# Historical introduction to transcendence 

Michel Waldschmidt

http://www.math.jussieu.fr/~miw/

## Abstract

The transcendence proofs for constants of analysis are essentially all based on the seminal work by Ch. Hermite : his proof of the transcendence of the number $e$ in 1873 is the prototype of the methods which have been subsequently developed. The founding paper by Hermite was influenced by earlier authors ( Lambert, Euler, Fourier, Liouville). We explain how his arguments have been expanded in several directions : Padé approximants, interpolation series, auxiliary functions.

## Simultaneous approximation and transcendence

Irrationality proofs involve rational approximation to a single real number $\theta$.

We wish to prove transcendence results.

A complex number $\theta$ is transcendental if and only if the numbers

$$
1, \theta, \theta^{2}, \ldots, \theta^{m}, \ldots
$$

are $\mathbf{Q}$-linearly independent.
Hence our goal is to prove linear independence, over the rational number field, of complex numbers.

## $L=a_{0}+a_{1} x_{1}+\cdots+a_{m} x_{m}$

Let $x_{1}, \ldots, x_{m}$ be real numbers and $a_{0}, a_{1}, \ldots, a_{m}$ rational integers, not all of which are zero. We wish to prove that the number

$$
L=a_{0}+a_{1} x_{1}+\cdots+a_{m} x_{m}
$$

is not zero. Approximate simultaneously $x_{1}, \ldots, x_{m}$ by rational numbers $b_{1} / b_{0}, \ldots, b_{m} / b_{0}$.
Let $b_{0}, b_{1}, \ldots, b_{m}$ be rational integers. For $1 \leq k \leq m$ set

$$
\epsilon_{k}=b_{0} x_{k}-b_{k}
$$

Then $b_{0} L=A+R$ with
$A=a_{0} b_{0}+\cdots+a_{m} b_{m} \in \mathbf{Z} \quad$ and $\quad R=a_{1} \epsilon_{1}+\cdots+a_{m} \epsilon_{m} \in \mathbf{R}$.
If $0<|R|<1$, then $L \neq 0$.

## How to prove $R \neq 0$ ?

Zero lemma: $R=a_{1} \epsilon_{1}+\cdots+a_{m} \epsilon_{m} \neq 0$.
Suffices $A=a_{0} b_{0}+\cdots+a_{m} b_{m} \neq 0$.
We started with $a_{0}, a_{1}, \ldots, a_{m}$ rational integers, not all of which are zero.

We considered simultaneous approximations $b_{1} / b_{0}, \ldots, b_{m} / b_{0}$ to $x_{1}, \ldots, x_{m}$.
$b_{0}, b_{1}, \ldots, b_{m}$ is a $m+1$-tuple of rational integers.
If we produce $m+1$ linearly independent such tuples, one at least of them will give a non-zero value for $A$.

## Criterion of linear independence

Let $\underline{\vartheta}=\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \in \mathbf{R}^{m}$. Then the following conditions are equivalent.
(i) The numbers $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly independent over Q.
(ii) For any $\epsilon>0$ there exist $m+1$ linearly independent elements $\underline{b}_{0}, \underline{b}_{1}, \ldots, \underline{b}_{m}$ in $\mathbf{Z}^{m+1}$, say

$$
\underline{b}_{i}=\left(q_{i}, p_{1 i}, \ldots, p_{m i}\right), \quad(0 \leq i \leq m)
$$

with $q_{i}>0$, such that

$$
\max _{1 \leq k \leq m}\left|\vartheta_{k}-\frac{p_{k i}}{q_{i}}\right| \leq \frac{\epsilon}{q_{i}}, \quad(0 \leq i \leq m)
$$

## A non-vanishing determinant

The condition on linear independence of the elements $\underline{b}_{0}, \underline{b}_{1}, \ldots, \underline{b}_{m}$ means that the determinant

$$
\left|\begin{array}{cccc}
q_{0} & p_{10} & \cdots & p_{m 0} \\
\vdots & \vdots & \ddots & \vdots \\
q_{m} & p_{1 m} & \cdots & p_{m m}
\end{array}\right|
$$

is not 0 .

## Simultaneous approximation to the exponential

 functionIrrationality results follow from rational approximations $A / B \in \mathbf{Q}(x)$ to the exponential function $e^{x}$.
One of Hermite's ideas is to consider simultaneous rational approximations to the exponential function, in analogy with Diophantine approximation.
Let $B_{0}, B_{1}, \ldots, B_{m}$ be polynomials in $\mathbf{Z}[x]$. For $1 \leq k \leq m$ define

$$
R_{k}(x)=B_{0}(x) e^{k x}-B_{k}(x)
$$

Set $b_{j}=B_{j}(1), 0 \leq j \leq m$ and

$$
R=a_{0}+a_{1} R_{1}(1)+\cdots+a_{m} R_{m}(1)
$$

If $0<|R|<1$, then $a_{0}+a_{1} e+\cdots+a_{m} e^{m} \neq 0$.

## Hermite : approximation to the functions $1, e^{\alpha_{1} x}, \ldots, e^{\alpha_{m} x}$

Let $\alpha_{1}, \ldots, \alpha_{m}$ be pairwise distinct complex numbers and $n_{0}, \ldots, n_{m}$ be rational integers, all $\geq 0$. Set $N=n_{0}+\cdots+n_{m}$.

Hermite constructs explicitly polynomials $B_{0}, B_{1}, \ldots, B_{m}$ with $B_{j}$ of degree $N-n_{j}$ such that each of the functions

$$
B_{0}(z) e^{\alpha_{k} z}-B_{k}(z), \quad(1 \leq k \leq m)
$$

has a zero at the origin of multiplicity at least $N$.

## Solution of Padé problem for exponential

 functionsHermite, 1872.
Let $f_{1}, \ldots, f_{m}$ be analytic functions of one complex variable near the origin. Let $n_{0}, n_{1}, \ldots, n_{m}$ be non-negative integers. Set

$$
N=n_{0}+n_{1}+\cdots+n_{m}
$$

Then there exists a tuple $\left(Q, P_{1}, \ldots, P_{m}\right)$ of polynomials in $\mathbf{C}[X]$ satisfying the following properties :
(i) The polynomial $Q$ is not zero, it has degree $\leq N-n_{0}$.
(ii) For $1 \leq \mu \leq m$, the polynomial $P_{\mu}$ has degree
$\leq N-n_{\mu}$.
(iii) For $1 \leq \mu \leq m$, the function $x \mapsto Q(x) f_{\mu}(x)-P_{\mu}(x)$
has a zero at the origin of multiplicity $\geq N+1$.

## Padé approximants

Henri Eugène Padé (1863-1953) Approximation of complex analytic functions by rational functions.


Theory of divergent series (L. Euler, E.N. Laguerre, 1886 : T.J. Stieltjes semi-convergent series and H. Poincaré asymptotic series).
S. Ramanujan

## Hermite-Padé polynomials

Let $m$ be a positive integer, $n_{0}, \ldots, n_{m}$ be non-negative integers. Set $N=n_{0}+\cdots+n_{m}$. Define the polynomial $f \in \mathbf{Z}[t]$ of degree $N$ by

$$
f(t)=t^{n_{0}}(t-1)^{n_{1}} \cdots(t-m)^{n_{m}} .
$$

Further set, for $1 \leq \mu \leq m$,

$$
Q(x)=\sum_{k=n_{0}}^{N} x^{N-k} D^{k} f(0), \quad P_{\mu}(x)=\sum_{k=n_{\mu}}^{N} x^{N-k} D^{k} f(\mu)
$$

and

$$
R_{\mu}(x)=x^{N+1} e^{x \mu} \int_{0}^{\mu} e^{-x t} f(t) d t
$$

## Hermite-Padé polynomials

Then the polynomial $Q$ has exact degree $N-n_{0}$, while $P_{\mu}$ has exact degree $N-n_{\mu}$, and $R_{\mu}$ is an analytic function having at the origin a multiplicity $\geq N+1$. Further, for $1 \leq \mu \leq m$,

$$
Q(x) e^{\mu x}-P_{\mu}(x)=R_{\mu}(x)
$$

Hence $\left(Q, P_{1}, \ldots, P_{m}\right)$ is a Padé system of the second type for the $m$-tuple of functions $\left(e^{x}, e^{2 x}, \ldots, e^{m x}\right)$, attached to the parameters $n_{0}, n_{1}, \ldots, n_{m}$. Furthermore, the polynomials $\left(1 / n_{0}!\right) Q$ and $\left(1 / n_{\mu}!\right) P_{\mu}$ for $1 \leq \mu \leq m$ have integral coefficients.

## Independent forms

Fix integers $n_{0}, \ldots, n_{1}$, all $\geq 1$. For $j=0,1, \ldots, m$ denote by $Q_{j}, P_{j 1}, \ldots, P_{j m}$ the Hermite-Padé polynomials attached to the parameters

$$
n_{0}-\delta_{j 0}, n_{1}-\delta_{j 1}, \ldots, n_{m}-\delta_{j m}
$$

where $\delta_{j i}$ is Kronecker's symbol.
These parameters are the rows of the matrix

$$
\left(\begin{array}{ccccc}
n_{0}-1 & n_{1} & n_{2} & \cdots & n_{m} \\
n_{0} & n_{1}-1 & n_{2} & \cdots & n_{m} \\
\vdots & \vdots & \ddots & \vdots & \\
n_{0} & n_{1} & n_{2} & \cdots & n_{m}-1
\end{array}\right)
$$

## Independent forms

There exists a non-zero constant $c$ such that the determinant

$$
\Delta(x)=\left|\begin{array}{cccc}
Q_{0}(x) & P_{10}(x) & \cdots & P_{m 0}(x) \\
\vdots & \vdots & \ddots & \vdots \\
Q_{m}(x) & P_{1 m}(x) & \cdots & P_{m m}(x)
\end{array}\right|
$$

is the monomial $c x^{m N}$.

Fix a sufficiently large integer $n$ and use the previous results for $n_{0}=n_{1}=\cdots=n_{m}=n$ with $N=(m+1) n$.

## Consequence

Define, for $0 \leq j \leq m, q_{j}, p_{1 j}, \ldots, p_{n j}$ in $\mathbf{Z}$ by

$$
(n-1)!q_{j}=Q_{j}(1),(n-1)!p_{\mu j}=P_{\mu j}(1), \quad(1 \leq \mu \leq m)
$$

There exists a constant $\kappa>0$ independent on $n$ such that for $1 \leq \mu \leq m$ and $0 \leq j \leq m$,

$$
\left|q_{i} e^{\mu}-p_{\mu j}\right| \leq \frac{\kappa^{n}}{n!}
$$

Further, the determinant

$$
\left|\begin{array}{cccc}
q_{0} & p_{10} & \cdots & p_{m 0} \\
\vdots & \vdots & \ddots & \vdots \\
q_{m} & p_{1 m} & \cdots & p_{m m}
\end{array}\right|
$$

is not zero.

## Historical survey of transcendence theory

XIX-th Century :
1844 : Liouville : existence of transcendental numbers, examples (continued fractions, fast converging series)

1874, 1891 : G. Cantor : existence of transcendental numbers.

1873 : Ch. Hermite : transcendence of $e$.

1882: F. Lindemann : transcendence of $\pi$.

## Hermite-Lindemann Theorem

For any non-zero complex number z, one at least of the two numbers $z$ and $e^{z}$ is transcendental.

Hermite (1873) : transcendence of $e$.

Lindemann (1882) : transcendence of $\pi$.

Corollaries : transcendence of $\log \alpha$ and of $e^{\beta}$ for $\alpha$ and $\beta$ non-zero algebraic complex numbers, with $\log \alpha \neq 0$.

## First result of algebraic independence

Lindemann-Weierstraß (1885) :
Let $\alpha_{1}, \ldots, \alpha_{m}$ be algebraic numbers which are pairwise distinct : $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$. Then the numbers $e^{\alpha_{1}}, \ldots, e^{\alpha_{m}}$ are linearly independent over $\mathbf{Q}$.

Let $\beta_{1}, \ldots, \beta_{n}$ be algebraic numbers which are linearly independent over $\mathbf{Q}$. Then the numbers $e^{\beta_{1}}, \ldots, e^{\beta_{n}}$ are algebraically independent over $\mathbf{Q}$ hence over $\overline{\mathbf{Q}}$.

Let $\alpha_{1}, \ldots, \alpha_{m}$ be algebraic numbers which are pairwise distinct. Then the numbers $e^{\alpha_{1}}, \ldots, e^{\alpha_{m}}$ are linearly independent over $\overline{\mathbf{Q}}$.

## Hilbert's seventh problem

A.O. Gel'fond and Th. Schneider (1934). Solution of Hilbert's seventh problem : transcendence of $\alpha^{\beta}$
and of $\left(\log \alpha_{1}\right) /\left(\log \alpha_{2}\right)$
for algebraic $\alpha, \beta, \alpha_{2}$ and $\alpha_{2}$.

A. Baker, 1968. Let $\log \alpha_{1}, \ldots, \log \alpha_{n}$ be $\mathbf{Q}$-linearly independent logarithms of algebraic numbers. Then the numbers $1, \log \alpha_{1}, \ldots, \log \alpha_{n}$ are linearly independent over the field $\overline{\mathbf{Q}}$.

## Four exponentials Conjecture

S. Ramanujan : highly composite numbers. Let $t$ be a real number such that $2^{t}$ and $3^{t}$ are integers. Does it follow that $t$ is a positive integer?

Alaoglu and Erdös.
C.L. Siegel, A. Selberg, S. Lang, K. Ramachandra :

Theorem : If the three numbers $2^{t}, 3^{t}$ and $5^{t}$ are integers, then $t$ is a rational number (hence a positive integer).

## Four exponentials Conjecture

Set $2^{t}=a$ and $3^{t}=b$. Then the determinant

$$
\left|\begin{array}{ll}
\log 2 & \log 3 \\
\log a & \log b
\end{array}\right|
$$

vanishes.
Four exponentials Conjecture. Let

$$
\left(\begin{array}{ll}
\log \alpha_{1} & \log \alpha_{2} \\
\log \beta_{1} & \log \beta_{2}
\end{array}\right)
$$

be a $2 \times 2$ matrix whose entries are logarithms of algebraic numbers. Assume the two columns are $\mathbf{Q}$-linearly independent and the two rows are also $\mathbf{Q}$-linearly independent. Then the matrix is regular.

## Four exponentials Conjecture and Six exponentials Theorem

Conjecture. Let $x_{1}, x_{2}$ be $\mathbf{Q}$-linearly independent complex numbers and $y_{1}, y_{2}$ be also $\mathbf{Q}$-linearly independent complex numbers. Then one at least of the four numbers

$$
e^{x_{1} y_{1}}, e^{x_{1} y_{2}}, e^{x_{2} y_{1}}, e^{x_{2} y_{2}}
$$

is transcendental.
Theorem. Let $d$ and $\ell$ be positive integers with $d \ell>d+\ell$. Let $x_{1}, \ldots, x_{d}$ be $\mathbf{Q}$-linearly independent complex numbers and $y_{1}, \ldots$, y $y_{\ell}$ be also $\mathbf{Q}$-linearly independent complex numbers. Then one at least of the $d \ell$ numbers

$$
e^{x_{i} y_{j}}, \quad(1 \leq i \leq d, 1 \leq j \leq \ell)
$$

is transcendental.

## Six exponentials Theorem

Theorem (Siegel, Lang, Ramachandra). Let

$$
\left(\begin{array}{lll}
\log \alpha_{1} & \log \alpha_{2} & \log \alpha_{3} \\
\log \beta_{1} & \log \beta_{2} & \log \beta_{3}
\end{array}\right)
$$

be a 2 by 3 matrix whose entries are logarithms of algebraic numbers. Assume the three columns are linearly independent over $\mathbf{Q}$ and the two rows are also linearly independent over $\mathbf{Q}$. Then the matrix has rank 2 .

## The Strong Six Exponentials Theorem

Denote by $\widetilde{\mathcal{L}}$ the $\overline{\mathbf{Q}}$-vector space spanned by 1 and $\mathcal{L}$ : hence $\widetilde{\mathcal{L}}$ is the set of linear combinations with algebraic coefficients of logarithms of algebraic numbers :

$$
\widetilde{\mathcal{L}}=\left\{\beta_{0}+\beta_{1} \lambda_{1}+\cdots+\beta_{n} \lambda_{n} ; n \geq 0, \beta_{i} \in \overline{\mathbf{Q}}, \quad \lambda_{i} \in \mathcal{L}\right\}
$$

Theorem (D.Roy). If $x_{1}, x_{2}$ are $\overline{\mathbf{Q}}$-linearly independent complex numbers and $y_{1}, y_{2}, y_{3}$ are $\overline{\mathbf{Q}}$-linearly independent complex numbers, then one at least of the six numbers

$$
x_{1} y_{1}, x_{1} y_{2}, x_{1} y_{3}, x_{2} y_{1}, x_{2} y_{2}, x_{2} y_{3}
$$

is not in $\widetilde{\mathcal{L}}$.

## The Strong Four Exponentials Conjecture

Conjecture. If $x_{1}, x_{2}$ are $\overline{\mathbf{Q}}$-linearly independent complex numbers and $y_{1}, y_{2}$ are $\overline{\mathbf{Q}}$-linearly independent complex numbers, then one at least of the four numbers

$$
x_{1} y_{1}, x_{1} y_{2}, \quad x_{2} y_{1}, x_{2} y_{2}
$$

is not in $\widetilde{\mathcal{L}}$.

## Lower bound for the rank of matrices

- Rank of matrices. An alternate form of the strong Six Exponentials Theorem (resp. the strong Four Exponentials Conjecture) is the fact that $a 2 \times 3$ (resp. $2 \times 2$ ) matrix with entries in $\widetilde{\mathcal{L}}$

$$
\left(\begin{array}{lll}
\Lambda_{11} & \Lambda_{12} & \Lambda_{13} \\
\Lambda_{21} & \Lambda_{22} & \Lambda_{23}
\end{array}\right) \quad\left(\operatorname{resp} \cdot\left(\begin{array}{ll}
\Lambda_{11} & \Lambda_{12} \\
\Lambda_{21} & \Lambda_{22}
\end{array}\right) \quad\right)
$$

the rows of which are linearly independent over $\overline{\mathbf{Q}}$ and the columns of which are also linearly independent over $\overline{\mathbf{Q}}$, has maximal rank 2 .

## The strong Six Exponentials Theorem

References:
目 D. Roy - «Matrices whose coefficients are linear forms in logarithms », J. Number Theory 41 (1992), no. 1, p. 22-47.
( M. Waldschmidt - Diophantine approximation on linear algebraic groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 326, Springer-Verlag, Berlin, 2000.

## Diophantine Approximation

- Liouville's Theorem : for any real algebraic number $\alpha$ there exists a constant $c>0$ such that the set of $p / q \in \mathbf{Q}$ with $|\alpha-p / q|<q^{-c}$ is finite.
- Liouville's Theorem yields the transcendence of the value of a series like $\sum_{n \geq 0} 2^{-u_{n}}$, provided that the sequence $\left(u_{n}\right)_{n \geq 0}$ is increasing and satisfies

$$
\limsup _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=+\infty
$$

- For instance $u_{n}=n$ ! satisfies this condition : hence the number $\sum_{n \geq 0} 2^{-n!}$ is transcendental.


## Roth's Theorem

- Roth's Theorem : for any real algebraic number $\alpha$, for any $\epsilon>0$, the set of $p / q \in \mathbf{Q}$ with $|\alpha-p / q|<q^{-2-\epsilon}$ is finite.
- Roth's Theorem yields the transcendence of $\sum_{n \geq 0} 2^{-u_{n}}$ under the weaker hypothesis

$$
\limsup _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}>2
$$

- The sequence $u_{n}=\left[2^{\theta n}\right]$ satisfies this condition as soon as $\theta>1$. For example the number

$$
\sum_{n \geq 0} 2^{-3^{n}}
$$

is transcendental.

## Transcendence of $\sum_{n>0} 2^{-2^{n}}$

- A stronger result follows from Ridout's Theorem, using the fact that the denominators $2^{u_{n}}$ are powers of 2 : the condition

$$
\limsup _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}>1
$$

suffices to imply the transcendence of the sum of the series $\sum_{n \geq 0} 2^{-u_{n}}$

- Since $u_{n}=2^{n}$ satisfies this condition, the transcendence of $\sum_{n \geq 0} 2^{-2^{n}}$ follows (Kempner 1916).
- Ridout's Theorem : for any real algebraic number $\alpha$, for any $\epsilon>0$, the set of $p / q \in \mathbf{Q}$ with $q=2^{k}$ and $|\alpha-p / q|<q^{-1-\epsilon}$ is finite.


## Schmidt's subspace Theorem

For $\mathbf{x}=\left(x_{0}, \ldots, x_{m-1}\right) \in \mathbf{Z}^{m}$, set
$|\mathbf{x}|=\max \left\{\left|x_{0}\right|, \ldots,\left|x_{m-1}\right|\right\}$.
W.M. Schmidt (1970). Let $m \geq 2$ and $L_{0}, \ldots, L_{m-1}$ a set of $m$ linearly independent forms in $m$ variables with algebraic coefficients. Let $\epsilon>0$. Then the set

$$
\left\{\mathbf{x}=\left(x_{0}, \ldots, x_{m-1}\right) \in \mathbf{Z}^{m} ;\left|L_{0}(\mathbf{x}) \cdots L_{m-1}(\mathbf{x})\right| \leq|\mathbf{x}|^{-\epsilon}\right\}
$$

is contained in the union of finitely many proper subspaces of $\mathbf{Q}^{m}$.

## A consequence of Schmidt's subspace Theorem

Thue-Siegel-Roth. Let $\alpha$ be an algebraic number. For any
$\epsilon>0$, the set of $p / q \in \mathbf{Q}$ satisfying $|\alpha-p / q| \leq q^{-2-\epsilon}$ is
finite.
Proof : In Schmidt's subspace Theorem, take
$m=2, L_{0}\left(x_{0}, x_{1}\right)=x_{0}, L_{1}\left(x_{0}, x_{1}\right)=\alpha x_{0}-x_{1}$.
The condition

$$
\left|L_{0}(\mathbf{x}) L_{1}(\mathbf{x})\right| \leq|\mathbf{x}|^{-\epsilon}
$$

corresponds to

$$
q|q \alpha-p| \leq q^{-\epsilon}
$$

## Schmidt's subspace Theorem

W.M. Schmidt (1970). Let $m \geq 2$ be a positive integer, $S$ a finite set of places of $\mathbf{Q}$ containing the infinite one. For each $v \in S$, let $L_{0, v}, \ldots, L_{m-1, v}$ be a system of $m$ linearly independent linear forms in $m$ variables, with algebraic coefficients in the completion of $\mathbf{Q}$ at $v$. Let $\epsilon>0$. Then the set of $\mathbf{x}=\left(x_{0}, \ldots, x_{m-1}\right) \in \mathbf{Z}^{m}$ for which

$$
\prod_{v \in S}\left|L_{0, v}(\mathbf{x}) \cdots L_{m-1, v}(\mathbf{x})\right|_{v} \leq|\mathbf{x}|^{-\epsilon}
$$

is contained in the union of finitely many proper subspaces of $\mathbf{Q}^{m}$.

## Ridout's Theorem

Ridout. For any algebraic number $\alpha$, for any $\epsilon>0$, the set of $p / q \in \mathbf{Q}$ with $q=2^{k}$ and $|\alpha-p / q|<q^{-1-\epsilon}$ is finite.
Proof : In Schmidt's subspace Theorem, take $m=2$,
$S=\{\infty, 2\}$,
$L_{0, \infty}\left(x_{0}, x_{1}\right)=L_{0,2}\left(x_{0}, x_{1}\right)=x_{0}$,
$L_{1, \infty}\left(x_{0}, x_{1}\right)=\alpha x_{0}-x_{1}, \quad L_{1,2}\left(x_{0}, x_{1}\right)=x_{1}$.
For $\left(x_{0}, x_{1}\right)=(q, p)$ with $q=2^{k}$, we have
$\begin{array}{ll}\left|L_{0, \infty}\left(x_{0}, x_{1}\right)\right|_{\infty}=q, & \left|L_{1, \infty}\left(x_{0}, x_{1}\right)\right|_{\infty}=|q \alpha-p|, \\ \left|L_{0,2}\left(x_{0}, x_{1}\right)\right|_{2}=q^{-1}, & \left|L_{1,2}\left(x_{0}, x_{1}\right)\right|_{2}=|p|_{2} \leq 1 .\end{array}$

## Mahler's method

$$
\text { Transcendence of } \sum_{n \geq 0} 2^{-2^{n}}:
$$

Mahler $(1930,1969)$ : the function $f(z)=\sum_{n \geq 0} z^{-2^{n}}$ satisfies $f\left(z^{2}\right)+z=f(z)$ for $|z|<1$.
K. Kubota
J.H. Loxton and A.J. van der Poorten (1982-1988).

## Mahler's method vs Schmidt's Subspace Theorem

P.G. Becker (1994) : for any given non-eventually periodic automatic sequence $\mathbf{u}=\left(u_{1}, u_{2}, \ldots\right)$, the real number

$$
\sum_{k \geq 1} u_{k} g^{-k}
$$

is transcendental, provided that the integer $g$ is sufficiently large (in terms of $\mathbf{u}$ ).

- Theorem (B. Adamczewski, Y. Bugeaud, F. Luca, 2004 -conjecture of A. Cobham, 1968) : The sequence of digits in a basis $g \geq 2$ of an irrational algebraic number is not automatic.


## More on Mahler's method

- K. Nishioka (1991) : algebraic independence measures for the values of Mahler's functions.
- For any integer $d \geq 2$,

$$
\sum_{n \geq 0} 2^{-d^{n}}
$$

is a $S$-number in the classification of transcendental numbers due to... Mahler.

- Reference : K. Nishioka, Mahler functions and transcendence, Lecture Notes in Math. 1631, Springer Verlag, 1996.


## Further developments

Transcendence and algebraic independence of values of modular functions (méthode stéphanoise and work of Yu.V. Nesterenko).

Measures : transcendence, linear independence, algebraic independence...

Finite characteristic :
Federico Pellarin - Aspects de l'indépendance algébrique en caractéristique non nulle [d'après Anderson, Brownawell, Denis, Papanikolas, Thakur, Yu,...]
Séminaire Nicolas Bourbaki, Dimanche 18 mars 2007.
http://www.bourbaki.ens.fr/seminaires/2007/Prog_mars.07.html

# Historical introduction to transcendence 

Michel Waldschmidt

http://www.math.jussieu.fr/~miw/

