} -1/\pi_q & 0 & \cdots & 0 \\ -\log_C(\alpha_1)/\pi_q & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -\log_C(\alpha_r)/\pi_q & 0 & \cdots & 1 \end{bmatrix}$$

March 18, 2008 11 / 28

æ

DQC

•

• • • • • • • • • • • •

• Specialize Ψ at $t = \theta$ and find

$$\Psi(\theta) = \begin{bmatrix} -1/\pi_q & 0 & \cdots & 0\\ -\log_C(\alpha_1)/\pi_q & 1 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ -\log_C(\alpha_r)/\pi_q & 0 & \cdots & 1 \end{bmatrix}$$

• Thus we can determine

tr.
$$\deg_{\overline{k}} \overline{k}(\pi_q, \log_{\mathcal{C}}(\alpha_1), \dots, \log_{\mathcal{C}}(\alpha_r))$$

by calculating

 $dim\,\Gamma_{\Psi}.$

э

Sac

•

・ 同 ト ・ ヨ ト ・ ヨ

Calculating Γ_{Ψ}

• Set
$$\Psi_1$$
, $\Psi_2 \in \operatorname{GL}_{r+1}(\mathbb{L} \otimes_{\overline{k}(t)} \mathbb{L})$ so that

$$(\Psi_1)_{ij}=\Psi_{ij}\otimes 1, \quad (\Psi_2)_{ij}=1\otimes \Psi_{ij},$$

and set $\widetilde{\Psi} = \Psi_1^{-1} \Psi_2 \in GL_{r+1}(\mathbb{L} \otimes_{\overline{k}(t)} \mathbb{L}).$

2

DQC

ヘロト 人間 トイヨト イヨト

Calculating Γ_{Ψ}

• Set
$$\Psi_1$$
, $\Psi_2 \in \operatorname{GL}_{r+1}(\mathbb{L} \otimes_{\overline{k}(t)} \mathbb{L})$ so that

$$(\Psi_1)_{ij} = \Psi_{ij} \otimes 1, \quad (\Psi_2)_{ij} = 1 \otimes \Psi_{ij},$$

and set $\widetilde{\Psi} = \Psi_1^{-1} \Psi_2 \in \operatorname{GL}_{r+1}(\mathbb{L} \otimes_{\overline{k}(t)} \mathbb{L}).$

• Define an $\mathbb{F}_q(t)$ -algebra map,

$$\mu = (X_{ij} \mapsto \widetilde{\Psi}_{ij}) : \mathbb{F}_q(t)[X, 1/\det X] \to \mathbb{L} \otimes_{\overline{k}(t)} \mathbb{L},$$

which defines the $\mathbb{F}_q(t)$ -subgroup scheme $\Gamma_{\Psi} \subseteq \operatorname{GL}_{r+1/\mathbb{F}_q(t)}$.

3

イロト イポト イラト イラト

Calculating Γ_{Ψ}

• Set
$$\Psi_1$$
, $\Psi_2 \in GL_{r+1}(\mathbb{L} \otimes_{\overline{k}(t)} \mathbb{L})$ so that

$$(\Psi_1)_{ij} = \Psi_{ij} \otimes 1, \quad (\Psi_2)_{ij} = 1 \otimes \Psi_{ij},$$

and set $\widetilde{\Psi} = \Psi_1^{-1} \Psi_2 \in \operatorname{GL}_{r+1}(\mathbb{L} \otimes_{\overline{k}(t)} \mathbb{L}).$

• Define an $\mathbb{F}_q(t)$ -algebra map,

$$\mu = (X_{ij} \mapsto \widetilde{\Psi}_{ij}) : \mathbb{F}_q(t)[X, 1/\det X] \to \mathbb{L} \otimes_{\overline{k}(t)} \mathbb{L},$$

which defines the $\mathbb{F}_q(t)$ -subgroup scheme $\Gamma_{\Psi} \subseteq GL_{r+1/\mathbb{F}_q(t)}$. • In our case, this implies first that

$$\Gamma_{\Psi} \subseteq \left\{ \begin{bmatrix} * & 0 \\ * & \mathsf{id}_r \end{bmatrix} \right\} \subseteq \mathsf{GL}_{r+1/\mathbb{F}_q(t)} \,.$$

Thus we can consider the coordinate ring of Γ_{Ψ} to be a quotient of $\mathbb{F}_q(t)[X_0, \ldots, X_r, 1/X_0]$.

The vector group V

• The homomorphism of $\mathbb{F}_q(t)$ -group schemes

$$\begin{bmatrix} \alpha & \mathbf{0} \\ \delta & \mathsf{id}_r \end{bmatrix} \mapsto \alpha : \Gamma_{\Psi} \xrightarrow{\mathrm{pr}} \mathbb{G}_m$$

coincides with the surjection,

$$\Gamma_{\Psi} \twoheadrightarrow \Gamma_{C}$$
. $(\Gamma_{C} \cong \mathbb{G}_{m})$.

< 61 b

TH 16

The vector group V

• The homomorphism of $\mathbb{F}_q(t)$ -group schemes

$$\begin{bmatrix} \alpha & \mathbf{0} \\ \delta & \mathsf{id}_r \end{bmatrix} \mapsto \alpha : \Gamma_{\Psi} \xrightarrow{\mathrm{pr}} \mathbb{G}_m$$

coincides with the surjection,

$$\Gamma_{\Psi} \twoheadrightarrow \Gamma_{C}$$
. $(\Gamma_{C} \cong \mathbb{G}_{m})$.

• Thus we have exact sequence of group schemes over $\mathbb{F}_q(t)$:

$$0 \rightarrow V \rightarrow \Gamma_{\Psi} \stackrel{\mathrm{pr}}{\rightarrow} \mathbb{G}_{m} \rightarrow 0,$$

and we can consider $V \subseteq (\mathbb{G}_a)^r$ over $\mathbb{F}_q(t)$.

• Consider $\alpha \in \mathbb{G}_m(\overline{\mathbb{F}_q(t)})$ and a lift $\gamma \in \Gamma_{\Psi}(\overline{\mathbb{F}_q(t)})$.

э

DQC

- Consider $\alpha \in \mathbb{G}_m(\overline{\mathbb{F}_q(t)})$ and a lift $\gamma \in \Gamma_{\Psi}(\overline{\mathbb{F}_q(t)})$.
- For any $u = \begin{bmatrix} 1 & 0 \\ v & l_r \end{bmatrix} \in V(\overline{\mathbb{F}_q(t)})$, we find that

$$\gamma^{-1} u \gamma = \begin{bmatrix} 1 & 0 \\ \alpha v & I_r \end{bmatrix} \in V(\overline{\mathbb{F}_q(t)}).$$

3

4 **A b b b b b b**

- Consider $\alpha \in \mathbb{G}_m(\overline{\mathbb{F}_q(t)})$ and a lift $\gamma \in \Gamma_{\Psi}(\overline{\mathbb{F}_q(t)})$.
- For any $u = \begin{bmatrix} 1 & 0 \\ v & l_r \end{bmatrix} \in V(\overline{\mathbb{F}_q(t)})$, we find that

$$\gamma^{-1} u \gamma = \begin{bmatrix} 1 & 0 \\ \alpha v & I_r \end{bmatrix} \in V(\overline{\mathbb{F}_q(t)}).$$

• Thus $V(\overline{\mathbb{F}_q(t)})$ is a vector subspace of $\overline{\mathbb{F}_q(t)}^r$.

- Consider $\alpha \in \mathbb{G}_m(\overline{\mathbb{F}_q(t)})$ and a lift $\gamma \in \Gamma_{\Psi}(\overline{\mathbb{F}_q(t)})$.
- For any $u = \begin{bmatrix} 1 & 0 \\ v & l_r \end{bmatrix} \in V(\overline{\mathbb{F}_q(t)})$, we find that

$$\gamma^{-1} u \gamma = \begin{bmatrix} 1 & 0 \\ \alpha v & I_r \end{bmatrix} \in V(\overline{\mathbb{F}_q(t)}).$$

- Thus $V(\overline{\mathbb{F}_q(t)})$ is a vector subspace of $\overline{\mathbb{F}_q(t)}^r$.
- Now V is smooth over 𝔽_q(t) because pr : Γ_Ψ → 𝔅_m is surjective on Lie algebras.

- Consider $\alpha \in \mathbb{G}_m(\overline{\mathbb{F}_q(t)})$ and a lift $\gamma \in \Gamma_{\Psi}(\overline{\mathbb{F}_q(t)})$.
- For any $u = \begin{bmatrix} 1 & 0 \\ v & l_r \end{bmatrix} \in V(\overline{\mathbb{F}_q(t)})$, we find that

$$\gamma^{-1} \boldsymbol{u} \gamma = \begin{bmatrix} 1 & 0 \\ \alpha \boldsymbol{v} & \boldsymbol{I}_r \end{bmatrix} \in \boldsymbol{V}(\overline{\mathbb{F}_q(t)}).$$

- Thus $V(\overline{\mathbb{F}_q(t)})$ is a vector subspace of $\overline{\mathbb{F}_q(t)}^r$.
- Now V is smooth over 𝔽_q(t) because pr : Γ_Ψ → 𝔅_m is surjective on Lie algebras.
- It follows that defining equations for *V* are linear forms in X_1, \ldots, X_r over $\mathbb{F}_q(t)$.

Definining equations for Γ_{Ψ}

• Pick
$$b_0 \in \mathbb{F}_q(t)^{\times} \setminus \mathbb{F}_q^{\times}$$
.

• Lift (use Hilbert Thm. 90) to

$$\gamma = \begin{bmatrix} b_0 & 0 & \cdots & 0 \\ b_1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_r & 0 & \cdots & 1 \end{bmatrix} \in \Gamma_{\Psi}(\mathbb{F}_q(t)).$$

We can use *γ* to create defining equations for Γ_Ψ using defining forms for *V*.

4 **A b b b b b b**

Suppose F = c₁X₁ + · · · + c_rX_r, c₁, . . . , c_r ∈ 𝔽_q(t), is a defining linear form for V. Then

$$G = (b_0 - 1)F - F(b_1, \dots, b_r)(X_0 - 1)$$

is a defining polynomial for Γ_{Ψ} .

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Suppose F = c₁X₁ + · · · + c_rX_r, c₁, . . . , c_r ∈ 𝔽_q(t), is a defining linear form for V. Then

$$G = (b_0 - 1)F - F(b_1, \ldots, b_r)(X_0 - 1)$$

is a defining polynomial for Γ_{Ψ} . In particular, if we take $t = \theta$,

$$(b_0(\theta)-1)\sum_{i=1}^r c_i(\theta)\log_C(\alpha_i) - \sum_{i=1}^r c_i(\theta)b_i(\theta)\pi_q = 0.$$

3

ヨトィヨト

Suppose F = c₁X₁ + · · · + c_rX_r, c₁, . . . , c_r ∈ 𝔽_q(t), is a defining linear form for V. Then

$$G = (b_0 - 1)F - F(b_1, \ldots, b_r)(X_0 - 1)$$

is a defining polynomial for Γ_{Ψ} . In particular, if we take $t = \theta$,

$$(b_0(\theta)-1)\sum_{i=1}^r c_i(\theta)\log_C(\alpha_i) - \sum_{i=1}^r c_i(\theta)b_i(\theta)\pi_q = 0.$$

Every k-linear relation among π_q, log_C(α₁),..., log_C(α_r) is a k-linear combination of relations of this type.

Suppose F = c₁X₁ + · · · + c_rX_r, c₁, . . . , c_r ∈ 𝔽_q(t), is a defining linear form for V. Then

$$G = (b_0 - 1)F - F(b_1, \ldots, b_r)(X_0 - 1)$$

is a defining polynomial for Γ_{Ψ} . In particular, if we take $t = \theta$,

$$(b_0(\theta)-1)\sum_{i=1}^r c_i(\theta)\log_C(\alpha_i) - \sum_{i=1}^r c_i(\theta)b_i(\theta)\pi_q = 0.$$

- Every k-linear relation among π_q, log_C(α₁),..., log_C(α_r) is a k-linear combination of relations of this type.
- Let N be the k-linear span of π_q , $\log_C(\alpha_1), \ldots, \log_C(\alpha_r)$. Then

$$\dim \Gamma_{\Psi} = \dim_k N.$$

ヨトィヨト

• • • • • • • • • •

Algebraic independence of Carlitz logarithms

• Starting with $\alpha_1, \ldots, \alpha_r \in \overline{k}$ (suitably small), we found $\Phi \in Mat_r(\overline{k}[t])$ and $\Psi \in Mat_r(\mathbb{E})$ so that

$$\Psi(\theta) = \begin{bmatrix} -1/\pi_q & 0 & \cdots & 0 \\ -\log_C(\alpha_1)/\pi_q & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -\log_C(\alpha_r)/\pi_q & 0 & \cdots & 1 \end{bmatrix}$$

• Since tr. $\deg_{\overline{k}} \overline{k}(\pi_q, \log_C(\alpha_1), \dots \log_C(\alpha_r)) = \dim \Gamma_{\Psi} = \dim_k N$, we can prove the following the following theorem.

Algebraic independence of Carlitz logarithms

• Starting with $\alpha_1, \ldots, \alpha_r \in \overline{k}$ (suitably small), we found $\Phi \in Mat_r(\overline{k}[t])$ and $\Psi \in Mat_r(\mathbb{E})$ so that

$$\Psi(\theta) = \begin{bmatrix} -1/\pi_q & 0 & \cdots & 0 \\ -\log_C(\alpha_1)/\pi_q & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -\log_C(\alpha_r)/\pi_q & 0 & \cdots & 1 \end{bmatrix}$$

• Since tr. $\deg_{\overline{k}} \overline{k}(\pi_q, \log_C(\alpha_1), \dots \log_C(\alpha_r)) = \dim \Gamma_{\Psi} = \dim_k N$, we can prove the following the following theorem.

Theorem (P. 2008)

Suppose $\log_C(\alpha_1), \ldots, \log_C(\alpha_r)$ are linearly independent over $k = \mathbb{F}_q(\theta)$. Then they are algebraically independent over \overline{k}

An Example

Recall

$$\zeta_{\theta} = \sqrt[q-1]{-\theta}, \quad \exp_{\mathcal{C}} \big(\pi_q / \theta \big) = \zeta_{\theta}, \quad \log_{\mathcal{C}} (\zeta_{\theta}) = \frac{\pi_q}{\theta}$$

2

DQC

イロト イヨト イヨト イヨト

An Example

Recall

$$\zeta_{\theta} = \sqrt[q-1]{-\theta}, \quad \exp_{\mathcal{C}}(\pi_q/\theta) = \zeta_{\theta}, \quad \log_{\mathcal{C}}(\zeta_{\theta}) = \frac{\pi_q}{\theta}.$$

We take

$$\Phi = egin{bmatrix} t- heta & 0 \ \zeta_{ heta}^{1/q}(t- heta) & 1 \end{bmatrix}, \quad \Psi = egin{bmatrix} \Omega & 0 \ \Omega L_{\zeta_{ heta}} & 1 \end{bmatrix}.$$

E 990

イロト イロト イヨト イヨト

An Example

Recall

$$\zeta_{\theta} = \sqrt[q-1]{-\theta}, \quad \exp_{\mathcal{C}}(\pi_q/\theta) = \zeta_{\theta}, \quad \log_{\mathcal{C}}(\zeta_{\theta}) = \frac{\pi_q}{\theta}.$$

We take

$$\Phi = egin{bmatrix} t- heta & 0 \ \zeta_{ heta}^{1/q}(t- heta) & 1 \end{bmatrix}, \quad \Psi = egin{bmatrix} \Omega & 0 \ \Omega L_{\zeta_{ heta}} & 1 \end{bmatrix}.$$

• We have a relation over \overline{k} on the entries of

$$\Psi(\theta) = \begin{bmatrix} -1/\pi_q & 0\\ -1/\theta & 1 \end{bmatrix},$$

namely

$$\theta X_{21} + 1 = 0.$$

э

Sac

∃ ► < ∃ ►</p>

- So dim $\Gamma_{\Psi} = 1$. (It's at least 1 since $\Gamma_{\Psi} \twoheadrightarrow \mathbb{G}_m$.)
- Question: What are its defining equations?

3

Sar

< ロト < 同ト < ヨト < ヨト

- So dim $\Gamma_{\Psi} = 1$. (It's at least 1 since $\Gamma_{\Psi} \twoheadrightarrow \mathbb{G}_m$.)
- Question: What are its defining equations?
- We begin with matrices in $GL_r(\mathbb{L} \otimes_{\overline{k}(t)} \mathbb{L})$:

$$\Psi_1 = \begin{bmatrix} \Omega \otimes 1 & 0 \\ \Omega L_{\zeta_{\theta}} \otimes 1 & 1 \end{bmatrix}, \quad \Psi_2 = \begin{bmatrix} 1 \otimes \Omega & 0 \\ 1 \otimes \Omega L_{\zeta_{\theta}} & 1 \end{bmatrix}.$$

3

< □ > < 同 > < 回 > < 回 > < 回 > <

- So dim $\Gamma_{\Psi} = 1$. (It's at least 1 since $\Gamma_{\Psi} \twoheadrightarrow \mathbb{G}_m$.)
- Question: What are its defining equations?
- We begin with matrices in $GL_r(\mathbb{L} \otimes_{\overline{k}(t)} \mathbb{L})$:

$$\Psi_{1} = \begin{bmatrix} \Omega \otimes 1 & 0 \\ \Omega L_{\zeta_{\theta}} \otimes 1 & 1 \end{bmatrix}, \quad \Psi_{2} = \begin{bmatrix} 1 \otimes \Omega & 0 \\ 1 \otimes \Omega L_{\zeta_{\theta}} & 1 \end{bmatrix}$$

Then the defining equations over $\mathbb{F}_q(t)$ for Γ_{Ψ} will be precisely relations among the entries of

$$\Psi_1^{-1}\Psi_2 = \begin{bmatrix} \frac{1}{\Omega} \otimes \Omega & 0\\ -L_{\zeta_{\theta}} \otimes \Omega + 1 \otimes \Omega L_{\zeta_{\theta}} & 1 \end{bmatrix}$$

4 **A** N A **A** N A **A** N

- So dim $\Gamma_{\Psi} = 1$. (It's at least 1 since $\Gamma_{\Psi} \twoheadrightarrow \mathbb{G}_m$.)
- Question: What are its defining equations?
- We begin with matrices in $GL_r(\mathbb{L} \otimes_{\overline{k}(t)} \mathbb{L})$:

$$\Psi_{1} = \begin{bmatrix} \Omega \otimes 1 & 0 \\ \Omega L_{\zeta_{\theta}} \otimes 1 & 1 \end{bmatrix}, \quad \Psi_{2} = \begin{bmatrix} 1 \otimes \Omega & 0 \\ 1 \otimes \Omega L_{\zeta_{\theta}} & 1 \end{bmatrix}$$

Then the defining equations over $\mathbb{F}_q(t)$ for Γ_{Ψ} will be precisely relations among the entries of

$$\Psi_1^{-1}\Psi_2 = \begin{bmatrix} \frac{1}{\Omega} \otimes \Omega & 0\\ -L_{\zeta_\theta} \otimes \Omega + 1 \otimes \Omega L_{\zeta_\theta} & 1 \end{bmatrix}.$$

• Consider the identity of functions (check!),

$$\zeta_{\theta}(t-\theta)\Omega(t)-t\Omega(t)L_{\zeta_{\theta}}(t)-1=0,$$

and substitute into the lower left entry of $\Psi_1^{-1}\Psi_2$.

500

$$\Psi_{1}^{-1}\Psi_{2} = \begin{bmatrix} \frac{1}{\Omega} \otimes \Omega & 0\\ -L_{\zeta_{\theta}} \otimes \Omega + 1 \otimes \Omega L_{\zeta_{\theta}} & 1 \end{bmatrix}$$
$$\zeta_{\theta}(t-\theta)\Omega - t\Omega L_{\zeta_{\theta}} - 1 = 0$$

March 18, 2008 20 / 28

2

996

▲□▶ ▲圖▶ ▲厘≯ ▲厘≯

$$\Psi_{1}^{-1}\Psi_{2} = \begin{bmatrix} \frac{1}{\Omega} \otimes \Omega & 0\\ -L_{\zeta_{\theta}} \otimes \Omega + 1 \otimes \Omega L_{\zeta_{\theta}} & 1 \end{bmatrix}$$
$$\zeta_{\theta}(t-\theta)\Omega - t\Omega L_{\zeta_{\theta}} - 1 = 0$$

• Lower left entry of $\Psi_1^{-1}\Psi_2$ is

$$\begin{aligned} -L_{\zeta_{\theta}}\otimes\Omega+1\otimes\Omega L_{\zeta_{\theta}}&=-\big(\frac{1}{t}\zeta_{\theta}(t-\theta)-\frac{1}{t\Omega}\big)\otimes\Omega\\ &+1\otimes\frac{1}{t}(\zeta_{\theta}(t-\theta)\Omega-1)\\ &=-\frac{1}{t}\zeta_{\theta}(t-\theta)\otimes\Omega+\frac{1}{t\Omega}\otimes\Omega\\ &+1\otimes\frac{1}{t}\zeta_{\theta}(t-\theta)\Omega-1\otimes\frac{1}{t}\\ &=\frac{1}{t}\big(\frac{1}{\Omega}\otimes\Omega\big)-\frac{1}{t}(1\otimes1).\end{aligned}$$

March 18, 2008 20 / 28

æ

DQC

イロト イポト イヨト イヨト

$$\Psi_{1}^{-1}\Psi_{2} = \begin{bmatrix} \frac{1}{\Omega} \otimes \Omega & 0\\ -L_{\zeta_{\theta}} \otimes \Omega + 1 \otimes \Omega L_{\zeta_{\theta}} & 1 \end{bmatrix}$$
$$\zeta_{\theta}(t-\theta)\Omega - t\Omega L_{\zeta_{\theta}} - 1 = 0$$

• Lower left entry of $\Psi_1^{-1}\Psi_2$ is

$$-L_{\zeta_{\theta}} \otimes \Omega + 1 \otimes \Omega L_{\zeta_{\theta}} = -\left(\frac{1}{t}\zeta_{\theta}(t-\theta) - \frac{1}{t\Omega}\right) \otimes \Omega \\ + 1 \otimes \frac{1}{t}(\zeta_{\theta}(t-\theta)\Omega - 1) \\ = -\frac{1}{t}\zeta_{\theta}(t-\theta) \otimes \Omega + \frac{1}{t\Omega} \otimes \Omega \\ + 1 \otimes \frac{1}{t}\zeta_{\theta}(t-\theta)\Omega - 1 \otimes \frac{1}{t} \\ = \frac{1}{t}\left(\frac{1}{\Omega} \otimes \Omega\right) - \frac{1}{t}(1 \otimes 1).$$

• Therefore, Γ_{Ψ} is defined by

$$\Gamma_{\Psi}: tX_{12} - X_{11} + 1 = 0.$$

э

nac

< All

TH 16

- Brief review of Carlitz zeta values
- Algebraic independence theorem of Chang-Yu
- Theorem of Chang-P.-Yu for varying q

Applications to Carlitz zeta values

$$\zeta_{\mathcal{C}}(n) = \sum_{\substack{a \in \mathbb{F}_q[\theta] \\ a \text{ monic}}} \frac{1}{a^n} \in k_{\infty}, \quad n = 1, 2, \dots$$

э

DQC

イロト イポト イヨト イヨト

Applications to Carlitz zeta values

$$\zeta_{C}(n) = \sum_{\substack{a \in \mathbb{F}_{q}[\theta] \\ a \text{ monic}}} \frac{1}{a^{n}} \in k_{\infty}, \quad n = 1, 2, \dots$$

• As you may recall from the 2nd lecture, using the theory of Anderson and Thakur, one can construct a system of difference equations $\Psi^{(-1)} = \Phi \Psi$ so that $\zeta_C(n)$ appears in $\Psi(\theta)$.

周レイモレイモ

Applications to Carlitz zeta values

$$\zeta_C(n) = \sum_{\substack{a \in \mathbb{F}_q[\theta] \\ a \text{ monic}}} \frac{1}{a^n} \in k_{\infty}, \quad n = 1, 2, \dots$$

- As you may recall from the 2nd lecture, using the theory of Anderson and Thakur, one can construct a system of difference equations Ψ⁽⁻¹⁾ = ΦΨ so that ζ_C(n) appears in Ψ(θ).
- Known algebraic relations over \overline{k} among $\zeta_C(n)$:

$$\begin{array}{ll} (q-1) \mid n \; \Rightarrow \; \zeta_C(n) = r_n \pi_q^n, \; \; r_n \in \mathbb{F}_q(\theta), & (\text{Euler-Carlitz}) \\ \zeta_C(np) = \zeta_C(n)^p, & (\text{Frobenius}). \end{array}$$

500

The Chang-Yu Theorem

Algebraic independence of $\zeta_C(n)$

Theorem (Chang-Yu 2007)

For any positive integer n, the transcendence degree of the field

$$\overline{k}(\pi_q,\zeta_C(1),\ldots,\zeta_C(n))$$

over k is

$$n-\left\lfloor \frac{n}{p}\right\rfloor - \left\lfloor \frac{n}{q-1}\right\rfloor + \left\lfloor \frac{n}{p(q-1)}\right\rfloor + 1.$$

The Chang-Yu Theorem

Algebraic independence of $\zeta_C(n)$

Theorem (Chang-Yu 2007)

For any positive integer n, the transcendence degree of the field

$$\overline{k}(\pi_q,\zeta_C(1),\ldots,\zeta_C(n))$$

over k is

$$n-\left\lfloor \frac{n}{p}\right
floor-\left\lfloor \frac{n}{q-1}
ight
floor+\left\lfloor \frac{n}{p(q-1)}
ight
floor+1.$$

Question: What can we say about Carlitz zeta values if we allow *q* to vary?

The Chang-Yu Theorem

Algebraic independence of $\zeta_C(n)$

Theorem (Chang-Yu 2007)

For any positive integer n, the transcendence degree of the field

$$\overline{k}(\pi_q,\zeta_C(1),\ldots,\zeta_C(n))$$

over k is

$$n-\left\lfloor \frac{n}{p}
ight
floor-\left\lfloor \frac{n}{q-1}
ight
floor+\left\lfloor \frac{n}{p(q-1)}
ight
floor+1.$$

Question: What can we say about Carlitz zeta values if we allow *q* to vary?

Answer: Even then, the Euler-Carlitz relations and the Frobenius *p*-th power relations tell the whole stoty....

Zeta values with varying constant fields

For $m \ge 1$, we set

$$\zeta_m(n) = \sum_{\substack{a \in \mathbb{F}_{p^m}[\theta] \\ a \text{ monic}}} \frac{1}{a^n}, \quad n = 1, 2, \dots$$

Theorem (Chang-P.-Yu)

For any positive integers s and d, the transcendence degree of the field

$$\overline{k}(\cup_{m=1}^{d} \{\pi_{p^{m}}, \zeta_{m}(1), \ldots, \zeta_{m}(s)\})$$

over k is

$$\sum_{m=1}^{d} \left(s - \left\lfloor \frac{s}{p} \right\rfloor - \left\lfloor \frac{s}{p^m - 1} \right\rfloor + \left\lfloor \frac{s}{p(p^m - 1)} \right\rfloor + 1 \right)$$

э

モトイモト

4 6 1 1 4

Rank 2 Drinfeld modules

- Periods and quasi-periods
- A Galois group example
- Algebraic independence in the non-CM case

Periods and quasi-periods of rank 2 Drinfeld modules

• Recall that for a rank 2 Drinfeld module $\rho : \mathbb{F}_q[t] \to \overline{k}[F]$ with

$$\rho(t) = \theta + \kappa F + F^2,$$

we can take

$$\Phi = \begin{bmatrix} 0 & 1 \\ t - \theta & -\kappa^{1/q} \end{bmatrix}, \quad \Psi = \begin{bmatrix} 0 & 1 \\ 1 & -\kappa \end{bmatrix} \begin{bmatrix} s_1^{(1)} & s_1^{(2)} \\ s_2^{(1)} & s_2^{(2)} \end{bmatrix}^{-1}$$

• Furthermore,

$$\Psi(heta)^{-1} = egin{bmatrix} \omega_1 & \eta_1 \ \omega_2 & \eta_2 \end{bmatrix},$$

where ω_1 , ω_2 , η_1 , η_2 are the periods and quasi-periods for ρ .

• Assume $p \neq 2$. Consider the Drinfeld module ρ with

$$\rho(t) = \theta + \left(\sqrt{\theta} + \sqrt{\theta^{q}}\right)F + F^{2}.$$

3

< □ > < 同 > < 回 > < 回 > < 回 > <

• Assume $p \neq 2$. Consider the Drinfeld module ρ with

$$\rho(t) = \theta + \left(\sqrt{\theta} + \sqrt{\theta^q}\right)F + F^2.$$

• After going through the Galois group calculation, we find in this case

$$\Gamma_{\Psi} = \left\{ \begin{bmatrix} \alpha & \beta t \\ \beta & \alpha \end{bmatrix} \right\}.$$

4 **A A A A A A A A A**

• Assume $p \neq 2$. Consider the Drinfeld module ρ with

$$\rho(t) = \theta + \left(\sqrt{\theta} + \sqrt{\theta^q}\right)F + F^2.$$

• After going through the Galois group calculation, we find in this case

$$\Gamma_{\Psi} = \left\{ \begin{bmatrix} \alpha & \beta t \\ \beta & \alpha \end{bmatrix} \right\}.$$

Thus

 $dim\,\Gamma_{\Psi}=2.$

3

イロト イポト イラト イラト

• Assume $p \neq 2$. Consider the Drinfeld module ρ with

$$\rho(t) = \theta + \left(\sqrt{\theta} + \sqrt{\theta^q}\right)F + F^2.$$

After going through the Galois group calculation, we find in this case

$$\Gamma_{\Psi} = \left\{ \begin{bmatrix} \alpha & \beta t \\ \beta & \alpha \end{bmatrix} \right\}.$$

Thus

dim
$$\Gamma_{\Psi} = 2$$
.

• However, here ρ has complex multiplication by $\mathbb{F}_q[\sqrt{t}]$, where \sqrt{t} acts by $\sqrt{\theta} + F$.

• Assume $p \neq 2$. Consider the Drinfeld module ρ with

$$\rho(t) = \theta + \left(\sqrt{\theta} + \sqrt{\theta^q}\right)F + F^2.$$

• After going through the Galois group calculation, we find in this case

$$\Gamma_{\Psi} = \left\{ \begin{bmatrix} \alpha & \beta t \\ \beta & \alpha \end{bmatrix} \right\}.$$

Thus

dim
$$\Gamma_{\Psi} = 2$$
.

• However, here ρ has complex multiplication by $\mathbb{F}_q[\sqrt{t}]$, where \sqrt{t} acts by $\sqrt{\theta} + F$.

Theorem (Thiery 1992)

The period matrix of a Drinfeld module of rank 2 over \overline{k} with CM has transcendence degree 2 over \overline{k} .

March 18, 2008 27 / 28

3

4 0 N 4 0 N 4 E N 4 E N

Rank 2 Drinfeld modules without CM

In general, we say that a Drinfeld module ρ does not have complex multiplication if

 $\operatorname{End}(\rho) = \mathbb{F}_q[t].$

3

< □ > < 同 > < 回 > < 回 > < 回 > <

Rank 2 Drinfeld modules without CM

In general, we say that a Drinfeld module ρ does not have complex multiplication if

 $\operatorname{End}(\rho) = \mathbb{F}_q[t].$

Theorem (Chang-P.)

Suppose that $p \neq 2$. Let ρ be a Drinfeld module of rank 2 over \overline{k} without CM. Then

 $\Gamma_{\rho} \cong \operatorname{GL}_2$.

In particular, the periods and quasi-periods of ρ ,

 $\omega_1, \omega_2, \eta_1, \eta_2,$

are algebraically independent over \overline{k} .