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Abstract

The transcendence proofs for constants of analysis are
essentially all based on the seminal work by Ch. Hermite :
his proof of the transcendence of the number e in 1873 is
the prototype of the methods which have been
subsequently developed. The founding paper by Hermite
was influenced by earlier authors ( Lambert, Euler, Fourier,
Liouville). We explain how his arguments have been
expanded in several directions : Padé approximants,
interpolation series, auxiliary functions.
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Simultaneous approximation and transcendence

Irrationality proofs involve rational approximation to a
single real number θ.

We wish to prove transcendence results.

A complex number θ is transcendental if and only if the
numbers

1, θ, θ2, . . . , θm, . . .

are Q–linearly independent.

Hence our goal is to prove linear independence, over the
rational number field, of complex numbers.
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L = a0 + a1x1 + · · · + amxm

Let x1, . . . , xm be real numbers and a0, a1, . . . , am rational
integers, not all of which are zero. We wish to prove that
the number

L = a0 + a1x1 + · · ·+ amxm

is not zero. Approximate simultaneously x1, . . . , xm by
rational numbers b1/b0, . . . , bm/b0.
Let b0, b1, . . . , bm be rational integers. For 1 ≤ k ≤ m set

εk = b0xk − bk.

Then b0L = A+R with

A = a0b0 + · · ·+ ambm ∈ Z and R = a1ε1 + · · ·+ amεm ∈ R.

If 0 < |R| < 1, then L 6= 0.
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How to prove R 6= 0 ?

Zero lemma : R = a1ε1 + · · ·+ amεm 6= 0.

Suffices A = a0b0 + · · ·+ ambm 6= 0.

We started with a0, a1, . . . , am rational integers, not all of
which are zero.

We considered simultaneous approximations
b1/b0, . . . , bm/b0 to x1, . . . , xm.

b0, b1, . . . , bm is a m+ 1–tuple of rational integers.

If we produce m+ 1 linearly independent such tuples, one
at least of them will give a non–zero value for A.
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Criterion of linear independence

Let ϑ = (ϑ1, . . . , ϑm) ∈ Rm. Then the following conditions
are equivalent.
(i) The numbers 1, ϑ1, . . . , ϑm are linearly independent over
Q.
(ii) For any ε > 0 there exist m+ 1 linearly independent
elements b0, b1, . . . , bm in Zm+1, say

bi = (qi, p1i, . . . , pmi), (0 ≤ i ≤ m)

with qi > 0, such that

max
1≤k≤m

∣∣∣∣ϑk − pki
qi

∣∣∣∣ ≤ ε

qi
, (0 ≤ i ≤ m).
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A non–vanishing determinant

The condition on linear independence of the elements
b0, b1, . . . , bm means that the determinant∣∣∣∣∣∣∣

q0 p10 · · · pm0
...

...
. . .

...
qm p1m · · · pmm

∣∣∣∣∣∣∣
is not 0.
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Simultaneous approximation to the exponential

function

Irrationality results follow from rational approximations
A/B ∈ Q(x) to the exponential function ex.

One of Hermite’s ideas is to consider simultaneous rational
approximations to the exponential function, in analogy with
Diophantine approximation.

Let B0, B1, . . . , Bm be polynomials in Z[x]. For 1 ≤ k ≤ m
define

Rk(x) = B0(x)ekx −Bk(x).

Set bj = Bj(1), 0 ≤ j ≤ m and

R = a0 + a1R1(1) + · · ·+ amRm(1).

If 0 < |R| < 1, then a0 + a1e+ · · ·+ ame
m 6= 0.
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Hermite : approximation to the functions

1, eα1x, . . . , eαmx

Let α1, . . . , αm be pairwise distinct complex numbers and
n0, . . . , nm be rational integers, all ≥ 0. Set
N = n0 + · · ·+ nm.

Hermite constructs explicitly polynomials B0, B1, . . . , Bm

with Bj of degree N − nj such that each of the functions

B0(z)eαkz −Bk(z), (1 ≤ k ≤ m)

has a zero at the origin of multiplicity at least N .
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Solution of Padé problem for exponential

functions

Hermite, 1872.
Let f1, . . . , fm be analytic functions of one complex variable
near the origin. Let n0, n1, . . . , nm be non-negative integers.
Set

N = n0 + n1 + · · ·+ nm.

Then there exists a tuple (Q,P1, . . . , Pm) of polynomials in
C[X] satisfying the following properties :
(i) The polynomial Q is not zero, it has degree ≤ N − n0.
(ii) For 1 ≤ µ ≤ m, the polynomial Pµ has degree
≤ N − nµ.
(iii) For 1 ≤ µ ≤ m, the function x 7→ Q(x)fµ(x)− Pµ(x)
has a zero at the origin of multiplicity ≥ N + 1.
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Padé approximants

Henri Eugène Padé (1863 - 1953)
Approximation of complex
analytic functions by
rational functions.

Theory of divergent series (L. Euler, E.N. Laguerre,
1886 : T.J. Stieltjes semi-convergent series and H. Poincaré
asymptotic series).
S. Ramanujan
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Hermite–Padé polynomials

Let m be a positive integer, n0, . . . , nm be non-negative
integers. Set N = n0 + · · ·+ nm. Define the polynomial
f ∈ Z[t] of degree N by

f(t) = tn0(t− 1)n1 · · · (t−m)nm .

Further set, for 1 ≤ µ ≤ m,

Q(x) =
N∑

k=n0

xN−kDkf(0), Pµ(x) =
N∑

k=nµ

xN−kDkf(µ)

and

Rµ(x) = xN+1exµ
∫ µ

0

e−xtf(t)dt.
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Hermite–Padé polynomials

Then the polynomial Q has exact degree N − n0, while Pµ
has exact degree N − nµ, and Rµ is an analytic function
having at the origin a multiplicity ≥ N + 1. Further, for
1 ≤ µ ≤ m,

Q(x)eµx − Pµ(x) = Rµ(x).

Hence (Q,P1, . . . , Pm) is a Padé system of the second type
for the m-tuple of functions (ex, e2x, . . . , emx), attached to
the parameters n0, n1, . . . , nm. Furthermore, the
polynomials (1/n0!)Q and (1/nµ!)Pµ for 1 ≤ µ ≤ m have
integral coefficients.
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Independent forms

Fix integers n0, . . . , n1, all ≥ 1. For j = 0, 1, . . . ,m denote
by Qj, Pj1, . . . , Pjm the Hermite-Padé polynomials attached
to the parameters

n0 − δj0, n1 − δj1, . . . , nm − δjm,

where δji is Kronecker’s symbol.

These parameters are the rows of the matrix
n0 − 1 n1 n2 · · · nm
n0 n1 − 1 n2 · · · nm
...

...
. . .

...
n0 n1 n2 · · · nm − 1

 .
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Independent forms

There exists a non-zero constant c such that the
determinant

∆(x) =

∣∣∣∣∣∣∣
Q0(x) P10(x) · · · Pm0(x)

...
...

. . .
...

Qm(x) P1m(x) · · · Pmm(x)

∣∣∣∣∣∣∣
is the monomial cxmN .

Fix a sufficiently large integer n and use the previous
results for n0 = n1 = · · · = nm = n with N = (m+ 1)n.
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Consequence

Define, for 0 ≤ j ≤ m, qj, p1j, . . . , pnj in Z by

(n− 1)!qj = Qj(1), (n− 1)!pµj = Pµj(1), (1 ≤ µ ≤ m).

There exists a constant κ > 0 independent on n such that
for 1 ≤ µ ≤ m and 0 ≤ j ≤ m,

|qieµ − pµj| ≤
κn

n!
·

Further, the determinant∣∣∣∣∣∣∣
q0 p10 · · · pm0
...

...
. . .

...
qm p1m · · · pmm

∣∣∣∣∣∣∣
is not zero.
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Historical survey of transcendence theory

XIX-th Century :
1844 : Liouville : existence of transcendental numbers,
examples (continued fractions, fast converging series)

1874, 1891 : G. Cantor : existence of transcendental
numbers.

1873 : Ch. Hermite : transcendence of e.

1882 : F. Lindemann : transcendence of π.
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Hermite–Lindemann Theorem

For any non-zero complex number z, one at least of the two
numbers z and ez is transcendental.

Hermite (1873) : transcendence of e.

Lindemann (1882) : transcendence of π.

Corollaries : transcendence of logα and of eβ for α and β
non-zero algebraic complex numbers, with logα 6= 0.
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First result of algebraic independence

Lindemann–Weierstraß (1885) :

Let α1, . . . , αm be algebraic numbers which are pairwise
distinct : αi 6= αj for i 6= j. Then the numbers eα1 , . . . , eαm

are linearly independent over Q.

Let β1, . . . , βn be algebraic numbers which are linearly
independent over Q. Then the numbers eβ1 , . . . , eβn are
algebraically independent over Q hence over Q.

Let α1, . . . , αm be algebraic numbers which are pairwise
distinct. Then the numbers eα1 , . . . , eαm are linearly
independent over Q.
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Hilbert’s seventh problem

A.O. Gel’fond and Th. Schneider (1934).
Solution of Hilbert’s seventh problem :
transcendence of αβ

and of (logα1)/(logα2)
for algebraic α, β, α2 and α2.

A. Baker, 1968. Let logα1, . . . , logαn be Q–linearly
independent logarithms of algebraic numbers. Then the
numbers 1, logα1, . . . , logαn are linearly independent over
the field Q.
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Four exponentials Conjecture

S. Ramanujan : highly composite numbers. Let t be a real
number such that 2t and 3t are integers. Does it follow that
t is a positive integer ?

Alaoglu and Erdös.

C.L. Siegel, A. Selberg, S. Lang, K. Ramachandra :

Theorem : If the three numbers 2t, 3t and 5t are integers,
then t is a rational number (hence a positive integer).
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Four exponentials Conjecture

Set 2t = a and 3t = b. Then the determinant∣∣∣∣log 2 log 3
log a log b

∣∣∣∣
vanishes.
Four exponentials Conjecture. Letlogα1 logα2

log β1 log β2


be a 2× 2 matrix whose entries are logarithms of algebraic
numbers. Assume the two columns are Q -linearly
independent and the two rows are also Q -linearly
independent. Then the matrix is regular.
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Four exponentials Conjecture and Six

exponentials Theorem

Conjecture. Let x1, x2 be Q–linearly independent complex
numbers and y1, y2 be also Q–linearly independent complex
numbers. Then one at least of the four numbers

ex1y1 , ex1y2 , ex2y1 , ex2y2

is transcendental.
Theorem. Let d and ` be positive integers with d` > d+ `.
Let x1, . . . , xd be Q–linearly independent complex numbers
and y1, . . . , y` be also Q–linearly independent complex
numbers. Then one at least of the d` numbers

exiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ `)

is transcendental.
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Six exponentials Theorem

Theorem (Siegel, Lang, Ramachandra). Letlogα1 logα2 logα3

log β1 log β2 log β3


be a 2 by 3 matrix whose entries are logarithms of algebraic
numbers. Assume the three columns are linearly
independent over Q and the two rows are also linearly
independent over Q. Then the matrix has rank 2.
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The Strong Six Exponentials Theorem

Denote by L̃ the Q-vector space spanned by 1 and L :
hence L̃ is the set of linear combinations with algebraic
coefficients of logarithms of algebraic numbers :

L̃ = {β0 + β1λ1 + · · ·+ βnλn ; n ≥ 0, βi ∈ Q, λi ∈ L}.

Theorem (D.Roy). If x1, x2 are Q–linearly independent
complex numbers and y1, y2, y3 are Q–linearly independent
complex numbers, then one at least of the six numbers

x1y1, x1y2, x1y3, x2y1, x2y2, x2y3

is not in L̃.
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The Strong Four Exponentials Conjecture

Conjecture. If x1, x2 are Q–linearly independent complex
numbers and y1, y2 are Q–linearly independent complex
numbers, then one at least of the four numbers

x1y1, x1y2, x2y1, x2y2

is not in L̃.
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Lower bound for the rank of matrices

• Rank of matrices. An alternate form of the strong Six
Exponentials Theorem (resp. the strong Four
Exponentials Conjecture) is the fact that a 2× 3 (resp.

2× 2) matrix with entries in L̃(
Λ11 Λ12 Λ13

Λ21 Λ22 Λ23

)
(resp.

(
Λ11 Λ12

Λ21 Λ22

)
),

the rows of which are linearly independent over Q and
the columns of which are also linearly independent over
Q, has maximal rank 2.
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The strong Six Exponentials Theorem

References :

D. Roy – « Matrices whose coefficients are linear forms
in logarithms », J. Number Theory 41 (1992), no. 1,
p. 22–47.

M. Waldschmidt – Diophantine approximation on
linear algebraic groups, Grundlehren der
Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], vol. 326,
Springer-Verlag, Berlin, 2000.
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Diophantine Approximation

• Liouville’s Theorem : for any real algebraic number α
there exists a constant c > 0 such that the set of p/q ∈ Q
with |α− p/q| < q−c is finite.

• Liouville’s Theorem yields the transcendence of the value
of a series like

∑
n≥0 2−un , provided that the sequence

(un)n≥0 is increasing and satisfies

lim sup
n→∞

un+1

un
= +∞.

• For instance un = n! satisfies this condition : hence the
number

∑
n≥0 2−n! is transcendental.
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Roth’s Theorem

• Roth’s Theorem : for any real algebraic number α, for
any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is
finite.

• Roth’s Theorem yields the transcendence of
∑

n≥0 2−un

under the weaker hypothesis

lim sup
n→∞

un+1

un
> 2.

• The sequence un = [2θn] satisfies this condition as soon
as θ > 1. For example the number∑

n≥0

2−3n

is transcendental.
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Transcendence of
∑

n≥0 2−2n

• A stronger result follows from Ridout’s Theorem, using
the fact that the denominators 2un are powers of 2 :
the condition

lim sup
n→∞

un+1

un
> 1

suffices to imply the transcendence of the sum of the
series

∑
n≥0 2−un

• Since un = 2n satisfies this condition, the
transcendence of

∑
n≥0 2−2n follows (Kempner 1916).

• Ridout’s Theorem : for any real algebraic number α,
for any ε > 0, the set of p/q ∈ Q with q = 2k and
|α− p/q| < q−1−ε is finite.
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Schmidt’s subspace Theorem

For x = (x0, . . . , xm−1) ∈ Zm, set
|x| = max{|x0|, . . . , |xm−1|}.
W.M. Schmidt (1970). Let m ≥ 2 and L0, . . . , Lm−1 a set
of m linearly independent forms in m variables with
algebraic coefficients. Let ε > 0. Then the set

{x = (x0, . . . , xm−1) ∈ Zm ; |L0(x) · · ·Lm−1(x)| ≤ |x|−ε}

is contained in the union of finitely many proper subspaces
of Qm.
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A consequence of Schmidt’s subspace Theorem

Thue-Siegel-Roth. Let α be an algebraic number. For any
ε > 0, the set of p/q ∈ Q satisfying |α− p/q| ≤ q−2−ε is
finite.
Proof : In Schmidt’s subspace Theorem, take
m = 2, L0(x0, x1) = x0, L1(x0, x1) = αx0 − x1.
The condition

|L0(x)L1(x)| ≤ |x|−ε

corresponds to
q|qα− p| ≤ q−ε.
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Schmidt’s subspace Theorem

W.M. Schmidt (1970). Let m ≥ 2 be a positive integer, S a
finite set of places of Q containing the infinite one. For
each v ∈ S, let L0,v, . . . , Lm−1,v be a system of m linearly
independent linear forms in m variables, with algebraic
coefficients in the completion of Q at v. Let ε > 0. Then the
set of x = (x0, . . . , xm−1) ∈ Zm for which∏

v∈S

|L0,v(x) · · ·Lm−1,v(x)|v ≤ |x|
−ε

is contained in the union of finitely many proper subspaces
of Qm.
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Ridout’s Theorem

Ridout. For any algebraic number α, for any ε > 0, the set
of p/q ∈ Q with q = 2k and |α− p/q| < q−1−ε is finite.
Proof : In Schmidt’s subspace Theorem, take m = 2,
S = {∞, 2},
L0,∞(x0, x1) = L0,2(x0, x1) = x0,
L1,∞(x0, x1) = αx0 − x1, L1,2(x0, x1) = x1.

For (x0, x1) = (q, p) with q = 2k, we have

|L0,∞(x0, x1)|∞ = q, |L1,∞(x0, x1)|∞ = |qα− p|,
|L0,2(x0, x1)|2 = q−1, |L1,2(x0, x1)|2 = |p|2 ≤ 1.
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Mahler’s method

Transcendence of
∑
n≥0

2−2n :

Mahler (1930, 1969) : the function f(z) =
∑
n≥0

z−2n satisfies

f(z2) + z = f(z) for |z| < 1.

K. Kubota
J.H. Loxton and A.J. van der Poorten (1982–1988).
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Mahler’s method vs Schmidt’s Subspace Theorem

P.G. Becker (1994) : for any given non–eventually periodic
automatic sequence u = (u1, u2, . . . ), the real number∑

k≥1

ukg
−k

is transcendental, provided that the integer g is sufficiently
large (in terms of u).

• Theorem (B. Adamczewski, Y. Bugeaud, F. Luca, 2004
–conjecture of A. Cobham, 1968) : The sequence of digits in
a basis g ≥ 2 of an irrational algebraic number is not
automatic.
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More on Mahler’s method

• K. Nishioka (1991) : algebraic independence measures
for the values of Mahler’s functions.

• For any integer d ≥ 2, ∑
n≥0

2−d
n

is a S–number in the classification of transcendental
numbers due to. . . Mahler.

• Reference : K. Nishioka, Mahler functions and
transcendence, Lecture Notes in Math. 1631, Springer
Verlag, 1996.
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Further developments

Transcendence and algebraic independence of values of
modular functions (méthode stéphanoise and work of
Yu.V. Nesterenko).

Measures : transcendence, linear independence, algebraic
independence. . .

Finite characteristic :

Federico Pellarin - Aspects de l’indépendance algébrique en
caractéristique non nulle [d’après Anderson, Brownawell,
Denis, Papanikolas, Thakur, Yu,. . .]
Séminaire Nicolas Bourbaki, Dimanche 18 mars 2007.
http://www.bourbaki.ens.fr/seminaires/2007/Prog−mars.07.html
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