Transcendence in Positive Characteristic

Galois Group Examples and Applications

W. Dale Brownawell
Matthew Papanikolas

Penn State University
Texas A\&M University

Arizona Winter School 2008 March 18, 2008

Outline

(1) Preliminaries

(2) Carlitz logarithms

(3) Carlitz zeta values

(4) Rank 2 Drinfeld modules

Preliminaries

- Notation
- Transcendence degree theorem

Scalar quantities

Let p be a fixed prime; q a fixed power of p.

$$
\begin{array}{lll}
A:=\mathbb{F}_{q}[\theta] & \longleftrightarrow & \mathbb{Z} \\
k:=\mathbb{F}_{q}(\theta) & \longleftrightarrow & \mathbb{Q} \\
\bar{k} & \longleftrightarrow & \mathbb{\mathbb { Q }} \\
k_{\infty}:=\mathbb{F}_{q}((1 / \theta)) & \longleftrightarrow & \mathbb{R} \\
\mathbb{C}_{\infty}:=\widehat{k_{\infty}} & \longleftrightarrow & \mathbb{C} \\
|f|_{\infty}=q^{\operatorname{deg} f} & \longleftrightarrow & |\cdot|
\end{array}
$$

Functions

- Rational functions:

$$
\mathbb{F}_{q}(t), \quad \bar{k}(t), \quad \mathbb{C}_{\infty}(t)
$$

- Analytic functions:

$$
\mathbb{T}:=\left\{\left.\sum_{i \geq 0} a_{i} t^{i} \in \mathbb{C}_{\infty}[[t]]| | a_{i}\right|_{\infty} \rightarrow 0\right\}
$$

and

$$
\mathbb{L}:=\text { fraction field of } \mathbb{T} \text {. }
$$

- Entire functions:

$$
\mathbb{E}:=\left\{\sum_{i \geq 0} a_{i} t^{i} \in \mathbb{C}_{\infty}[[t]] \left\lvert\, \begin{array}{c}
\sqrt[i]{\left|a_{i}\right|_{\infty}} \rightarrow 0 \\
{\left[k_{\infty}\left(a_{0}, a_{1}, a_{2}, \ldots\right): k_{\infty}\right]<\infty}
\end{array}\right.\right\}
$$

Galois groups and transcendence degree

Theorem (P. 2008)

Let M be a -motive, and let Γ_{M} be its associated group via Tannakian duality. Suppose that $\Phi \in \mathrm{GL}_{r}(\bar{k}(t)) \cap \mathrm{Mat}_{r}(\bar{k}[t])$ represents multiplication by σ on M and that $\operatorname{det} \Phi=c(t-\theta)^{s}, c \in \bar{k}^{\times}$. Let Ψ be a rigid analytic trivialization of Φ in $\mathrm{GL}_{r}(\mathbb{T}) \cap \operatorname{Mat}_{r}(\mathbb{E})$. That is,

$$
\Psi^{(-1)}=\Phi \Psi
$$

Finally let

$$
L=\bar{k}(\Psi(\theta)) \subseteq \overline{k_{\infty}} .
$$

Then

$$
\text { tr. } \operatorname{deg}_{\bar{k}} L=\operatorname{dim} \Gamma_{M} \quad\left(=\operatorname{dim} \Gamma_{\psi}\right) .
$$

Carlitz logarithms

- Difference equations for Carlitz logarithms
- Calculation of the Galois group
- Algebraic independence
- An explicit example: $\log _{C}\left(\zeta_{\theta}\right)$

Carlitz logarithms

- Recall the Carlitz exponential:

$$
\exp _{C}(z)=z+\sum_{i=1}^{\infty} \frac{z^{q^{i}}}{\left(\theta^{q^{i}}-\theta\right)\left(\theta^{q^{i}}-\theta^{q}\right) \cdots\left(\theta^{q^{i}}-\theta \theta^{q^{i-1}}\right)}
$$

Carlitz logarithms

- Recall the Carlitz exponential:

$$
\exp _{C}(z)=z+\sum_{i=1}^{\infty} \frac{z^{q^{i}}}{\left(\theta^{q^{i}}-\theta\right)\left(\theta^{q^{i}}-\theta^{q}\right) \cdots\left(\theta^{q^{i}}-\theta^{q^{i-1}}\right)}
$$

- Its formal inverse is the Carlitz logarithm,

$$
\log _{C}(z)=z+\sum_{i=1}^{\infty} \frac{z^{q^{i}}}{\left(\theta-\theta^{q}\right)\left(\theta-\theta^{q^{2}}\right) \cdots\left(\theta-\theta^{q^{i}}\right)}
$$

- $\log _{C}(z)$ converges for $|z|_{\infty}<|\theta|^{q /(q-1)}$ and satisfies

$$
\theta \log _{C}(z)=\log _{C}(\theta z)+\log _{C}\left(z^{q}\right)
$$

The function $L_{\alpha}(t)$

- For $\alpha \in \bar{k},|\alpha|_{\infty}<|\theta|^{q /(q-1)}$, we define

$$
L_{\alpha}(t)=\alpha+\sum_{i=1}^{\infty} \frac{\alpha^{q^{i}}}{\left(t-\theta^{q}\right)\left(t-\theta q^{2}\right) \cdots\left(t-\theta q^{i}\right)} \in \mathbb{T}
$$

- Connection with Carlitz logarithms:

$$
L_{\alpha}(\theta)=\log _{C}(\alpha)
$$

- Functional equation:

$$
L_{\alpha}^{(-1)}=\alpha^{(-1)}+\frac{L_{\alpha}}{t-\theta}
$$

Difference equations for Carlitz logarithms

- Suppose $\alpha_{1}, \ldots, \alpha_{r} \in \bar{k},\left|\alpha_{i}\right|_{\infty}<|\theta|_{\infty}^{q /(q-1)}$ for each i.

Difference equations for Carlitz logarithms

- Suppose $\alpha_{1}, \ldots, \alpha_{r} \in \bar{k},\left|\alpha_{i}\right|_{\infty}<|\theta|_{\infty}^{q /(q-1)}$ for each i.
- If we set

$$
\Phi=\left[\begin{array}{cccc}
t-\theta & 0 & \cdots & 0 \\
\alpha_{1}^{(-1)}(t-\theta) & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{r}^{(-1)}(t-\theta) & 0 & \cdots & 1
\end{array}\right]
$$

then Φ represents multiplication by σ on a t-motive M with

$$
0 \rightarrow C \rightarrow M \rightarrow \mathbf{1}^{r} \rightarrow 0
$$

Difference equations for Carlitz logarithms

- Suppose $\alpha_{1}, \ldots, \alpha_{r} \in \bar{k},\left|\alpha_{i}\right|_{\infty}<|\theta|_{\infty}^{q /(q-1)}$ for each i.
- If we set

$$
\Phi=\left[\begin{array}{cccc}
t-\theta & 0 & \cdots & 0 \\
\alpha_{1}^{(-1)}(t-\theta) & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{r}^{(-1)}(t-\theta) & 0 & \cdots & 1
\end{array}\right]
$$

then Φ represents multiplication by σ on a t-motive M with

$$
0 \rightarrow C \rightarrow M \rightarrow \mathbf{1}^{r} \rightarrow 0
$$

- We let

$$
\Psi=\left[\begin{array}{cccc}
\Omega & 0 & \cdots & 0 \\
\Omega L_{\alpha_{1}} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\Omega L_{\alpha_{r}} & 0 & \cdots & 1
\end{array}\right] .
$$

Then

$$
\Psi^{(-1)}=\Phi \psi .
$$

- Specialize Ψ at $t=\theta$ and find

$$
\Psi(\theta)=\left[\begin{array}{cccc}
-1 / \pi_{q} & 0 & \cdots & 0 \\
-\log _{C}\left(\alpha_{1}\right) / \pi_{q} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-\log _{C}\left(\alpha_{r}\right) / \pi_{q} & 0 & \cdots & 1
\end{array}\right]
$$

- Specialize Ψ at $t=\theta$ and find

$$
\Psi(\theta)=\left[\begin{array}{cccc}
-1 / \pi_{q} & 0 & \cdots & 0 \\
-\log _{C}\left(\alpha_{1}\right) / \pi_{q} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-\log _{C}\left(\alpha_{r}\right) / \pi_{q} & 0 & \cdots & 1
\end{array}\right]
$$

- Thus we can determine

$$
\operatorname{tr} \cdot \operatorname{deg}_{\bar{k}} \bar{k}\left(\pi_{q}, \log _{C}\left(\alpha_{1}\right), \ldots, \log _{C}\left(\alpha_{r}\right)\right)
$$

by calculating
$\operatorname{dim} \Gamma_{\psi}$.

Calculating Γ_{Ψ}

- Set $\Psi_{1}, \Psi_{2} \in \mathrm{GL}_{r+1}\left(\mathbb{L} \otimes_{\bar{k}(t)} \mathbb{L}\right)$ so that

$$
\left(\Psi_{1}\right)_{i j}=\Psi_{i j} \otimes 1, \quad\left(\Psi_{2}\right)_{i j}=1 \otimes \Psi_{i j}
$$

and set $\widetilde{\Psi}=\Psi_{1}^{-1} \Psi_{2} \in \mathrm{GL}_{r+1}\left(\mathbb{L} \otimes_{\bar{k}(t)} \mathbb{L}\right)$.

Calculating Γ_{Ψ}

- Set $\Psi_{1}, \Psi_{2} \in \mathrm{GL}_{r+1}\left(\mathbb{L} \otimes_{\bar{k}(t)} \mathbb{L}\right)$ so that

$$
\left(\Psi_{1}\right)_{i j}=\Psi_{i j} \otimes 1, \quad\left(\Psi_{2}\right)_{i j}=1 \otimes \Psi_{i j}
$$

and set $\widetilde{\Psi}=\Psi_{1}^{-1} \Psi_{2} \in \mathrm{GL}_{r+1}\left(\mathbb{L} \otimes_{\bar{k}(t)} \mathbb{L}\right)$.

- Define an $\mathbb{F}_{q}(t)$-algebra map,

$$
\mu=\left(X_{i j} \mapsto \widetilde{\Psi}_{i j}\right): \mathbb{F}_{q}(t)[X, 1 / \operatorname{det} X] \rightarrow \mathbb{L} \otimes_{\bar{k}(t)} \mathbb{L}
$$

which defines the $\mathbb{F}_{q}(t)$-subgroup scheme $\Gamma_{\psi} \subseteq \mathrm{GL}_{r+1 / \mathbb{F}_{q}(t)}$.

Calculating Γ_{ψ}

- Set $\Psi_{1}, \Psi_{2} \in \mathrm{GL}_{r+1}\left(\mathbb{L} \otimes_{\bar{k}(t)} \mathbb{L}\right)$ so that

$$
\left(\Psi_{1}\right)_{i j}=\Psi_{i j} \otimes 1, \quad\left(\Psi_{2}\right)_{i j}=1 \otimes \Psi_{i j}
$$

and set $\widetilde{\psi}=\Psi_{1}^{-1} \Psi_{2} \in \mathrm{GL}_{r+1}\left(\mathbb{L} \otimes_{\bar{k}(t)} \mathbb{L}\right)$.

- Define an $\mathbb{F}_{q}(t)$-algebra map,

$$
\mu=\left(X_{i j} \mapsto \widetilde{\Psi}_{i j}\right): \mathbb{F}_{q}(t)[X, 1 / \operatorname{det} X] \rightarrow \mathbb{L} \otimes_{\bar{k}(t)} \mathbb{L},
$$

which defines the $\mathbb{F}_{q}(t)$-subgroup scheme $\Gamma_{\psi} \subseteq \mathrm{GL}_{r+1 / \mathbb{F}_{q}(t)}$.

- In our case, this implies first that

$$
\Gamma_{\Psi} \subseteq\left\{\left[\begin{array}{cc}
* & 0 \\
* & i d_{r}
\end{array}\right]\right\} \subseteq \mathrm{GL}_{r+1 / \mathbb{F}_{q}(t)} .
$$

Thus we can consider the coordinate ring of Γ_{ψ} to be a quotient of $\mathbb{F}_{q}(t)\left[X_{0}, \ldots, X_{r}, 1 / X_{0}\right]$.

The vector group V

- The homomorphism of $\mathbb{F}_{q}(t)$-group schemes

$$
\left[\begin{array}{cc}
\alpha & 0 \\
\delta & \mathrm{id}_{r}
\end{array}\right] \mapsto \alpha: \Gamma_{\psi} \xrightarrow{\mathrm{pr}} \mathbb{G}_{m}
$$

coincides with the surjection,

$$
\Gamma_{\psi} \rightarrow \Gamma_{C} . \quad\left(\Gamma_{C} \cong \mathbb{G}_{m}\right)
$$

The vector group V

- The homomorphism of $\mathbb{F}_{q}(t)$-group schemes

$$
\left[\begin{array}{cc}
\alpha & 0 \\
\delta & \mathrm{id}_{r}
\end{array}\right] \mapsto \alpha: \Gamma_{\psi} \xrightarrow{\mathrm{pr}} \mathbb{G}_{m}
$$

coincides with the surjection,

$$
\Gamma_{\psi} \rightarrow \Gamma_{C} . \quad\left(\Gamma_{C} \cong \mathbb{G}_{m}\right)
$$

- Thus we have exact sequence of group schemes over $\mathbb{F}_{q}(t)$:

$$
0 \rightarrow V \rightarrow \Gamma_{\psi} \xrightarrow{\mathrm{pr}} \mathbb{G}_{m} \rightarrow 0
$$

and we can consider $V \subseteq\left(\mathbb{G}_{a}\right)^{r}$ over $\mathbb{F}_{q}(t)$.

- Consider $\alpha \in \mathbb{G}_{m}\left(\overline{\mathbb{F}_{q}(t)}\right)$ and a lift $\gamma \in \Gamma_{\psi}\left(\overline{\mathbb{F}_{q}(t)}\right)$.
- Consider $\alpha \in \mathbb{G}_{m}\left(\overline{\mathbb{F}_{q}(t)}\right)$ and a lift $\gamma \in \Gamma_{\psi}\left(\overline{\mathbb{F}_{q}(t)}\right)$.
- For any $u=\left[\begin{array}{ll}1 & 0 \\ v & I_{r}\end{array}\right] \in V\left(\overline{\mathbb{F}_{q}(t)}\right)$, we find that

$$
\gamma^{-1} u \gamma=\left[\begin{array}{cc}
1 & 0 \\
\alpha v & I_{r}
\end{array}\right] \in V\left(\overline{\mathbb{F}_{q}(t)}\right) .
$$

- Consider $\alpha \in \mathbb{G}_{m}\left(\overline{\mathbb{F}_{q}(t)}\right)$ and a lift $\gamma \in \Gamma_{\psi}\left(\overline{\mathbb{F}_{q}(t)}\right)$.
- For any $u=\left[\begin{array}{ll}1 & 0 \\ v & I_{r}\end{array}\right] \in V\left(\overline{\mathbb{F}_{q}(t)}\right)$, we find that

$$
\gamma^{-1} u \gamma=\left[\begin{array}{cc}
1 & 0 \\
\alpha v & I_{r}
\end{array}\right] \in V\left(\overline{\mathbb{F}_{q}(t)}\right) .
$$

- Thus $V\left(\overline{\mathbb{F}_{q}(t)}\right)$ is a vector subspace of $\overline{\mathbb{F}}_{q}(t) \quad$.
- Consider $\alpha \in \mathbb{G}_{m}\left(\overline{\mathbb{F}_{q}(t)}\right)$ and a lift $\gamma \in \Gamma_{\psi}\left(\overline{\mathbb{F}_{q}(t)}\right)$.
- For any $u=\left[\begin{array}{ll}1 & 0 \\ v & I_{r}\end{array}\right] \in V\left(\overline{\mathbb{F}_{q}(t)}\right)$, we find that

$$
\gamma^{-1} u \gamma=\left[\begin{array}{cc}
1 & 0 \\
\alpha v & I_{r}
\end{array}\right] \in V\left(\overline{\mathbb{F}_{q}(t)}\right) .
$$

- Thus $V\left(\overline{\mathbb{F}_{q}(t)}\right)$ is a vector subspace of $\overline{\mathbb{F}}_{q}(t) \quad$.
- Now V is smooth over $\mathbb{F}_{q}(t)$ because pr : $\Gamma_{\psi} \rightarrow \mathbb{G}_{m}$ is surjective on Lie algebras.
- Consider $\alpha \in \mathbb{G}_{m}\left(\overline{\mathbb{F}_{q}(t)}\right)$ and a lift $\gamma \in \Gamma_{\psi}\left(\overline{\mathbb{F}_{q}(t)}\right)$.
- For any $u=\left[\begin{array}{ll}1 & 0 \\ v & I_{r}\end{array}\right] \in V\left(\overline{\mathbb{F}_{q}(t)}\right)$, we find that

$$
\gamma^{-1} u \gamma=\left[\begin{array}{cc}
1 & 0 \\
\alpha v & I_{r}
\end{array}\right] \in V\left(\overline{\mathbb{F}_{q}(t)}\right) .
$$

- Thus $V\left(\overline{\mathbb{F}_{q}(t)}\right)$ is a vector subspace of $\overline{\mathbb{F}}_{q}(t) \quad$.
- Now V is smooth over $\mathbb{F}_{q}(t)$ because pr : $\Gamma_{\psi} \rightarrow \mathbb{G}_{m}$ is surjective on Lie algebras.
- It follows that defining equations for V are linear forms in X_{1}, \ldots, X_{r} over $\mathbb{F}_{q}(t)$.

Definining equations for Γ_{ψ}

- Pick $b_{0} \in \mathbb{F}_{q}(t)^{\times} \backslash \mathbb{F}_{q}^{\times}$.
- Lift (use Hilbert Thm. 90) to

$$
\gamma=\left[\begin{array}{cccc}
b_{0} & 0 & \cdots & 0 \\
b_{1} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
b_{r} & 0 & \cdots & 1
\end{array}\right] \in \Gamma_{\Psi}\left(\mathbb{F}_{q}(t)\right)
$$

- We can use γ to create defining equations for Γ_{ψ} using defining forms for V.

Theorem

- Suppose $F=c_{1} X_{1}+\cdots+c_{r} X_{r}, c_{1}, \ldots, c_{r} \in \mathbb{F}_{q}(t)$, is a defining linear form for V. Then

$$
G=\left(b_{0}-1\right) F-F\left(b_{1}, \ldots, b_{r}\right)\left(X_{0}-1\right)
$$

is a defining polynomial for Γ_{ψ}.

Theorem

- Suppose $F=c_{1} X_{1}+\cdots+c_{r} X_{r}, c_{1}, \ldots, c_{r} \in \mathbb{F}_{q}(t)$, is a defining linear form for V. Then

$$
G=\left(b_{0}-1\right) F-F\left(b_{1}, \ldots, b_{r}\right)\left(X_{0}-1\right)
$$

is a defining polynomial for Γ_{ψ}. In particular, if we take $t=\theta$,

$$
\left(b_{0}(\theta)-1\right) \sum_{i=1}^{r} c_{i}(\theta) \log _{C}\left(\alpha_{i}\right)-\sum_{i=1}^{r} c_{i}(\theta) b_{i}(\theta) \pi_{q}=0
$$

Theorem

- Suppose $F=c_{1} X_{1}+\cdots+c_{r} X_{r}, c_{1}, \ldots, c_{r} \in \mathbb{F}_{q}(t)$, is a defining linear form for V. Then

$$
G=\left(b_{0}-1\right) F-F\left(b_{1}, \ldots, b_{r}\right)\left(X_{0}-1\right)
$$

is a defining polynomial for Γ_{ψ}. In particular, if we take $t=\theta$,

$$
\left(b_{0}(\theta)-1\right) \sum_{i=1}^{r} c_{i}(\theta) \log _{C}\left(\alpha_{i}\right)-\sum_{i=1}^{r} c_{i}(\theta) b_{i}(\theta) \pi_{q}=0
$$

- Every k-linear relation among $\pi_{q}, \log _{C}\left(\alpha_{1}\right), \ldots, \log _{C}\left(\alpha_{r}\right)$ is a k-linear combination of relations of this type.

Theorem

- Suppose $F=c_{1} X_{1}+\cdots+c_{r} X_{r}, c_{1}, \ldots, c_{r} \in \mathbb{F}_{q}(t)$, is a defining linear form for V. Then

$$
G=\left(b_{0}-1\right) F-F\left(b_{1}, \ldots, b_{r}\right)\left(X_{0}-1\right)
$$

is a defining polynomial for Γ_{ψ}. In particular, if we take $t=\theta$,

$$
\left(b_{0}(\theta)-1\right) \sum_{i=1}^{r} c_{i}(\theta) \log _{C}\left(\alpha_{i}\right)-\sum_{i=1}^{r} c_{i}(\theta) b_{i}(\theta) \pi_{q}=0
$$

- Every k-linear relation among $\pi_{q}, \log _{C}\left(\alpha_{1}\right), \ldots, \log _{C}\left(\alpha_{r}\right)$ is a k-linear combination of relations of this type.
- Let N be the k-linear span of $\pi_{q}, \log _{C}\left(\alpha_{1}\right), \ldots, \log _{C}\left(\alpha_{r}\right)$. Then

$$
\operatorname{dim} \Gamma_{\Psi}=\operatorname{dim}_{k} N .
$$

Algebraic independence of Carlitz logarithms

- Starting with $\alpha_{1}, \ldots, \alpha_{r} \in \bar{k}$ (suitably small), we found $\Phi \in \operatorname{Mat}_{r}(\bar{k}[t])$ and $\psi \in \operatorname{Mat}_{r}(\mathbb{E})$ so that

$$
\Psi(\theta)=\left[\begin{array}{cccc}
-1 / \pi_{q} & 0 & \cdots & 0 \\
-\log _{c}\left(\alpha_{1}\right) / \pi_{q} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-\log _{c}\left(\alpha_{r}\right) / \pi_{q} & 0 & \cdots & 1
\end{array}\right]
$$

- Since tr. $\operatorname{deg}_{\bar{k}} \bar{k}\left(\pi_{q}, \log _{C}\left(\alpha_{1}\right), \ldots \log _{C}\left(\alpha_{r}\right)\right)=\operatorname{dim} \Gamma_{\psi}=\operatorname{dim}_{k} N$, we can prove the following the following theorem.

Algebraic independence of Carlitz logarithms

- Starting with $\alpha_{1}, \ldots, \alpha_{r} \in \bar{k}$ (suitably small), we found $\Phi \in \operatorname{Mat}_{r}(\bar{k}[t])$ and $\psi \in \operatorname{Mat}_{r}(\mathbb{E})$ so that

$$
\Psi(\theta)=\left[\begin{array}{cccc}
-1 / \pi_{q} & 0 & \cdots & 0 \\
-\log _{c}\left(\alpha_{1}\right) / \pi_{q} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-\log _{c}\left(\alpha_{r}\right) / \pi_{q} & 0 & \cdots & 1
\end{array}\right]
$$

- Since tr. $\operatorname{deg}_{\bar{k}} \bar{k}\left(\pi_{q}, \log _{C}\left(\alpha_{1}\right), \ldots \log _{C}\left(\alpha_{r}\right)\right)=\operatorname{dim} \Gamma_{\psi}=\operatorname{dim}_{k} N$, we can prove the following the following theorem.

Theorem (P. 2008)

Suppose $\log _{C}\left(\alpha_{1}\right), \ldots, \log _{C}\left(\alpha_{r}\right)$ are linearly independent over $k=\mathbb{F}_{q}(\theta)$. Then they are algebraically independent over \bar{k}

An Example

- Recall

$$
\zeta_{\theta}=\sqrt[q-1]{-\theta}, \quad \exp _{C}\left(\pi_{q} / \theta\right)=\zeta_{\theta}, \quad \log _{C}\left(\zeta_{\theta}\right)=\frac{\pi_{q}}{\theta}
$$

An Example

- Recall

$$
\zeta_{\theta}=\sqrt[q-1]{-\theta}, \quad \exp _{C}\left(\pi_{q} / \theta\right)=\zeta_{\theta}, \quad \log _{C}\left(\zeta_{\theta}\right)=\frac{\pi_{q}}{\theta}
$$

- We take

$$
\Phi=\left[\begin{array}{cc}
t-\theta & 0 \\
\zeta_{\theta}^{1 / q}(t-\theta) & 1
\end{array}\right], \quad \Psi=\left[\begin{array}{cc}
\Omega & 0 \\
\Omega L_{\zeta_{\theta}} & 1
\end{array}\right]
$$

An Example

- Recall

$$
\zeta_{\theta}=\sqrt[q-1]{-\theta}, \quad \exp _{C}\left(\pi_{q} / \theta\right)=\zeta_{\theta}, \quad \log _{C}\left(\zeta_{\theta}\right)=\frac{\pi_{q}}{\theta}
$$

- We take

$$
\Phi=\left[\begin{array}{cc}
t-\theta & 0 \\
\zeta_{\theta}^{1 / q}(t-\theta) & 1
\end{array}\right], \quad \psi=\left[\begin{array}{cc}
\Omega & 0 \\
\Omega L_{\zeta_{\theta}} & 1
\end{array}\right]
$$

- We have a relation over \bar{k} on the entries of

$$
\Psi(\theta)=\left[\begin{array}{cc}
-1 / \pi_{q} & 0 \\
-1 / \theta & 1
\end{array}\right]
$$

namely

$$
\theta X_{21}+1=0
$$

- So $\operatorname{dim} \Gamma_{\psi}=1$. (It's at least 1 since $\Gamma_{\psi} \rightarrow \mathbb{G}_{m}$.)
- Question: What are its defining equations?
- So $\operatorname{dim} \Gamma_{\psi}=1$. (It's at least 1 since $\Gamma_{\psi} \rightarrow \mathbb{G}_{m}$.)
- Question: What are its defining equations?
- We begin with matrices in $\mathrm{GL}_{r}\left(\mathbb{L} \otimes_{\bar{k}(t)} \mathbb{L}\right)$:

$$
\Psi_{1}=\left[\begin{array}{cc}
\Omega \otimes 1 & 0 \\
\Omega L_{\zeta_{\theta}} \otimes 1 & 1
\end{array}\right], \quad \Psi_{2}=\left[\begin{array}{cc}
1 \otimes \Omega & 0 \\
1 \otimes \Omega L_{\zeta_{\theta}} & 1
\end{array}\right] .
$$

- So $\operatorname{dim} \Gamma_{\Psi}=1$. (It's at least 1 since $\Gamma_{\Psi} \rightarrow \mathbb{G}_{m}$.)
- Question: What are its defining equations?
- We begin with matrices in $G L_{r}\left(\mathbb{L} \otimes_{\bar{k}(t)} \mathbb{L}\right)$:

$$
\Psi_{1}=\left[\begin{array}{cc}
\Omega \otimes 1 & 0 \\
\Omega L_{\zeta_{\theta}} \otimes 1 & 1
\end{array}\right], \quad \Psi_{2}=\left[\begin{array}{cc}
1 \otimes \Omega & 0 \\
1 \otimes \Omega L_{\zeta_{\theta}} & 1
\end{array}\right] .
$$

Then the defining equations over $\mathbb{F}_{q}(t)$ for Γ_{ψ} will be precisely relations among the entries of

$$
\Psi_{1}^{-1} \Psi_{2}=\left[\begin{array}{cc}
\frac{1}{\Omega} \otimes \Omega & 0 \\
-L_{\zeta_{\theta}} \otimes \Omega+1 \otimes \Omega L_{\zeta_{\theta}} & 1
\end{array}\right] .
$$

- So $\operatorname{dim} \Gamma_{\psi}=1$. (It's at least 1 since $\Gamma_{\psi} \rightarrow \mathbb{G}_{m}$.)
- Question: What are its defining equations?
- We begin with matrices in $G L_{r}\left(\mathbb{L} \otimes_{\bar{k}(t)} \mathbb{L}\right)$:

$$
\Psi_{1}=\left[\begin{array}{cc}
\Omega \otimes 1 & 0 \\
\Omega L_{\zeta_{\theta}} \otimes 1 & 1
\end{array}\right], \quad \Psi_{2}=\left[\begin{array}{cc}
1 \otimes \Omega & 0 \\
1 \otimes \Omega L_{\zeta_{\theta}} & 1
\end{array}\right] .
$$

Then the defining equations over $\mathbb{F}_{q}(t)$ for Γ_{ψ} will be precisely relations among the entries of

$$
\Psi_{1}^{-1} \Psi_{2}=\left[\begin{array}{cc}
\frac{1}{\Omega} \otimes \Omega & 0 \\
-L_{\zeta_{\theta}} \otimes \Omega+1 \otimes \Omega L_{\zeta_{\theta}} & 1
\end{array}\right]
$$

- Consider the identity of functions (check!),

$$
\zeta_{\theta}(t-\theta) \Omega(t)-t \Omega(t) L_{\zeta_{\theta}}(t)-1=0
$$

and substitute into the lower left entry of $\Psi_{1}^{-1} \Psi_{2}$.

$$
\begin{gathered}
\Psi_{1}^{-1} \Psi_{2}=\left[\begin{array}{cc}
\frac{1}{\Omega} \otimes \Omega & 0 \\
-L_{\zeta_{\theta}} \otimes \stackrel{1}{\Omega}+1 \otimes \Omega L_{\zeta_{\theta}} & 1
\end{array}\right] \\
\zeta_{\theta}(t-\theta) \Omega-t \Omega L_{\zeta_{\theta}}-1=0
\end{gathered}
$$

$$
\begin{gathered}
\Psi_{1}^{-1} \Psi_{2}=\left[\begin{array}{cc}
\frac{1}{\Omega} \otimes \Omega & 0 \\
-L_{\zeta_{\theta}} \otimes \Omega+1 \otimes \Omega L_{\zeta_{\theta}} & 1
\end{array}\right] \\
\zeta_{\theta}(t-\theta) \Omega-t \Omega L_{\zeta_{\theta}}-1=0
\end{gathered}
$$

- Lower left entry of $\Psi_{1}^{-1} \Psi_{2}$ is

$$
\begin{aligned}
-L_{\zeta_{\theta}} \otimes \Omega+1 \otimes \Omega L_{\zeta_{\theta}}= & -\left(\frac{1}{t} \zeta_{\theta}(t-\theta)-\frac{1}{t \Omega}\right) \otimes \Omega \\
& +1 \otimes \frac{1}{t}\left(\zeta_{\theta}(t-\theta) \Omega-1\right) \\
= & -\frac{1}{t} \zeta_{\theta}(t-\theta) \otimes \Omega+\frac{1}{t \Omega} \otimes \Omega \\
& +1 \otimes \frac{1}{t} \zeta_{\theta}(t-\theta) \Omega-1 \otimes \frac{1}{t} \\
= & \frac{1}{t}\left(\frac{1}{\Omega} \otimes \Omega\right)-\frac{1}{t}(1 \otimes 1)
\end{aligned}
$$

$$
\begin{gathered}
\Psi_{1}^{-1} \Psi_{2}=\left[\begin{array}{cc}
\frac{1}{\Omega} \otimes \Omega & 0 \\
-L_{\zeta_{\theta}} \otimes \Omega+1 \otimes \Omega L_{\zeta_{\theta}} & 1
\end{array}\right] \\
\zeta_{\theta}(t-\theta) \Omega-t \Omega L_{\zeta_{\theta}}-1=0
\end{gathered}
$$

- Lower left entry of $\Psi_{1}^{-1} \Psi_{2}$ is

$$
\begin{aligned}
-L_{\zeta_{\theta}} \otimes \Omega+1 \otimes \Omega L_{\zeta_{\theta}}= & -\left(\frac{1}{t} \zeta_{\theta}(t-\theta)-\frac{1}{t \Omega}\right) \otimes \Omega \\
& +1 \otimes \frac{1}{t}\left(\zeta_{\theta}(t-\theta) \Omega-1\right) \\
= & -\frac{1}{t} \zeta_{\theta}(t-\theta) \otimes \Omega+\frac{1}{t \Omega} \otimes \Omega \\
& +1 \otimes \frac{1}{t} \zeta_{\theta}(t-\theta) \Omega-1 \otimes \frac{1}{t} \\
= & \frac{1}{t}\left(\frac{1}{\Omega} \otimes \Omega\right)-\frac{1}{t}(1 \otimes 1)
\end{aligned}
$$

- Therefore, Γ_{ψ} is defined by

$$
\Gamma_{\psi}: t X_{12}-X_{11}+1=0
$$

Carlitz zeta values

- Brief review of Carlitz zeta values
- Algebraic independence theorem of Chang-Yu
- Theorem of Chang-P.-Yu for varying q

Applications to Carlitz zeta values

$$
\zeta_{C}(n)=\sum_{\substack{a \in \mathbb{F}_{q}[\theta] \\ a \text { monic }}} \frac{1}{a^{n}} \in k_{\infty}, \quad n=1,2, \ldots
$$

Applications to Carlitz zeta values

$$
\zeta_{C}(n)=\sum_{\substack{a \in \mathbb{F}_{q}[\theta] \\ a \text { monic }}} \frac{1}{a^{n}} \in k_{\infty}, \quad n=1,2, \ldots
$$

- As you may recall from the 2nd lecture, using the theory of Anderson and Thakur, one can construct a system of difference equations $\Psi^{(-1)}=\Phi \psi$ so that $\zeta_{C}(n)$ appears in $\Psi(\theta)$.

Applications to Carlitz zeta values

$$
\zeta_{C}(n)=\sum_{\substack{a \in \mathbb{F}_{q}[\theta] \\ a \text { monic }}} \frac{1}{a^{n}} \in k_{\infty}, \quad n=1,2, \ldots
$$

- As you may recall from the 2nd lecture, using the theory of Anderson and Thakur, one can construct a system of difference equations $\Psi^{(-1)}=\phi \Psi$ so that $\zeta_{C}(n)$ appears in $\Psi(\theta)$.
- Known algebraic relations over \bar{k} among $\zeta_{C}(n)$:

$$
\begin{aligned}
(q-1) \mid n \Rightarrow \zeta_{C}(n) & =r_{n} \pi_{q}^{n}, \quad r_{n} \in \mathbb{F}_{q}(\theta), & & \text { (Euler-Carlitz) } \\
\zeta_{C}(n p) & =\zeta_{c}(n)^{p}, & & \text { (Frobenius) }
\end{aligned}
$$

The Chang-Yu Theorem

Algebraic independence of $\zeta_{c}(n)$

Theorem (Chang-Yu 2007)

For any positive integer n, the transcendence degree of the field

$$
\bar{k}\left(\pi_{q}, \zeta_{C}(1), \ldots, \zeta_{C}(n)\right)
$$

over \bar{k} is

$$
n-\left\lfloor\frac{n}{p}\right\rfloor-\left\lfloor\frac{n}{q-1}\right\rfloor+\left\lfloor\frac{n}{p(q-1)}\right\rfloor+1 .
$$

The Chang-Yu Theorem

Algebraic independence of $\zeta_{c}(n)$

Theorem (Chang-Yu 2007)

For any positive integer n, the transcendence degree of the field

$$
\bar{k}\left(\pi_{q}, \zeta_{C}(1), \ldots, \zeta_{C}(n)\right)
$$

over \bar{k} is

$$
n-\left\lfloor\frac{n}{p}\right\rfloor-\left\lfloor\frac{n}{q-1}\right\rfloor+\left\lfloor\frac{n}{p(q-1)}\right\rfloor+1
$$

Question: What can we say about Carlitz zeta values if we allow q to vary?

The Chang-Yu Theorem

Algebraic independence of $\zeta_{c}(n)$

Theorem (Chang-Yu 2007)

For any positive integer n, the transcendence degree of the field

$$
\bar{k}\left(\pi_{q}, \zeta_{C}(1), \ldots, \zeta_{C}(n)\right)
$$

over \bar{k} is

$$
n-\left\lfloor\frac{n}{p}\right\rfloor-\left\lfloor\frac{n}{q-1}\right\rfloor+\left\lfloor\frac{n}{p(q-1)}\right\rfloor+1
$$

Question: What can we say about Carlitz zeta values if we allow q to vary?
Answer: Even then, the Euler-Carlitz relations and the Frobenius p-th power relations tell the whole stoty....

Zeta values with varying constant fields

For $m \geq 1$, we set

$$
\zeta_{m}(n)=\sum_{\substack{a \in \mathbb{F}_{p} m[\theta] \\ a \text { monic }}} \frac{1}{a^{n}}, \quad n=1,2, \ldots
$$

Theorem (Chang-P.-Yu)

For any positive integers s and d, the transcendence degree of the field

$$
\bar{k}\left(\cup_{m=1}^{d}\left\{\pi_{p^{m}}, \zeta_{m}(1), \ldots, \zeta_{m}(s)\right\}\right)
$$

over \bar{k} is

$$
\sum_{m=1}^{d}\left(s-\left\lfloor\frac{s}{p}\right\rfloor-\left\lfloor\frac{s}{p^{m}-1}\right\rfloor+\left\lfloor\frac{s}{p\left(p^{m}-1\right)}\right\rfloor+1\right)
$$

Rank 2 Drinfeld modules

- Periods and quasi-periods
- A Galois group example
- Algebraic independence in the non-CM case

Periods and quasi-periods of rank 2 Drinfeld modules

- Recall that for a rank 2 Drinfeld module $\rho: \mathbb{F}_{q}[t] \rightarrow \bar{k}[F]$ with

$$
\rho(t)=\theta+\kappa F+F^{2}
$$

we can take

$$
\Phi=\left[\begin{array}{cc}
0 & 1 \\
t-\theta & -\kappa^{1 / q}
\end{array}\right], \quad \Psi=\left[\begin{array}{cc}
0 & 1 \\
1 & -\kappa
\end{array}\right]\left[\begin{array}{cc}
s_{1}^{(1)} & s_{1}^{(2)} \\
s_{2}^{(1)} & s_{2}^{(2)}
\end{array}\right]^{-1} .
$$

- Furthermore,

$$
\Psi(\theta)^{-1}=\left[\begin{array}{ll}
\omega_{1} & \eta_{1} \\
\omega_{2} & \eta_{2}
\end{array}\right],
$$

where $\omega_{1}, \omega_{2}, \eta_{1}, \eta_{2}$ are the periods and quasi-periods for ρ.

An example $\left(\kappa=\sqrt{\theta}+\sqrt{\theta^{q}}\right)$

- Assume $p \neq 2$. Consider the Drinfeld module ρ with

$$
\rho(t)=\theta+\left(\sqrt{\theta}+\sqrt{\theta^{q}}\right) F+F^{2} .
$$

An example $\left(\kappa=\sqrt{\theta}+\sqrt{\theta^{q}}\right)$

- Assume $p \neq 2$. Consider the Drinfeld module ρ with

$$
\rho(t)=\theta+\left(\sqrt{\theta}+\sqrt{\theta^{q}}\right) F+F^{2} .
$$

- After going through the Galois group calculation, we find in this case

$$
\Gamma_{\psi}=\left\{\left[\begin{array}{cc}
\alpha & \beta t \\
\beta & \alpha
\end{array}\right]\right\}
$$

An example $\left(\kappa=\sqrt{\theta}+\sqrt{\theta^{q}}\right)$

- Assume $p \neq 2$. Consider the Drinfeld module ρ with

$$
\rho(t)=\theta+\left(\sqrt{\theta}+\sqrt{\theta^{q}}\right) F+F^{2} .
$$

- After going through the Galois group calculation, we find in this case

$$
\Gamma_{\Psi}=\left\{\left[\begin{array}{cc}
\alpha & \beta t \\
\beta & \alpha
\end{array}\right]\right\}
$$

- Thus

$$
\operatorname{dim} \Gamma_{\psi}=2
$$

An example $\left(\kappa=\sqrt{\theta}+\sqrt{\theta^{q}}\right)$

- Assume $p \neq 2$. Consider the Drinfeld module ρ with

$$
\rho(t)=\theta+\left(\sqrt{\theta}+\sqrt{\theta^{q}}\right) F+F^{2} .
$$

- After going through the Galois group calculation, we find in this case

$$
\Gamma_{\psi}=\left\{\left[\begin{array}{cc}
\alpha & \beta t \\
\beta & \alpha
\end{array}\right]\right\}
$$

- Thus

$$
\operatorname{dim} \Gamma_{\psi}=2
$$

- However, here ρ has complex multiplication by $\mathbb{F}_{q}[\sqrt{t}]$, where \sqrt{t} acts by $\sqrt{\theta}+F$.

An example $\left(\kappa=\sqrt{\theta}+\sqrt{\theta^{q}}\right)$

- Assume $p \neq 2$. Consider the Drinfeld module ρ with

$$
\rho(t)=\theta+\left(\sqrt{\theta}+\sqrt{\theta^{q}}\right) F+F^{2} .
$$

- After going through the Galois group calculation, we find in this case

$$
\Gamma_{\psi}=\left\{\left[\begin{array}{cc}
\alpha & \beta t \\
\beta & \alpha
\end{array}\right]\right\} .
$$

- Thus

$$
\operatorname{dim} \Gamma_{\Psi}=2 .
$$

- However, here ρ has complex multiplication by $\mathbb{F}_{q}[\sqrt{t}]$, where \sqrt{t} acts by $\sqrt{\theta}+F$.

Theorem (Thiery 1992)

The period matrix of a Drinfeld module of rank 2 over \bar{k} with CM has transcendence degree 2 over \bar{k}.

Rank 2 Drinfeld modules without CM

In general, we say that a Drinfeld module ρ does not have complex multiplication if

$$
\operatorname{End}(\rho)=\mathbb{F}_{q}[t] .
$$

Rank 2 Drinfeld modules without CM

In general, we say that a Drinfeld module ρ does not have complex multiplication if

$$
\operatorname{End}(\rho)=\mathbb{F}_{q}[t]
$$

Theorem (Chang-P.)

Suppose that $p \neq 2$. Let ρ be a Drinfeld module of rank 2 over \bar{k} without CM. Then

$$
\Gamma_{\rho} \cong \mathrm{GL}_{2} .
$$

In particular, the periods and quasi-periods of ρ,

$$
\omega_{1}, \omega_{2}, \eta_{1}, \eta_{2}
$$

are algebraically independent over \bar{k}.

