
TRANSCENDENCE OF SPECIAL VALUES OF
MODULAR AND HYPERGEOMETRIC FUNCTIONS
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1. Lecture I: Modular Functions

Part 1: Most known transcendence results about functions of one and several
complex variables are derived from those for commutative algebraic groups.
Varieties and vector spaces are assumed defined over Q , although we also
consider their complex points. A commutative algebraic group, also called
a group variety, is a variety with a commutative group structure for which
the composition and inverse maps are regular. The group Ga has complex
points C , under addition. The group Gm has complex points C∗ = C\{0} ,
under multiplication. A group variety G has a maximal subgroup L of the
form Gr

a × Gs
m such that the quotient G/L is a projective group variety,

otherwise known as an abelian variety. We will focus almost exclusively
on abelian varieties and their moduli spaces. Abelian varieties of complex
dimension one are called elliptic curves. The complex points A(C) of an
elliptic curve A can be represented as a complex torus C/L where L is
a lattice in C . Therefore, L = Zω1 + Zω2 for ω1 , ω2 complex numbers
with z = ω2/ω1 ∈ H , where H is the set of complex numbers with positive
imaginary part. The Weierstrass elliptic function is defined by

℘(z) = ℘(z;L) =
1
z2

+
∑

ω∈L, ω 6=0

1
(z − ω)2

− 1
ω2

.

Therefore, ℘(z) = ℘(z +ω), for all ω ∈ L , and ℘(z) satisfies the differential
equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,

for certain algebraic invariants g2 , g3 depending only on L . The group law
corresponds to addition in C/L , and is given by rational functions in the
g2, g3, ℘, ℘′ with coefficients in Q . The endomorphism algebra of C/L is
either Q or Q(z). In the latter case, z is imaginary quadratic and C/L is
said to have CM (complex multiplication).
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Part 2: We consider abelian varieties A of dimension g ≥ 1 with a principal
polarization. The set of complex points A(C) has the structure of a com-
plex torus Cg/L , with L = Z ~ω1 + . . . + Z~ω2g , where ~ωi ∈ Cg are linearly
independent over R . Moreover, we can choose the ~ωi in such a way that
the period matrices Ω1 = (~ω1, . . . , ~ωg), Ω2 = (~ωg+1, . . . , ~ω2g), have quotient
the normalized period matrix z = Ω2Ω−1

1 in Hg , the space of symmetric
g × g matrices with positive definite imaginary part. The addition law on
A corresponds to usual addition on Cg/L and translates to the algebraic
group law on A . The torus Cg/L is isomorphic to Az(C) = Cg/(Zg + zZg).
Let

Sp(2g,Z) =
{
γ ∈ M2g(Z) : γ

(
0g −Ig

Ig 0g

)
γt =

(
0g −Ig

Ig 0g

) }
,

where Ig and 0g are the g × g identity and zero matrix respectively. The
analytic space

Ag = Sp(2g,Z)\Hg

parameterizes the complex isomorphism classes of (principally polarized)
abelian varieties of dimension g . The action of Sp(2g,Z) on Hg is given by

z 7→ (Az + B)(Cz + D)−1, γ =
(

A B
C D

)
∈ Sp(2g,Z),

where A , B , C , D are in Mg(Z). The space Ag is the set of complex
points Vg(C) of a quasi-projective variety Vg defined over Q , the Siegel
modular variety. Abelian varieties in the same Sp(2g,Q)-orbit are said to
be isogenous. By the Poincaré irreducibility theorem, an abelian variety A
is isogenous to a product of powers of simple non-isogenous abelian varieties:

A=̂An1
1 × . . .×Ank

k , Ai simple, Ai 6 =̂Aj , i 6= j.

The endomorphism algebra End0(A) of A is given by the linear maps on Cg

preserving L ⊗ Q . The endomorphism algebra is an isogeny invariant and
End0(A) = ⊕Mni(End0(Ai)). A simple abelian variety has endomorphism
algebra a division algebra over Q with positive involution. These have been
classified and fall into the following four types. Type I: totally real number
field; Type II: totally indefinite quaternion algebra over a totally real number
field; Type III: totally definite quaternion algebra over a totally real number
field; Type IV: central simple algebra over a CM field. A CM field is a totally
imaginary quadratic extension of a totally real number field, where CM
stands for complex multiplication. Notice that the endomorphism algebra
of any abelian variety contains Q , and that Ag is the moduli space for
principally polarized abelian varieties of dimension g whose endomorphism
algebra contains Q . This is an example of a Shimura variety. When End0(A)
contains a CM field, we say that A has generalized CM. If A is simple, its
endomorphism algebra will then be of Type IV. A simple abelian variety
A is said to have CM when End0(A) = K , where K is a CM field with
[K : Q] = 2dim(A). An arbitrary abelian variety is said to have CM if all
the simple factors in its decomposition up to isogeny have CM.
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Part 3: Let A = Az , z ∈ Hg , be defined over Q . Let H0(A, ΩQ) denote the
holomorphic 1-forms on A defined over Q . Let H1,0(A) = H0(A, ΩQ)⊗QC .
These vector spaces have dimension g . The rank of H1(A,Z) is 2g , as A is
topologically the product of 2g circles. The periods of A are the numbers∫
γ ω where ω ∈ H0(A,ΩQ), γ ∈ H1(A,Z). Let ω1, ω2, . . . , ωg be a basis

of H0(A, ΩQ) and γ1, γ2, . . . , γ2g a basis of H1(A,Z). For an appropriate
choice of complex coordinates, we have A(C) = Cg/L , where

L = Z ~ω1 + Z ~ω2 + . . . + Z ~ω2g, for ~ωi =
(∫

γi

ωj

)

j=1,...,g

∈ Cg.

In an analogous way, using the holomorphic differential 1-forms and the
homology on a smooth projective curve X of genus g , we construct an
abelian variety, called the Jacobian of X , and denoted Jac(X). Namely,
let K = Q(x, y) be an algebraic function field of one independent complex
variable x , where y is related to x by an irreducible polynomial relation
P (x, y) = 0 with coefficients in Q , and y actually appears. Differentiating
with respect to x , we obtain dy

dx = −Px/Py , and see that the derivative of
y with respect to x is in K . More generally, if ϕ = Q(x, y) is in K , then
the derivative of ϕ with respect to x is in K . If ϕ and ψ are in K , we
call the expression ϕdψ an abelian differential defined over Q . It can be
written as R(x, y)dx for some R(x, y) ∈ K . By expanding in terms of a local
parameter on the Riemann surface X of y with respect to x , we can define
the poles and zeros of an abelian differential, as well as their orders. An
abelian differential is said to be of the first kind, or holomorphic, if it has no
poles on X . We denote the differentials of the first kind defined over Q by
H0(X,ΩQ). It is a vector space of dimension g = genus(X) over Q , and we
denote H1,0(X) = H0(X, ΩQ)⊗C . As X is topologically the product of 2g
circles, the module H1(X,Z) is of rank 2g . Each γ ∈ H1(X,Z) defines an
element of H1,0(X)∗ , by integration over γ . The complex torus Jac(X) is
given by H1,0(X)∗/H1(X,Z) and is a principally polarized abelian variety
of dimension g defined over Q . Therefore, to each curve X there is an
associated normalized period matrix z ∈ Hg . Allowing complex coefficients
everywhere, the Torelli locus in Hg is the set of z associated to the smooth
projective curves X of genus g .

An automorphism α of a smooth projective curve X induces a map α∗ on
H0,1(X) = H1,0(X)∗ preserving H1(X,Z), and thus determines an element
of End0(Jac(X)). We have two representations of the endomorphism algebra
of a complex abelian variety A(C) = Cg/L . An endomorphism can be
represented as a linear map on Cg preserving L ⊗ Q , and therefore as an
element of Mg(C). Considering only its action on L ⊗ Q , it can also be
represented as an element of M2g(Q). The first representation is called the
complex representation, and the second is called the rational representation.
The rational representation is isomorphic to the direct sum of the complex
representation with its complex conjugate.
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Part 4: By way of example, we apply these considerations to the family
Xµ(x), x ∈ C , of smooth projective algebraic curves with affine model

wp = upµ0(u− 1)pµ1(u− x)pµ2

where µi , i = 0, 1, 2 are rational numbers with 0 < µi < 1 and least
common denominator p , a rational prime. Let µ3 = 2−∑2

i=0 µi . Using the
Riemann–Hurwitz formula, we see that Xµ(x), x 6= 0, 1, has genus p − 1,
whereas Xµ(0) and Xµ(1) have genus (p− 1)/2. Let Jµ(x) = Jac(Xµ(x)).
There is a natural automorphism α of Xµ(x) given by (u, w) 7→ (u, ζ−1w),
where ζ = exp(2πi/p). This induces an endomorphism of Jµ(x) and an
embedding K = Q(ζ) ⊆ End0(Jµ(x)). As [K : Q] = p − 1 = 2dim(Jµ(0)),
it follows that H1(Jµ(0),Q) has no proper non-trivial K -invariant subspace.
By the Poincaré irreducibility theorem, there is a simple abelian variety B
such that Jµ(0)=̂Bs , where End0(B) is a subfield of K with [K : F ] = s .
Therefore, Jµ(0) has CM by F . For all x ∈ C , there is a representation of K
on V = H0(Jµ(x), ΩQ). The vector space V is a direct sum of eigenspaces
Vs , s = 1, . . . , p − 1, where the induced action of α on each vs ∈ Vs is
multiplication by σs(ζ) = ζs , σs ∈ Gal(K/Q). The dimensions of these
eigenspaces were computed by Lefschetz (see also [30]). For x ∈ R , let
〈x〉 = x − xxy denote the fractional part of x , where xxy is the largest
integer less than or equal to x . For x 6= 0, 1, we have

rs = dim(Vs) = −1 +
3∑

i=0

〈sµi〉.

Notice that r1 = 1 and rs + r−s = 2. For x = 0, we have

r′s = dim(Vs) = −1 + 〈s(µ0 + µ2)〉+ 〈sµ1〉+ 〈sµ2〉.
Again, r′1 = 1, but now r′s + r′−s = 1. The datum Φ = {rsσs} is called
a generalized CM type. The datum Φ′ = {r′sσs} is called a CM type. We
assume from now on that µ′0 = µ0 + µ2 < 1, and we let µ′1 = µ1 , µ′2 = µ3 .
The abelian varieties A of dimension p−1 with K ⊆ End0(A) and induced
representation on H1,0(A) isomorphic to Φ⊗QC are parameterized by Ht ,
where t is the number of s ∈ (Z/pZ)∗/{±1} with rsr−s = 1. Denoted
these by ±s1,±s2, . . . ,±st . We obtain one such family of abelian varieties
by associating to each point (zj)t

j=1 ∈ Ht the lattice in Cp−1 given by the
vectors whose first 2t coordinates are σsj (u)+σsj (v)zj , σ−sj (u)zj +σ−sj (v),
j = 1, . . . , t , and whose last p− 1− 2t coordinates are σs(u), σs(v), where
s takes those values with dim(Vs) = 2. Here, u and v range over Z[ζ] .
Example: Let µ0 = 2

5 , µ1 = 3
5 , µ2 = 2

5 , µ3 = 3
5 . Then, p = 5, and rs = 1

for s = 1, 2, 3, 4. Therefore, t = 2 and ±s1 = 1, 4; ±s2 = 2, 3. Moreover,
r′1 = 1, r′4 = 0; r′3 = 1, r′2 = 0. The Jacobian Jµ(0) is a simple abelian
surface with CM type {σ1, σ3} . For x 6= 0, 1, the 4 dimensional Jµ(x) is
isogenous to the square of an abelian surface B(x) whose endomorphism
algebra contains Q(

√
5). The abelian variety B(x) is said to have real

multiplication, as Q(
√

5) is a totally real field.
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Part 5: Modular functions are holomorphic functions, defined on a complex
symmetric domain D , that are invariant under the action of a properly
discontinuous group Γ on D , possibly satisfying some growth conditions.
We also need to normalize these functions appropriately, in order to make
sense of the transcendence properties of their values at certain points. We
are mainly interested in the cases where D = Hg and Γ = Sp(2g,Z), for
some g ≥ 1, or D = H , and Γ is the norm unit group of a quaternion
algebra. These are examples of arithmetic groups.

We now concentrate on these groups. We have already met Γ = Sp(2g,Z),
and the case g = 1 corresponds to SL2(Z), the two by two matrices with
integer entries and determinant one. A quaternion algebra over a field F
of characteristic 6= 2 is a central simple algebra over F of dimension 4.
Each quaternion algebra is isomorphic to an algebra A = (a, b, F ), where
a, b ∈ F ∗ , with basis {1, i, j, k} satisfying,

i2 = a, j2 = b, k = ij = −ji.

The Hamiltonians H are the elements of (−1,−1,R), and the matrix algebra
M2(F ) is (1, 1, F ). The quaternion algebras are non-commutative, and are
division algebras if they are not isomorphic to M2(F ). If A = (a, b, F ) is
a quaternion algebra over F , and σ : F → K is any homomorphism from
F into another field K , we define Aσ = (σ(a), σ(b), σ(F )). Moreover, we
have Aσ ⊗ K = (σ(a), σ(b),K). Now, let F be a totally real algebraic
number field of degree n over Q . This means all n distinct embeddings σi ,
i = 1, . . . , n , of F into C have image in R . Suppose that σ1 is the identity.
We say that a quaternion algebra A over F is unramified at the identity, and
ramified at all other infinite places, if there is an R-isomorphism ρ1 from
A⊗ R to M2(R), whereas Aσi ⊗ R is R-isomorphic to H , for i = 2, . . . , n .
For x ∈ A , let Nrd(x) be the determinant, and Trd(x) be the trace, of the
matrix ρ1(x). These are called the reduced norm and reduced trace of x ,
respectively. An order O in A over F is a subring of A , containing 1, which
is a free Z-module of rank 4n . For example, if A = (a, b, F ) and a, b are
non-zero elements of the ring of integers OF of F , then

O = {x = x0 + x1i + x2j + x3k :, x0, x1, x2, x3 ∈ OF }
is an order in A . In any order O in A , let O1 be the group of elements of
reduced norm 1. Then, its image ρ1(O1) in M2(R) is a subgroup of SL2(R),
and

Γ(A,O) = ρ1(O1)
/{±I2}

is a subgroup of PSL2(R) = SL2(R)/{±I2} . In fact, Γ(A,O) is a Fuchsian
group, that is, a group acting properly discontinuously on H with finite
covolume. If Γ is a subgroup of finite index in some Γ(A,O), then we call
Γ a Fuchsian group derived from a quaternion algebra A . Two groups are
commensurable if their intersection has finite index in each of them. If Γ is
commensurable with some Γ(A,O), then Γ is called an arithmetic group.
This definition is a special case of a more general one we shall mention later.
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Notes on Part 4: Let µi , i = 0, 1, 2, 3 be rational numbers satisfying

0 < µi < 1, i = 0, 1, 2, 3,

3∑

i=0

µi = 2.

Let N ≥ 2 be the least common denominator of the µi . For x 6= 0, 1,∞ ,
consider the smooth projective curve Xµ(x) with affine model

wN = uNµ0(u− 1)Nµ1(u− x)Nµ2 .

There is a natural automorphism α of Xµ(x) given by (u, w) 7→ (u, ζ−1w),
where ζ = exp(2πi/N). This induces a representation of K = Q(ζ) on the
vector space V = H0(Jµ(x),ΩQ), where Jµ(x) = Jac(Xµ(x)). We consider
the eigenspaces Vs , s ∈ (Z/NZ)∗ (s is coprime to N ), where the induced
action of α on each vs ∈ Vs is multiplication by σs(ζ) = ζs , σs ∈ Gal(K/Q).
Following [30], there is a basis of Vs of the form,

ω = ω(s, α, β, γ) =
uα(u− 1)β(u− x)γdu

ws

for integers α, β, γ . Using local parameters u = zN at u = 0, (u− 1) = zN

at u = 1, (u − x) = zN at u = x , and u−1 = zN at u = ∞ , we deduce
that,

ord0 ω = N(α + 1)− sNµ0 − 1
ord1 ω = N(β + 1)− sNµ1 − 1
ordx ω = N(γ + 1)− sNµ2 − 1

ord∞ ω = s(Nµ0 + Nµ1 + Nµ2)−N(α + β + γ + 1)− 1.

In order for ω to be holomorphic, we need

α ≥ N−1(sNµ0 + 1)− 1
β ≥ N−1(sNµ1 + 1)− 1
γ ≥ N−1(sNµ2 + 1)− 1

α + β + γ ≤ N−1(s(Nµ0 + Nµ1 + Nµ2)− 1)− 1.

For a real number x , let xxy be the largest integer less than or equal to x ,
and let 〈x〉 = x−xxy be the fractional part of x . Therefore, x = xxy+ 〈x〉 .
If an integer is at least −x = −xxy − 〈x〉 , then it must be at least −xxy ,
since 0 ≤ 〈x〉 < 1. Moreover, if an integer is at most x , then it is at most
xxy . Therefore,

α ≥ −x1− sµ0 − 1
N

y
β ≥ −x1− sµ1 − 1

N
y

γ ≥ −x1− sµ2 − 1
N

y
α + β + γ ≤ xs(µ0 + µ1 + µ2)− 1

N
y− 1.

Together, these inequalities imply the following bounds for t = α + β + γ :

−x1−sµ0− 1
N

y−x1−sµ1− 1
N

y−x1−sµ2− 1
N

y ≤ t ≤ xs(µ0+µ1+µ2)− 1
N

y−1.
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The first set of inequalities also imply (weaker) upper and lower bounds for
t whose difference is 2(1− 2

N ). As 0 ≤ 2(1− 2
N ) < 2, the integer t can take

at most two values, its possible minimal value and its possible minimal value
plus 1. For given values of (α, β, γ), the choices (α + 1, β, γ), (α, β + 1, γ)
and (α, β, γ + 1) lead to linearly dependent differential forms. Therefore,
only the possible values of t need to be counted. The number of linearly
independent differential forms ω is the number of integers satisfying the last
displayed inequality for t . We deduce that dim(Vs) is either 0, 1, or 2, and
in any case equals

xs(µ0 + µ1 + µ2)− 1
N

y + x1− sµ0 − 1
N

y + x1− sµ1 − 1
N

y + x1− sµ2 − 1
N

y

Rewriting this in terms of fractional parts, it is straightforward to deduce
that

dim(Vs) = 〈sµ0〉+ 〈sµ1〉+ 〈sµ2〉 − 〈sµ0 + sµ1 + sµ2〉,
which, using µ3 = 2− (µ0 + µ1 + µ2), can be written as

rs = dim(Vs) = −1 + 〈sµ0〉+ 〈sµ1〉+ 〈sµ2〉+ 〈sµ3〉.
Similar considerations lead to the expression for r′s given in Part 4.
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2. Lecture II: Transcendence of Special Values of Modular
Functions

Part 1: Many classical transcendence results follow from the Schneider–Lang
Theorem. Let ρ be a real number. An entire complex function F is said
to be of order at most ρ if there is a constant C > 0 such that, for all R
sufficiently large,

|F |R = max
|z|=R

|F (z)| ≤ CRρ
.

A meromorphic function is said to be of order at most ρ if it can be expressed
as a quotient of entire functions of order at most ρ .

Theorem 2.1. Let K be a number field and f1 , . . ., fN meromorphic
functions of order at most ρ. Assume that the field K(f1, . . . , fN ) has
transcendence degree at least two over K (that is, at least two of the fi

are algebraically independent over K ). Suppose that the ring K[f1, . . . , fN ]
is stable under differentiation with respect to z , that is, under D = d/dz .
Then, there are only finitely many complex numbers w such that fi(w) ∈ K
for all i = 1, 2, . . . , N .

Summary of the proof of Schneider–Lang: Let f , g be two functions among
the fi which are algebraically independent over K . We let F be the function∑r

i,j=1 aijf
igj , where the aij are unknowns in the ring of integers OK of

K . We use a result of effective linear algebra, called Siegel’s Lemma, to find
aij with controled arithmetic size such that DkF (w`) = 0 for all k < n and
for m points w` at which the fi(w`) ∈ K . The r ,m ,n are to be chosen
later with r2 = 2nm , so that the number of unknowns aij is twice the
number of equations DkF (w`) = 0. As f ,g are algebraically independent
over K , the function F is not identically zero. Thus, there is a smallest
integer s ≥ n such that α = DsF (w`) 6= 0 for some ` . The number α is
a non-zero element of K whose arithmetic size we can control. This gives
an “arithmetic” lower bound for log |α| ≥ −[K : Q]size(α), and here it is
essential that α 6= 0. On the other hand, we have an “analytic” upper
bound for log |α| using the maximum–modulus principle and the fact that
F has high order zeros at the w` . For appropriate choices of the r , m , n
in terms of s the arithmetic and analytic bounds contradict each other.
Example: Let τ be an algebraic number with positive imaginary part and
L = Zω1 + Zω2 with τ = ω2/ω1 . Suppose the underlying equation of C/L
is of the form y2 = 4x3 − g2x − g3 , with g2 , g3 algebraic. Let K be the
number field Q(τ, g2, g3). The corresponding Weierstrass elliptic function
satisfies (x, y) = (℘(z), ℘′(z)) ∈ E , therefore K[℘(z), ℘′(z), ℘(τz), ℘′(τz)] is
stable under differentiation. The functions ℘ , ℘′ have order two. Moreover,
the group law on E corresponds to an addition law for ℘ and ℘′ defined
by rational functions with coefficients in K . We apply Theorem 2.1 to the
points mω1/2, where m is an odd integer and deduce that ℘(z), ℘(τz) are
algebraically dependent. This implies that τ maps Qω1 + Qω2 into itself,
and therefore is quadratic imaginary over Q . (Schneider, 1937)
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Part 2: This Example gives a transcendence result for special values of the
classical modular function. This is the function j = j(τ) on H , invariant
with respect to the action of PSL(2,Z) given by

τ 7→ aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z).

In particular, j(τ) = j(τ +1) for all τ ∈ H , and j(τ) is uniquely determined
by the first two terms in its Fourier expansion:

j(τ) = exp(−2πiτ) + 744 +
∞∑

n=1

an exp(2πinτ).

For example, a1 = 196884, a2 = 21493760. For all n ≥ 1, the coefficient
an is a positive integer. From Example 3 we have,

{τ ∈ H : τ ∈ Q and j(τ) ∈ Q} = {τ ∈ H : [Q(τ) : Q] = 2}.
To see this, recall that to every τ ∈ H we associate the complex torus of
dimension one:

Aτ = C/(Z+ τZ).
This torus has the underlying structure of a projective cubic curve of the
form y2 = 4x3−g2x−g3 , where g2, g3 ∈ Q(j(τ)). Its endomorphism algebra
End0(Aτ ) = End(Aτ ) ⊗Z Q consists of multiplications by the numbers α
preserving Q+τQ . This algebra is either Q or Q(τ). In the latter case, the
number τ must be imaginary quadratic, and we say that Aτ has complex
multiplication. Indeed, the conditions α = a + bτ and ατ = c + dτ , for
a, b, c, d ∈ Q , α 6= 0, imply a quadratic equation over Q for τ :

τ =
ατ

α
=

c + dτ

a + bτ
, i.e. bτ2 + (a− d)τ − c = 0.

When α ∈ Q , then b = c = 0, a = d and the quadratic equation is trivial.
Otherwise, α ∈ Q(τ), with τ imaginary quadratic.

There is another way to look at the Example following Theorem 2.1.
Recall that τ and j(τ) are assumed to be algebraic numbers. The linear
subspace of C2 given by W = {(z1, z2) : z1−τz2 = 0} is defined over Q and
contains the point (ω2, ω1). This point is in the kernel of the exponential
map of E×E . The space W also contains the rational multiples of (ω2, ω1)
whose images under the exponential map give rise to non-trivial algebraic
points on E × E . Suppose we know that H = exp(W ) is not only a Lie
subgroup of E ×E but is also a connected algebraic subgroup of dimension
one defined over Q . Then, H is isogenous to E (there is a surjection from H
to E with finite kernel). In fact, as ω1, ω2 6= 0, the projections p1 , p2 from
H to the factors of E × E are isogenies. Therefore p2 ◦ p−1

1 is well-defined
as an element of the endomorphism algebra End0(E) = End(E)⊗ZQ of E .
Its lift to the tangent space of E is a rational multiple of τ . Therefore τ
leaves the space Q+Qτ invariant and is therefore imaginary quadratic.
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Part 3: For at least forty years many transcendence results have been viewed
as criteria for an analytic subgroup of a group variety to be algebraic.
Roughly speaking, we ask that the analytic subgroup contain sufficiently
many algebraic points. In particular, Lang, Bombieri, Nesterenko, Masser,
Brownawell, Waldschmidt and many others addressed such problems. The
most far-reaching result of this type was obtained by Wüstholz in the 1980’s.
Let G be a connected commutative algebraic group defined over Q . Let
Te(G) be its tangent space at the origin. This is the Lie algebra of invariant
derivations, and has a natural Q-structure. Let A be an analytic subgroup
of G(C). Typically, this subgroup is the image of a group homomorphism
ϕ : Cd → G(C), called a d-parameter subgroup. This subgroup may not
have the subspace topology inherited from G(C) and may not be closed.
We say that A is defined over Q if its Lie algebra is defined over Q as a
vector space. The analytic subgroup theorem of Wüstholz gives a criterion
for A to contain an algebraic subgroup.

Theorem 2.2. An analytic subgroup defined over Q contains a non-trivial
algebraic subgroup defined over Q if and only if it contains a non-trivial
algebraic point.

Where did the typical transcendence argument go? The answer is that all
current proofs of such results are extremely deep elaborations of the proof of
the Schneider–Lang theorem. For example, they require generalizing Baker’s
analytic methods and, for the non-vanishing step, using hard commutative
algebra techniques introduced by Brownawell, Masser and Wüstholz. A
rough outline of the proof is given in the notes at the end of this lecture.
These theorems imply that all Q-linear relations between abelian periods
come from isogenies. For simplicity, we only consider periods of differentials
of the first kind.

Theorem 2.3. Let A and B be abelian varieties over Q, and denote by VA

the Q-vector subspace of C generated by all periods
∫
γ ω with γ ∈ H1(A,Z)

and differentials of the first kind ω ∈ H0(A, ΩQ). Then, VA ∩ VB 6= {0} if
and only if there are non-trivial simple abelian subvarieties A′ of A and B′
of B with A′ isogenous to B′ , written A′=̂B′ .

Moreover, the period relations on a given abelian variety are all induced by
endomorphisms of A .

Theorem 2.4. Let A be an abelian variety defined over Q. By the Poincaré
irreducibility theorem, A=̂Ak1

1 ×. . .×Aks
s with simple, pairwise non-isogenous

abelian varieties Ai defined over Q. We have,

dimQ(VA) =
s∑

i=1

2 dimC(Ai)2

dimQ(End0(Ai))
.
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Part 4: By the Poincaré irreducibility theorem, the abelian variety Az is
isogenous to a product of powers of simple non-isogenous abelian varieties:

Az=̂An1
1 × . . .×Ank

k , Ai simple, Ai 6 =̂Aj , i 6= j.

The endomorphism algebra End0(Ai) = End(Ai) ⊗Z Q of a simple abelian
variety is a division algebra over Q with positive involution. There are many
more possibilities for such division algebras than in the case g = 1. When
this division algebra is a number field L with [L : Q] = 2 dim(Ai), we say
that Ai has CM (complex multiplication). We say that Az has CM when all
of its factors Ai have CM. The corresponding point z ∈ Hg , or its Sp(2g,Z)-
orbit in Ag , is said to be a CM or special point. The abelian varieties
defined over Q correspond to the points of Vg(Q), and include all the CM
abelian varieties. Moreover, the CM abelian varieties have normalized period
matrix in Mg(Q). Conversely, we have the higher dimensional analogue of
Schneider’s theorem, proved jointly by Shiga, Wolfart, and myself [6],[26]
using modern transcendence techniques, especially results of Wüstholz [32].

Theorem 2.5. Let J : Hg → Vg(C) be a holomorphic Sp(2g,Z)-invariant
map with J(z) ∈ Vg(Q) for all CM points z . Then the exceptional set of J ,
given by

E = {z ∈ Hg ∩Mg(Q) : J(z) ∈ Vg(Q)}
consists exactly of the CM points.

Therefore, the special values J(z), z ∈ Hg∩Mg(Q), are “transcendental”,
that is, not in Vg(Q), whenever z is not a CM point. Refinements of this
result were obtained by my student G. Derome [11].

As in the case g = 1, the CM points are important. One reason is that
the action of the absolute Galois group on the torsion points of CM abelian
varieties, and on the values of J(z) at CM points, is well understood. This
is a basic tool for studying the arithmetic of abelian varieties and modular
forms. A natural question is to ask how the image E in Ag of the exceptional
set E of J is distributed.

Conjecture 2.6. Let Z be an irreducible algebraic subvariety of Ag . Then
Z ∩ E is a Zariski dense subset of Z iff Z is a special subvariety of Ag .

Shimura subvarieties are moduli spaces for polarized abelian varieties with
a fixed extra structure on their endomorphism ring and torsion points. The
special subvarieties are irreducible components of their images under the
correspondences coming from Sp(2g,Q). André–Oort [1], [23] made the
analogous celebrated conjecture for CM points almost 20 years ago. By
Theorem 2.5, Conjecture 2.6 is equivalent to André–Oort, which Klingler,
Ullmo and Yafaev recently announced follows from GRH.
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Part 5: We apply these considerations to the symplectic modular function.
First, recall Schneider’s theorem on the classical j -function which says that
z, j(z) ∈ Q only at the CM points. Let J : Hg 7→ Vg(C) be the generalized
J -function of Theorem 2.5. We have J(z) ∈ Vg(Q) precisely when the
abelian variety Az is defined over Q . In particular, the above results apply
to Az . If we also have z ∈ Mg(Q), then there are Q-linear relations between
the entries of the unnormalized period matrices Ω1 , Ω2 with elements in
VA . This follows from Ω2 = Ω1z . By Theorem 2.4, these relations come
from endomorphisms. We then have to show that the Q-linear relations
Ω2 = Ω1z give rise to enough endomorphisms to ensure that Az has CM.
This last step requires a close look at Shimura’s construction of his varieties
of PEL type [27]. The details are contained in two papers on joint work by
Shiga, Wolfart and me [6],[26].

Indeed, with the notation of Lecture 1, Parts 2 and 3, recall that there is
a basis ωi , i = 1, . . . , g , of H0(A, ΩQ) such that

Ω1z =
(∫

γj
ωi

)
z = Ω2 =

(∫
γj+g

ωi

)
,

where i = 1, . . . , g indexes the rows and j = 1, . . . , g indexes the columns.
Therefore, when z ∈ Mg(Q), we have linear dependence relations over Q of
the form,

z1j

∫

γ1

ωi + z2j

∫

γ2

ωi + . . . + zgj

∫

γg

ωi =
∫

γj+g

ωi.

Suppose that Az is simple. If End0(Az) = Q , then by Theorem 2.3 there
can be no such period relations. Therefore End0(Az) ) Q . For the general
case, we show that z ∈ Mg(Q) in fact implies non-trivial linear dependence
relations over Q between the vector components of an End0(Az)-basis of
Qg +zQg . This requires working with Shimura’s more general moduli spaces
for abelian varieties with extra endomorphism structure. Once again, one
uses Theorem 2.3 to show that such relations can’t exist unless Az belongs
to a moduli space of dimension zero, which is precisely the CM case. This
is the flavor of the argument in [26].

The argument in [6] is a little different, although the basic tool is still
Theorem 2.3, or rather its formulation as Theorem 2.4. The two conditions
z ∈ Mg(Q) and Az is defined over Q lead to two different representations of
End0(Az) in Mg(Q). The first representation arises from a choice of Q-basis
of a lattice of Az , using the fact that z ∈ Mg(Q). The second representation
comes from the choice of a Q-basis of the tangent space at the origin of Az ,
using the fact that Az is defined over Q . We can reduce to the case of simple
Az . We use Shimura’s paper [27] to show that these two representations
are “intertwined” by a matrix with less than 2g2/[End0(Az) : Q] non-zero
entries, except in the CM case. Therefore, using Theorem 2.4, the abelian
variety Az must have CM.
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Notes on Part 1: Several classical results are corollaries of the Schneider–
Lang Theorem:

Example 1: Suppose α 6= 0 is an algebraic number with eα algebraic.
Let K = Q(α, eα) and f1(z) = z , f2(z) = eαz . These are algebraically
independent functions such that K[f1, f2] is stable under differentiation.
Using the fact that e(z1 + z2) = e(z1)e(z2), we see that f1 and f2 take
values in K at all points mα for m ∈ Z . There are infinitely many such
points, contradicting Theorem 2.1. Therefore, eα 6∈ Q , for α ∈ Q , α 6= 0.
(Hermite–Lindemann, 1873–1882))

Example 2: Suppose α 6= 0, 1 and β 6∈ Q are algebraic with αβ algebraic.
Let K = Q(α, β, αβ) and f1(z) = ez , f2(z) = eβz . As β 6∈ Q , these are
algebraically independent functions. Moreover, they generate over K a ring
stable under differentiation. Again using the addition law for the exponential
function, we see that f1 and f2 take values in K at all points m log α , for
any determination of log α , contradicting Theorem 2.1. Therefore αβ is
transcendental. (Gelfond–Schneider, 1934)

Notes on Part 3: We give an outline of the proof of Theorem 2.2. First, we
restate it as follows.

Theorem 2.7. Let u ∈ exp−1
G (G(Q)) and Zu be the smallest Q-vector space

of Te(G) containing u. Then Zu = Te(Hu) for some (unique) connected
algebraic group subvariety of G itself defined over Q.

Step 1. Let n be the dimension of G . We can embed G in a projective space
PN and work with the analytic functions on Cn obtained by composing this
embedding with the exponential map expG : Cn ' Te(G)(C) → G(C).
These functions have order at most 2. The corresponding affine coordinates
define functions that generate a ring over Q stable under differentiation by
the complex coordinates of the tangent space to the origin of G .
Step 2. Assume that dim(Zu) = n−1, the case in most applications. Given
a homogeneous polynomial P = P (X0, . . . , XN ), not vanishing on all of
G , let F (z) = P (expG(z)), for z ∈ Te(G)(C). Using Siegel’s Lemma, we
construct a P , with controlled coefficients, such that F (z) vanishes to high
order “along Zu” at many points of Zu . “Along Zu” refers to the vanishing
of ∂tF (z), where ∂t = ∂t1

1 . . . ∂tn
n−1 for a basis ∂i , i = 1, . . . , n− 1, of Zu .

Step 3. Step 2 implies that ∂tF (su) is small for a yet larger range of t ,s .
This analytic upper bound contradicts an arithmetic lower bound if these
numbers are non-zero. Therefore, F (z) has zeros of even larger order “along
Zu” at even more points of Zu . In fact, things are too good as we have a
resulting over-determined linear system in the coefficients of P .
Step 4. By Step 3, the point u must have some special properties that
ensure the linear system is not, in fact, contradictory for this particular u .
The exact meaning of this is contained in the “multiplicity estimates”. They
imply that there is a connected algebraic group variety H 6= G such that
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the cardinality SH of [s]G expG(u) modulo H is not too large. Moreover,
the order of vanishing in Step 3 is controlled by dim(Zu ∩ Te(H)).
Step 5. If H = 0, then SH is large, contradicting Step 4. Therefore H 6= 0.
If Te(H) 6⊆ Zu , then dim(Zu ∩ Te(H)) is small enough that Step 4 leads
to a bound on the order of vanishing that contradicts Step 3. Finally, an
induction argument on the dimension of G shows that Te(H) = Zu .

Notice the features in common with the applications of the Schneider–
Lang Theorem. We have algebraically independent analytic functions of
several complex variables, with controlled growth, generating a ring closed
under partial differentiation. Moreover, we generate many algebraic points
from a single one using the group law. There are quantitative versions of
the above results. For example, Baker’s bounds for lower bounds for linear
forms in logarithms can be recovered.

For want of a reference, Shiga, Wolfart and I [6], [26] published details of
the proofs of Theorems 2.3, 2.4. These results were announced by Wüstholz
[32] and it was general folklore that they followed from his analytic subgroup
theorem. The argument resembles our alternative discussion of the Example
following the Schneider-Lang Theorem. If VA ∩ VB 6= {0} , there is a linear
relation over Q between periods on G = A × B . This defines a subspace
Z of Te(G), defined over Q , and containing an element u of exp−1

G (G(Q)).
By Wüstholz’s theorem, there is a proper connected algebraic subgroup H
of G , defined over Q , with u ∈ Te(H) ⊆ Z . We then reduce to the case
where A=̂H ⊆ Am , with A simple, and all the coordinates of u are non-
zero. The projections pµ of Am to each of its factors map H onto A .
The pµ ◦ p−1

ν therefore define elements of End0(A) and lift to define the
equations of Te(H). This shows that the period relations are induced by
endomorphisms of A .
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3. Lecture III: Hypergeometric functions

Part 1: Many different functions are called “hypergeometric functions”. The
oldest is the classical hypergeometric function of one complex variable, which
occurs in many different branches of mathematics. This function is also
known as the Gauss hypergeometric function. It is a solution of a second
order linear homogeneous ordinary differential equation with three regular
singular points at 0, 1,∞ . In 1857, Riemann established that a function with
two linearly independent branches at the points 0, 1,∞ , and with suitable
branching behavior at these points, necessarily satisfies a hypergeometric
differential equation and hence is itself a hypergeometric function. This is
part of Riemann’s famous “viewpoint” that characterizes analytic functions
by their behaviour at singular points. In 1873, Schwarz determined the list
of algebraic Gauss hypergeometric functions. He also established necessary
conditions for the quotient of two solutions of a classical hypergeometric
differential equation to be invertible, with inverse an automorphic function
on the unit disk. In the 1880’s, Picard generalized Riemann’s approach
to the two variable Appell hypergeometric functions. The n > 2 variable
generalizations are known as Lauricella functions.

Let a ,b ,c be complex numbers with c 6= 0 and not a negative integer.
Consider the differential equation

(3.1) x(1− x)
d2y

dx2
+ (c− (a + b + 1)x)

dy

dx
− aby = 0.

Euler introduced the following series solution to this equation

(3.2) F = F (a, b, c; x) =
∞∑

n=0

(a, n)(b, n)
(c, n)

xn

n!
, |x| < 1,

where for any complex number w we define (w, n) = w(w+1) . . . (w+n−1).
To see that F is a solution of the differential equation, set D = x d

dx and
notice that if P is a polynomial then

P (D)xn = P (n)xn.

For details, see the notes at the end of this lecture.
The differential equation (3.1) can be written in the form

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0

where p(x) and q(x) are rational functions of x having poles only at x =
0, 1,∞ . These are therefore the singular points of the differential equation.
They are regular singular points because (x− ξ)p(x) and (x− ξ)2q(x) are
both holomorphic at x = ξ when ξ = 0 or 1, and p(1

t )
1
t and q( 1

t2
) 1

t2
are

holomorphic at t = 0 (corresponding to ξ = ∞).
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Part 2: Now suppose that <(a),<(c − a) > 0. Then, the above series has
an integral representation

F = F (a, b, c; x) =
1

B(a, c− a)

∫ ∞

1
ub−c(u− 1)c−a−1(u− x)−bdu

=
1

B(a, c− a)

∫ 1

0
ua−1(1− u)c−a−1(1− ux)−bdu

where for <(α),<(β) > 0

(3.3) B(α, β) =
∫ 1

0
uα−1(1− u)β−1du =

Γ(α)Γ(β)
Γ(α + β)

.

To check this integral representation, use the formula

(1− ux)−b =
∞∑

n=0

(b, n)
(1, n)

unxn, |x| < 1.

The hypergeometric series has an analytic continuation outside its circle of
convergence |x| = 1 to the complex plane minus the segment [1,∞). This
extended function is also called the Gauss hypergeometric function.

Let µ0 = c− b , µ1 = 1 + a− c , µ2 = b , µ3 = 2− (µ0 + µ1 + µ2). Then
the conditions <(a),<(c − a) > 0 become <(µ1),<(µ3) < 1. Imposing the
stronger conditions, 0 < µi < 1 for i = 0, . . . , 3, the µi satisfy

(3.4)
3∑

i=0

µi = 2, 0 < µi < 1, i = 0, . . . , 3.

Deligne and Mostow [10] call such a quadruple a ball quadruple. For such
a quadruple with µi ∈ Q , i = 0, . . . , 3, and for x ∈ P1 \ {0, 1,∞} the
differential form

(3.5) u−µ0(u− 1)−µ1(u− x)−µ2du

is a differential form of the first kind on a smooth projective curve X(N,x)
with affine model

(3.6) wN = uNµ0(u− 1)Nµ1(u− x)Nµ2 ,

where N is the least common multiple of the denominators of the µi . If
v = 1

u , then

u−µ0(u− 1)−µ1(u− x)−µ2du = −v−µ3(1− v)−µ1(1− vx)−µ2dv,

so µ3 is the exponent of the integrand at u = ∞ . Consider the six integrals

(3.7)
∫ h

g
u−µ0(u− 1)−µ1(u− x)−µ2du,

with g, h ∈ {0, 1,∞, x} . These are the integral representations of six series
solutions comprising two independent series solutions at each of the singular
points x = 0, 1,∞ .
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Part 3: If the (1−µi−µj)−1 are integers for i 6= j (denoted condition INT),
then we can relate the above hypergeometric functions to triangle groups
acting discontinuously on one of the simply-connected Riemann surfaces.
Namely, let

(3.8) p = |1− µ0 − µ2|−1, q = |1− µ1 − µ2|−1, r = |1− µ3 − µ2|−1.

By a triangle we mean a region bounded, in spherical geometry by 3 great
circles on the Riemann sphere, in Euclidean geometry by 3 straight lines,
and in hyperbolic geometry (in the unit disk) by 3 circles orthogonal to the
boundary of the unit disk. Consider the triangle with vertex angles π/p ,
π/q , π/r . Then the relevant geometry depends on the angle sum as follows:
1
p + 1

q + 1
r > 1 (spherical); 1

p + 1
q + 1

r = 1 (euclidean); 1
p + 1

q + 1
r < 1

(hyperbolic). Let T denote the interior of a triangle with angles π/p , π/q ,
π/r and let T denote its closure. Then, by Riemann’s mapping theorem
with boundary, there is a bijective and conformal map u = u(z) of H onto
T which extends continuously to R . Here we view T as a simply-connected
subset of P1 in the spherical case, of C in the euclidean case and of H or the
unit disk in the hyperbolic case. We denote these simply-connected domains
by D . We may assume that u maps z = 0, 1,∞ to the three vertices of T ,
with respective angles π/p , π/q , π/r .

This “triangle map” extends across one of the intervals (∞, 0),(0, 1) or
(1,∞) to a biholomorphic map of the lower half plane H− onto the image
T− of T by reflection through the corresponding side of T . Changing the
branch of the triangle map by going around any of the points z = 0, 1,∞
changes its value and, by the Schwarz reflection principle, the corresponding
images of H ∪H− are non-intersecting copies of T ∪ T− .

Now, consider the triangle group ∆ = ∆(p, q, r) of Möbius transforma-
tions, determined up to conjugation by the presentation

(3.9) 〈M1,M2,M3; M
p
1 = M q

2 = M r
3 = M1M2M3 = Id〉.

The closure of a fundamental domain for the triangle group is given by
T ∪T− . If a transformation Mi, i = 1, 2, 3 has finite order m , it is conjugate
in ∆ to a rotation (in the geometry determined by the signature (p, q, r))
through 2π/m about the vertex of angle π/m of T . If the order is infinite,
then the transformation is conjugate to a translation. The vertices of T are,
in any case, fixed points of ∆.

The list of spherical and euclidean signatures can be computed directly.
The possibilities in the spherical case are: (2, 2, ν), with 2 ≤ ν < ∞ ,
(2, 3, 3), (2, 3, 4), (2, 3, 5), and in the euclidean case are: (2, 2,∞), (2, 3, 6),
(2, 4, 4), (3, 3, 3).

The successive images of the fundamental domain of ∆ = ∆(p, q, r) give a
tesselation of D by triangles. In the spherical case, this tesselation consists
of twice as many triangles as the order of the corresponding triangle group.
In the euclidean and hyperbolic cases this tesselation consists of an infinite
number of triangles, and the corresponding triangle groups are also infinite.
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Part 4: Consider the differential equation (3.1) for the Gauss hypergeometric
function. Let x0 ∈ P1 \ {0, 1,∞} and let y1, y2 be two linearly independent
solutions to (3.1) around x0 . If we analytically continue y1 and y2 around
a closed curve C in P1\{0, 1,∞} which starts and ends at x0 , the functions
remain linearly independent solutions. Since y1 and y2 span the solution
space there is a non-singular matrix

M(C) =
(

a b
c d

)

with coefficients in C such that y1 becomes ay1 + by2 and y2 becomes
cy1 + dy2 upon analytic continuation around C . A different choice of base
point x0 would yield a matrix in the same GL2(C) conjugacy class as M(C).
Denoting by C1 ◦ C2 the composition of two closed curves with endpoints
at x0 we have

M(C1 ◦ C2) = M(C1)M(C2),
with matrix multiplication on the right hand side of this equation. If C1

can be continuously deformed in P1 \{0, 1,∞} (with x0 fixed) into C2 then
M(C1) = M(C2). Let π1(P1 \ {0, 1,∞}, x0) denote the group of homotopy
equivalence classes of curves starting and ending at the base point x0 . This
is the fundamental group. From the above remarks, we see that we have a
homomorphism

M : π1(P1 \ {0, 1,∞}, x0) → GL2(C)

called the monodromy representation associated to the differential equation.
The monodromy group of (3.1) is defined as the image of the monodromy
representation. The projective monodromy group of (3.1) is defined as the
image of the monodromy group under the natural map GL2(C) → PGL2(C).
If we change the base point x0 or the choice of basis of the solution space of
(3.1), then we conjugate M by an element of GL2(C). The conjugacy class
of the monodromy group and the projective monodromy group are uniquely
determined by (3.1).

The signature (p, q, r) of a triangle group determines its representation,
up to conjugacy, in the Möbius transformations. When

p = |1− µ0 − µ2|−1, q = |1− µ1 − µ2|−1, r = |1− µ3 − µ2|−1,

the image of the monodromy representation is ∆(p, q, r), as given in (3.9).
The case (p, q, r) = (2, 3,∞) corresponds to the elliptic modular group,

that is, a representative of the conjugacy class of ∆(2, 3,∞) is given by
SL(2,Z). It is generated by the two Mob̈ius transformations on H given by
S : z 7→ −1/z and T : z 7→ z + 1. A function j invariant by this group is

j(z) = e−2πiz + 744 +
∞∑

n=1

ane2πinz

with the an positive integers determined by the first two terms in the above
series for j . This is the classical modular function.
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Part 5: An arithmetic group is a group commensurable to the integer points
G(OF ) of a linear algebraic group G over a number field F , where OF is the
ring of integers of F . A linear algebraic group is a group of matrices defined
by an algebraic condition. An example is Sp(2g,Z), an arithmetic subgroup
of Sp(2g,R). As we remarked already, the finite ∆(p, q, r) were determined
by Schwarz. The arithmetic ∆(p, q, r) were determined by Takeuchi [28].
Takeuchi used the definition of arithmetic Fuchsian group from Lecture I,
Part 5. It is not clear a prioiri that these two definitions are equivalent,
for details see [22]. Certainly the arithmetic groups in the sense of Lecture
I are arithmetic in the sense just described. Takeuchi found the following
criterion for arithmeticity. Recall that a Fuchsian group (of the first kind) is
a group of fractional linear transformations acting properly discontinuously
on H with finite covolume.

Takeuchi’s criterion: Let Γ be a Fuchsian group of the first kind, and let

T = {trace(γ) : γ ∈ Γ}.
Then Γ is arithmetic if and only if
(i)F = Q(t)(t∈T) is a number field,
(ii)T ⊆ OF ,
(iii) whenever there is a Galois embedding σ : T ↪→ R with σ(t2) 6= t2 , for
some t ∈ T, then σ(T) is a bounded subset of R.

Let ∆ be a Fuchsian triangle group of signature (p, q, r). Takeuchi showed
that the field F occurring in (i), and generated over Q by the elements of T,
is given by F = Q(cos(π

p ), cos(π
q ), cos(π

r )). Takeuchi showed that there are,
up to permutation, 85 signatures (p, q, r) such that the triangle groups of
signature (p, q, r) are arithmetic. He also sorted these into commensurability
classes. Therefore, there are infinitely many signatures giving rise to non-
arithmetic triangle groups.

Examples: (i) Consider ∆(2, 5,∞). It is generated by
(

1 1
2(1 +

√
5)

0 1

)
,

(
0 −1
1 0

)
, where

(
1 1

2(1 +
√

5)
0 1

)
·
(

0 −1
1 0

)
=

(
1
2(1 +

√
5) −1

1 0

)
. This

last matrix has trace t = 1
2(1 +

√
5). As t2 = 1

2(3 +
√

5), the Galois auto-
morphism of F sending

√
5 to −√5 does not leave t2 fixed. Nonetheless,

σ(T) is unbounded. Therefore, this group is non-arithmetic.
(ii) We return to the example of Lecture I, Part 4 (see [7]). The parameters
µ = {2

5 , 3
5 , 2

5 , 3
5} give p = 5, q = ∞ , r = ∞ , and the triangle group

of signature (5,∞,∞) is non-arithmetic [28]. It is generated by the two

parabolic matrices γ1 =
(

1 1
0 1

)
, γ2 =

(
1 0
α 1

)
, where α = (−3 +

√
5)/2,

and is contained in the Hilbert modular group of K = Q(
√

5). This is the
group Γ = SL(2,OK), where OK is the ring of integers of K . An element
γ ∈ Γ acts on H2 by (γ, γσ), and Γ\H2 is the moduli space of a family of
abelian varieties with real multiplication.
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Notes on Part 1:
To see that the series in (3.2) converges for |x| < 1, let An = (a,n)(b,n)

(c,n)n! . We
see that

An+1

An
=

(a + n)(b + n)
(c + n)(1 + n)

.

If a or b is zero or a negative integer then F (a, b, c;x) is a polynomial in
x , otherwise

An+1

An
7→ 1

as n 7→ ∞ so the series converges for |x| < 1 and has |x| = 1 as its circle of
convergence.
To see that F is a solution of the differential equation (3.1), set D = x d

dx
and notice that if P is a polynomial then

P (D)xn = P (n)xn.

Using this and the formula for An+1

An
, we see that

{(a + D)(b + D)− (c + D)(1 + D)x−1}(
∞∑

n=0

Anxn) =

∞∑

n=0

{(a + n)(b + n)Anxn − (c + n− 1)nAnxn−1} =

∞∑

n=0

(a + n)(b + n)Anxn −
∞∑

n=0

(c + n)(1 + n)An+1x
n = 0,

which proves that F (a, b, c; x) satisfies (3.1).

Notes on Part 2: If c, c−a−b, a−b 6∈ Z , a solution of (3.1) which is linearly
independent of F (a, b, c; x), is given in |x| < 1 by the series

G(x) = x1−cF (a + 1− c, b + 1− c, 2− c; x).

When Re(c− b) < 1 and Re(b) < 1, the series G(x) in the region |x| < 1
is equal, up to a constant, to

∫ x

0
ub−c(u− 1)c−a−1(u− x)−bdu,

as can be seen by a simple computation using the change of variables u 7→ x
v .

When one of c, c−a−b, a−b lies in Z , one of the two independent solutions
around a regular singular point has a logarithmic singularity at that point.
For example, when c = 1 the two series solutions F and G coincide. For
c < 1, the function

1
1− c

{x1−cF (a + 1− c, b + 1− c, 2− c;x)− F (a, b, c;x)}
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is a solution of the hypergeometric differential equation. The function given
by

lim
c→1

1
1− c

{x1−cF (a + 1− c, b + 1− c, 2− c; x)− F (a, b, c;x)}
is a solution in the case c = 1 (see [5], pp136-138), and has the form

F (a, b, 1;x) log x + F ∗(a, b, 1;x),

where F ∗ is defined by the equation

F ∗(a, b, 1; x) =
∂F

∂a
+

∂F

∂b
+ 2

∂F

∂c
.

The series expansion of this function in |x| < 1 is computed in [5], p137.

Notes on Part 3: Schwarz showed that the function u = u(z) of Part 3, that
maps H onto T , satisfies the differential equation

(3.10) {u, z} =:
2u′u′′′ − 3u′′2

2u′2
= f(z).

The symbol {u, z} is known as the Schwarzian derivative of u with respect
to z and is independent of the change of variables

u 7→ au + b

cu + d
,

(
a b
c d

)
∈ PSL(2,C).

Schwarz also calculated the function f(z) explicitly. The result is,

(3.11) f(z) =
1− (1

p)2

2z2
+

1− (1
q )2

2(1− z)2
+

1− (1
p)2 − (1

q )2 + (1
r )2

2z(1− z)
.

By direct calculation, we find two independent solutions of the classical
hypergeometric differential equation (3.1) with a = 1

2(1 − 1
p − 1

q + 1
r ), b =

1
2(1− 1

p − 1
q − 1

r ), c = (1− 1
p). The ratio of these solutions satisfies

{u, z} =
1− (1

p)2

2z2
+

1− (1
q )2

2(1− z)2
+

1− (1
p)2 − (1

q )2 + (1
r )2

2z(1− z)
.

Schwarz showed that every regular non-constant solution of this differential
equation maps the upper half plane onto a triangle with angles π/p , π/q ,
π/r .

The Schwarz triangle map is invertible and, by the Schwarz reflection
principle, maps T ∪ T− to H ∪ H− . The function can be analytically
continued onto all of D to yield a mapping

j : D → P1 \ {infinite ramification points}
automorphic with respect to ∆ and ramified over 0 with order p (if p < ∞)
over 1 with order q (if q < ∞) and over ∞ with order r (if r < ∞).

The case (p, q, r) = (2, 3,∞) corresponds to the elliptic modular group,
that is, a representative of the conjugacy class of ∆(2, 3,∞) is given by
SL(2,Z). It is generated by the two transformations on H given by S : z 7→
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−1/z and T : z 7→ z + 1. The function j has a Fourier expansion which
may be normalized as

j(z) = e−2πiz + 744 +
∞∑

n=1

ane2πinz

with the an positive integers determined by the first two terms in the above
series for j . We recover in this way the classical modular function.

For proofs of most of the results of this section, see [5]. The discussion
of the Schwarz triangle maps does not in fact require the INT assumption.
For the more general result due to Schwarz see [5], pp.134–135. However,
as Schwarz also showed, the INT assumption does ensure that the action
of the corresponding triangle group is discontinuous. Knapp [20] lists those
hyperbolic triangles whose angles are not of the form π/p, π/q, π/r , for
2 ≤ p, q, r ≤ ∞ positive integers, but whose triangle groups are nonetheless
discrete in PSL(2,R).
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4. Lecture IV: Transcendence of Special Values of
Hypergeometric Functions

Part 1: A recurrent theme in transcendental numbers theory is the study of
the set of algebraic points at which a transcendental function takes algebraic
values. We call this the exceptional set of the function. The classical work
of Hermite and Lindemann shows that the exceptional set of the exponential
function exp(x), x ∈ C , consists only of x = 0. This implies that e and
π are transcendental numbers. C.L. Siegel (1929) suggested studying the
exceptional set of the classical hypergeometric function F = F (a, b, c;x),
when a , b , c are rational, and asked whether this set is finite. Wolfart [30]
showed that this exceptional set corresponds to a subset of the CM (complex
multiplication) points on a moduli space of abelian varieties associated to a ,
b , c . He gave sufficient conditions on a , b , c for the exceptional set to be
infinite. Next, P.B. Cohen (me!) and Wüstholz [8] gave sufficient conditions
on a , b , c for the exceptional set to be finite. Our proof, however, assumed
the validity of a particular case of the André–Oort conjecture, which was
subsequently established in a deep paper by Edixhoven and Yafaev in [18].

The exceptional set of F is E = {x ∈ Q : F (a, b, c; x) ∈ Q∗} . We can
assume the monodromy group of F is infinite, otherwise F is algebraic and
E = Q . As we have seen, the function F has an integral representation,

F (a, b, c;x) = C

∫

γ
ub−c(u− 1)c−a−1(u− x)−bdu

/∫

γ
u−c(u− 1)c−a−1du

where γ is a Pochhammer cycle around 1, ∞ and C ∈ Q∗ . The numerator
is a period on the curve Xµ(x) of Lecture I with affine model

wN = uNµ0(u− 1)Nµ1(u− x)Nµ2 ,

where N is the least common denominator of the exponents µ0 = c − b ,
µ1 = a + 1 − c , µ2 = b . The denominator is a period on Xµ(0). Assume,
again for simplicity, that N = p , prime, and that the differential form
du/w(x) in the integrand of the above formula is holomorphic, even at
x = 0. This will follow from the conditions 0 < µi < 1, i = 0, 1, 2, 3,
µ0 +µ2 < 1. Recall from Lecture I that, for x 6= 0, 1,∞ , the genus of Xµ(x)
is p − 1, and the genus of Xµ(0) is (p − 1)/2. There is a natural action
of the p-th roots of unity on these curves, given by (u,w) 7→ (u, ζ−1

p w),
for ζp = exp(2πi/p). Therefore K = Q(ζp) ⊆ End0(Jac(Xµ(x))). In fact,
Jac(Xµ(0)) has CM. When x is in E , the numerator and denominator of the
integral expression for F are proportional by a constant in Q∗ . Applying
Theorem 2.4, we have Jac(X(x))=̂Jac(X(0))×A′ . Now K ⊆ End0(A′) with
dim(A′) = (p− 1)/2, and A′ has CM. Therefore, if x ∈ E , then Jac(X(x))
has CM and is isogenous to Jac(X(0))×A′ . The converse is also true. Now
Jac(X(0)) and A′ are not necessarily simple. They may be powers of an
abelian variety with CM by a subfield of K . There are easily applicable
criteria for the “simplicity” of a CM type, see for example [21].
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Part 2: The map ϕ : P1 \ {0, 1,∞} → Ap−1 , mapping x to the point of
the Siegel modular variety representing the isomorphism class of the abelian
variety Jac(Xµ(x)), is an example of a period map. The analytic space Ap−1

can be compactified to a projective variety, and the closure of the image of
ϕ in the strong topology has the structure of an irreducible algebraic curve.
Let Z be the intersection of this curve with Ap−1 . Let Ω be the set of points
of Ap−1 representing isomorphism classes of abelian varieties isogenous to
Jac(X(0))×A′ . Then Ω ⊂ Vp−1(Q), where, as before, Vp−1 is the underlying
quasi-projective variety of Ap−1 . By the above results, the exceptional set
is now Z ∩ Ω.

As we mentioned in Lecture I, Ap−1 is not the smallest Shimura variety
containing Z . We can think of a Shimura variety as being the quotient of a
complex symmetric domain by an arithmetic group which is also the moduli
space for a family of abelian varieties with some specified structure. The
smallest Shimura variety SZ with Z ⊆ SZ will correspond to the smallest
arithmetic group Γ0 containing the monodromy group Γ(a, b, c) = Γµ of F .
Let k be the field generated by the traces of the elements of Γµ . This is a
totally real number field of degree n over Q . The group algebra k[Γµ] in
M2(R) is a quaternion algebra A over k and Ok[Γµ] is an order in A . See,
Lecture I, Part 5, to recall the definitions used here. The norm unit group
Γ = Γ(A,Ok) of elements of this order of reduced norm 1 is an arithmetic
group containing Γµ . This generalizes the arithmetic group of Lecture I,
Part 5. Sometimes Γ0  Γ with finite index. It is easy to reduce to the case
Γ0 = Γ. There is an R-algebra isomorphism from A⊗QR to M2(R)t⊕Hn−t ,
where t is the number of unramified infinite places of k for A . In the
language of Lecture I, Part 5, this means the number of Galois embeddings
σ of k into R for which Aσ ⊗ R is M2(R). This isomorphism defines an
action of Γ on Ht . In Lecture I, Part 5, we had t = 1. The quotient
S = Γ\Ht is a Shimura variety. It parameterizes the isomorphism classes of
abelian varieties of dimension 2n with generalized complex multiplication
of type Φ by an order in a purely imaginary quadratic extension L of k .
The field L is a subfield of K = Q(exp(2πi/p). The type Φ is determined
by the ramification of A at the infinite places of k , see Lecture I.
Example: In Example (ii) of Lecture 3, Part 5, t = 2 and k = Q(

√
5).

The group Γµ is the triangle group (5,∞,∞) and the arithmetic group Γ is
the Hilbert modular group SL(2,Ok). Recall that γ ∈ Γ acts on H2 by the
Möbius transformation (γ, γσ), where σ(

√
5) = −√5. The Hilbert–Shimura

variety Γ\H2 is a moduli space for isomorphism classes of (polarized) abelian
surfaces B with real multiplication by Ok ⊆ End(B). The Jacobian Jµ(x),
x 6= 0, 1 of the Example of Lecture I, Part 4, is isogenous to the square
of such an abelian surface B(x). The Jacobian Jµ(0) is a simple abelian
surface with complex multiplication by Q(ζ5) of type {σ1, σ3} . When x ∈ E ,
Jµ(x) is isogenous to Jµ(0)×A′ , where A′ is a simple abelian surface with
CM by Q(ζ5) and type {σ2, σ4} = {σ−1, σ−3} . The generalized CM type of
Jµ(x), x 6= 0, 1 is {σ1, σ2, σ3, σ4}={σ1, σ3} ∪ {σ2, σ4} .
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Part 3: The results on the exceptional set of the hypergeometric function,
due to Wolfart, Wüstholz, myself, Edixhoven and Yafaev, can be stated as
follows.

Theorem 4.1. Suppose a, b, c ∈ Q and Γ(a, b, c) is infinite. The exceptional
set

E = {z ∈ Q : F (a, b, c; z) ∈ Q}
is infinite if and only if Γ(a, b, c) is arithmetic. Moreover, every element of
the set E corresponds to a CM point in a certain moduli variety V (a, b, c)
for abelian varieties, also known as a Shimura variety.

Recall that E corresponds to the points of S = Γ\Ht whose corresponding
abelian varieties lie in the same isogeny class as a fixed abelian variety with
CM. The André–Oort Conjecture predicts the following.

Conjecture 4.2. Let Z ⊆ S be an irreducible algebraic curve in a Shimura
variety S . The intersection of Z with the CM points of S is infinite if and
only if Z is the quotient of a complex symmetric domain by an arithmetic
group.

This conjecture follows from GRH (Klingler, Ullmo, Yafaev). A deep
unconditional result [18] of Edixhoven–Yafaev is as follows.

Theorem 4.3. Let Z ⊆ S be an irreducible algebraic curve in a Shimura
variety S . The intersection of Z with the CM points of S in a fixed isogeny
class is infinite if and only if Z is the quotient of a complex symmetric
domain by an arithmetic group.

Therefore, the set E will be infinite if and only if Γµ\H is itself a Shimura
curve, that is, if and only if the monodromy group is arithmetic.
Example: (i) The triangle group (5,∞,∞) is not maximal. It is contained
in the so-called Hecke group of index 10, that is, the triangle group of order
(2, 10,∞). Now Xµ(x), x 6= 0, 1 has affine model w10 = u7(u−1)8(u−x)2 .
The least common denominator of the µ ’s is 10, which is not prime, but
the methods are still applicable. It turns out that the triangle group is still
contained in SL(2,Ok), for k = Q(

√
5).

(ii) The Hecke triangle group (2, 5,∞) is also a non-arithmetic of SL(2,Ok),
k = Q(

√
5). Now Xµ(x), x 6= 0, 1 has model w20 = u13(u − 1)17(u − x)3 ,

and the trace field actually leads to the larger field Q(cos(π/10)). As 20
is not prime, we have to consider a factor Tµ(x) of Jµ(x) of dimension
8 = |(Z/20Z)∗| . It turns out that Tµ(x) is isogenous to the 4th power of an
abelian surface with real multiplication by Q(

√
5) ([7]). The corresponding

hypergeometric function is F (13
20 , 3

20 , 4
5 , x). By the above results, the set

E for this function is finite, and its elements correspond to certain abelian
surfaces with CM by an imaginary quadratic extension of Q(

√
5).

(iii) SL(2,Z) is the arithmetic triangle group (2, 3,∞) and corresponds to
F (11

12 , 11
12 , 4

3 , x), which has infinite E . Beukers–Wolfart give explicit values of
F (11

12 , 11
12 , 4

3 , x) at certain elements of E [3].
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Part 4: Research initiated recently [16], [12], [13], [15] extends some of these
results to functions of several complex variables. Here, the Appell-Lauricella
hypergeometric functions of several complex variables replace the Gauss
hypergeometric function of one variable. Once again, there is a family of
abelian varieties associated to an Appell-Lauricella function and a finite to
one morphism to its base space (Shimura variety) from the domain of the
Appell-Lauricella function. At this point, an important distinction between
functions of one and several complex variables manifests itself. Namely,
the points in the exceptional set of an Appell-Lauricella function do not
necessarily correspond to abelian varieties with CM as they did in the one
variable case. Moreover, the property that replaces finiteness in the one
variable case is that the exceptional set not be Zariski dense.

Let us now focus, for simplicity, on the two variable case. The two variable
Appell hypergeometric series is given by

F = F (x, y) = F (a, b, b′, c;x, y) =
∑
m,n

λm,nxmyn, |x|, |y| < 1,

where we assume a, b, b′, c ∈ Q . The λm,n are the rational numbers

λm,n =
(a,m + n)(b,m)(b′, n)
(c,m + n)(1,m)(1, n)

,

where (w, n) = w(w + 1) . . . (w + n− 1).
The Appell function F is the solution of a system of second order p.d.e’s

with regular singularities along the lines x, y = 0, 1,∞ and x = y. Its
analytic continuation is given by the Euler integral representation

F (x, y) =
∫ ∞

1

du

w(x, y)
/∫ ∞

1

du

w(0, 0)
,

where w = w(x, y) is the algebraic function of u given by

w(x, y)N = uN(c−b)(u− 1)N(1+a−c)(u− x)Nb(u− y)Nb′ .

Here N is the least common denominator of c − b , 1 + a − c , b , b′ . The
Riemann surface X(x, y) of w is a smooth curve defined over Q(x, y).
Assume that a, b, b′, c are such that du/w(x, y) is holomorphic, even at
(x, y) = (0, 0). The exceptional set of F is given by

E = {(x, y) ∈ Q2 : F (x, y) ∈ Q∗}
Theorem 4.4. The exceptional set of F is Zariski dense in P1×P1 if and
“only if” the monodromy group of F is arithmetic in PU(1, 2).

There is a finite list of a, b, b′, c giving arithmetic lattices [10]. For the
proof, we consider the Jacobian Jac(X(x, y)). To simplify, suppose N = p ,
prime. Then, g(X(x, y)) = 3(p − 1)/2 and g(X(0, 0)) = (p − 1)/2, where
g is the genus. The automorphism (u,w) → (u, ζ−1w), ζ = exp(2πi/p) of
X(x, y) induces an embedding of Q(ζ) inside End0(Jac(X(x, y))). It turns
out that Jac(X(0, 0)) is even a CM abelian variety.
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Part 5: For (x, y) in the exceptional set, X(x, y) is defined over Q and∫ ∞

1

du

w(x, y)
= α

∫ ∞

1

du

w(0, 0)
,

for some α ∈ Q∗ . We then use transcendence techniques to deduce from
this that there is an isogeny (surjection with finite kernel) of the form

Jac(X(x, y))=̂Jac(X(0, 0))×A(x, y).

Recall that Jac(X(0, 0)) has CM, but we only know that

dim(A) = dim(A(x, y)) = p− 1,

and
Q(ζ) ⊆ End0(A(x, y)).

For example, this abelian variety is not necessarily CM. This introduces an
additional difficulty compared to the one variable case, where the exceptional
set corresponds only to CM abelian varieties.

From the association (x, y) → Jac(X(x, y)), we get a period map with
two dimensional image

p : C2 → S

where S is the smallest moduli space of abelian varieties containing p(C2).
From the association (x, y) → A(x, y), we have a map

q : C2 → S′ ⊆ S

where S′ is a smaller moduli space of abelian varieties. The exceptional set
of F corresponds to p(Q2) ∩ q(Q2). This leads to asking,

Let Z be the Zariski closure in S of the image of the period map p. When
is the intersection of Z with (the Hecke orbit of) S′ Zariski dense in Z ?

For arithmetic monodromy, we have dim(S) = 2 and Zariski density.
Otherwise dim(S) > 2 and we can show that Z ∩ orbit(S′) is not Zariski
dense in Z if the intersection of Z with the union of all Shimura subvarieties
of S of dimension strictly less than dim(S)− 2 is not Zariski dense in Z .

Such a condition follows, for example, from more general conjectures of
Pink and Zilber on “mixed” Shimura varieties. In the case of the “pure”
Shimura variety given by the Siegel modular variety Ag of genus g , it asks
the following. If Z ⊆ Ag is a subvariety of the Siegel modular variety, we
let SZ be the smallest special subvariety of Ag containing Z .

Conjecture 4.5. Let Z ⊆ Ag be an irreducible algebraic subvariety. Then
the intersection of Z with the union of all special subvarieties of dimension
strictly less than dim(SZ)− dim(Z) is not Zariski dense in Z .

The Shimura subvarieties of dimension zero are the CM points. Pink’s
conjecture says that if Z is not a special subvariety, then the set of CM
points on Z is not Zariski dense in Z , which is the André–Oort conjecture.
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Notes on Part 5: The analogues of Conjecture 4.5 for multiplicative tori
Gr

m and for abelian varieties raise interesting diophantine problems. These
questions can be put into a single framework using the language of mixed
Shimura varieties. The CM points on Shimura varieties are analogous to
torsion points, or points of finite order, on an abelian variety or a torus. We
have an understanding of the action of the absolute Galois group Gal(Q/Q)
on both types of points. Moreover, the torsion points of an abelian variety
or a torus form a subgroup, and the set of CM points are invariant under
the correspondences defined by Sp(2g,Q). A semi-abelian variety is an
extension of an abelian variety A by a torus Gr

m , and therefore A and Gr
m

are themselves semi-abelian varieties.
For a semi-abelian variety A and an integer d ≥ 0, let A[d] be the union

of all algebraic subgroups of A of codimension strictly greater than d . The
conjectures of Zilber and Pink give in this case the following.

Conjecture 4.6. Let A be a complex semi-abelian variety. Let X ⊆ A be
an irreducible closed subvariety of dimension d that is not contained in any
proper algebraic subgroup of A. Then X ∩A[d] is not Zariski dense in X .

When A is an abelian variety, the Manin-Mumford conjecture states that
X ∩Ators is not Zariski dense in X . This was proved by Raynaud in 1983.
Other partial results in the abelian case, mainly when dim(X) = 1 are due to
Ratazzi, Rémond–Viada. When dim(X) = 1 and A = Gr

m , the conjecture
is due to Bombieri–Masser–Zannier [4], who proved it for r ≤ 5. It was
proved for all r ≥ 1 by Maurin. Therefore, if X is not contained in a proper
algebraic subgroup of Gr

m , then X contains only finitely many points in the
union of algebraic subgroups of codimension at least 2. Bombieri–Masser–
Zannier also showed that, over Q , if X ⊂ Gr

m is not contained in a translate
of a proper algebraic subgroup, then the points of X lying in a proper
algebraic subgroup have bounded height. Recall that, roughly speaking,
the height of an algebraic number measures the size of its numerator and
denominator, or its arithmetic complexity.

Consider, for example, the curve X ⊂ G2
m given by x + y = 1. Then,

the points of X lying in a proper algebraic subgroup are precisely those
x such that x and 1 − x are multiplicatively dependent. That is, there
are integers m , n , not both zero, with xm(1 − x)n = 1. By completely
different methods to those of Bombieri–Masser–Zannier, we obtained with
Zannier [9] a much finer height bound in this case. Namely, we showed
that if x and 1− x are multiplicatively dependent algebraic numbers, then
M(x) = max(H(x),H(1 − x)) ≤ 2, with the bound being attained for
x = 1/2, 2. Moreover, the value 2 is an isolated point in the range of M .
Habegger [19] generalized this result to curves x + y = α in G2

m , where
α ∈ Q∗ , showing for example that H(x, y) ≤ 2H(α) if α ∈ Z , with the
upper bound being attained and isolated if and only if α is a power of 2.
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