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Abstract

Transcendence proofs most often involve an auxiliary function.
Such functions can take several forms. Historically, the first
ones were Padé approximations, in Hermite’s proof of the
transcendence of e (1873). Next came functions whose existence
is proved by means of the Dirichlet’s box principle, with the
work of Thue (early 1900) and Siegel (in the 1920’s). Another
tool was provided by interpolation formulae, mainly Newton
interpolation (involving Hermite’s formulae again) in the study
by G. Polya (1914) and A.O. Gel’fond (1929) of integer valued
entire functions. Along these lines, recent developments are due
to T. Rivoal (to appear), who renewed the forgotten rational
interpolation formulae of R. Lagrange (1935). In 1991
M. Laurent introduced interpolation determinants, and two
years later J.B. Bost used Arakhelov theory to prove slope
inequalities, which dispens of the choice of bases.
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Existence of transcendental numbers

Theorem [Liouville, 1844] Let α be a real algebraic
number. There exists κ > 0 such that, for any rational
number p/q distinct from α with q ≥ 2,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

qκ
·

Corollary Let ξ be a real number. Assume that for any
κ > 0 there exists a rational number p/q with q ≥ 2 such
that

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qκ
·

Then ξ is transcendental.
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Proof of Liouville’s inequality

α is algebraic means that there exists a non–zero
polynomial f ∈ Z[X] such that f(α) = 0.
Let d be the degree of f . Since p/q is distinct from α we
have f(p/q) 6= 0.
Hence qdf(p/q) is a non–zero rational integer

|f(p/q)| ≥ 1

qd
·

On the other hand

|f(p/q)| ≤ c(α)

∣∣∣∣α− p

q

∣∣∣∣ .
Therefore ∣∣∣∣α− p

q

∣∣∣∣ ≥ c(α)

qd
·

Auxiliary function : f .
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Irrationality proofs

Early methods : Involve continued fractions.
Lambert (1767) : irrationality of π
Close relation with Padé Approximation
Hermite, (1849) :
Tout ce que je puis, c’est de refaire ce qu’a déjà fait
Lambert, seulement d’une autre manière.
All I can do is to repeat what Lambert did, just in another
way.
Reference : C. Brezinski
The long history of continued fractions and Padé approximants.
Padé approximation and its applications, Amsterdam 1980, pp.
1–27, Lecture Notes in Math., 888, Springer, Berlin-New York,
1981.
History of continued fractions and Padé approximants. Springer
Series in Computational Mathematics, 12. Springer-Verlag,
Berlin, 1991.
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Fourier’s proof (1815) for the irrationality of e

Truncate the Taylor expansion at the origin : the auxiliary
function is a polynomial (or rather the remainder : the
difference between ez and the initial polynomial).

First examples of transcendental numbers : Liouville 1844,
continued fractions, fast converging series.
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Idea of Ch. Hermite

Ch. Hermite (1822 - 1901).
Approximate the exponential function ez

by rational fractions A(z)/B(z).
Means : Taylor developments match
for the first terms.

Auxiliary function :

B(z)ez − A(z)

with a zero at the origin of high multiplicity.
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Simultaneous approximation to the exponential

function

Irrationality results follow from rational approximations
A/B ∈ Q(x) to the exponential function ex.

One of Hermite’s ideas is to consider simultaneous rational
approximations to the exponential function, in analogy with
Diophantine approximation.

Let B0, B1, . . . , Bm be polynomials in Z[x]. For 1 ≤ k ≤ m
define

Rk(x) = B0(x)ekx −Bk(x).

Set bj = Bj(1), 0 ≤ j ≤ m and

R = a0 + a1R1(1) + · · ·+ amRm(1).

If 0 < |R| < 1, then a0 + a1e+ · · ·+ ame
m 6= 0.
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Hermite : approximation to the functions

1, eα1x, . . . , eαmx

Let α1, . . . , αm be pairwise distinct complex numbers and
n0, . . . , nm be rational integers, all ≥ 0. Set
N = n0 + · · ·+ nm.

Hermite constructs explicitly polynomials B0, B1, . . . , Bm

with Bj of degree N − nj such that each of the functions

B0(z)eαkz −Bk(z), (1 ≤ k ≤ m)

has a zero at the origin of multiplicity at least N .
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Padé approximants

Henri Eugène Padé (1863 - 1953)
Approximation of complex
analytic functions by
rational functions.

Michel Waldschmidt http://www.math.jussieu.fr/∼miw/



Padé Approximants of type II

Let f0, . . . , fm be complex functions which are analytic near
the origin and n0, . . . , nm be rational integers, all ≥ 0. Set
N = n0 + · · ·+ nm.
There are two dual points of view, giving rise to the two
types of Padé Approximants.
Padé approximants of second type : polynomials
B0, . . . , Bm with Bj having degree ≤ N − nj, such that
each of the functions

Bi(z)fj(z)−Bj(z)fi(z) (0 ≤ i < j ≤ m)

has a zero of multiplicity > N .

Reference : N.I. Feldman and Yu.V. Nesterenko, Number
Theory IV, Transcendental Numbers, Encyclopaedia of
Mathematical Sciences, 44 (1998) Chap. 2.
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Padé approximants of type I

Let f1, . . . , fm be complex functions which are analytic near
the origin and let n1, . . . , nm be non-negative integers. Set
M = n1 + · · ·+ nm.

Padé approximants of the first type : polynomials
P1, . . . , Pm with Pj of degree ≤ nj such that the function

P1(z)f1(z) + · · ·+ Pm(z)fm(z)

has a zero at the origin of multiplicity at least M +m− 1.

Studied by Ch. Hermite in 1873 and 1893.
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Hermite )1893)

If α1, . . . , αm are pairwise distinct complex numbers,
n0, . . . , nm non–negative integers, Hermite constructs
explicitely polynomials P1, . . . , Pm with Pj of degree njsuch
that the function

P1(z)eα1z + · · ·+ Pm(z)eαmz

has a zero at the origin of multiplicity at least
n1 + · · ·+ nm +m− 1.

C. Hermite (1917) : further integral formula for the
remainder.

Application to transcendence : effective version of the
Hermite, Lindemann and Weierstraß theorems by
K. Mahler (1930).
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Transcendental functions

A complex function is called transcendental if it is
transcendental over the field C(z), which means that the
functions z and f(z) are algebraically independent : if
P ∈ C[X, Y ] is a non-zero polynomial, then the function
P
(
z, f(z)

)
is not 0.

Exercise. An entire function (analytic in C) is
transcendental if and only if it is not a polynomial.

Example. The transcendental entire function ez takes an
algebraic value at an algebraic argument z only for z = 0.
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Weierstrass question

Is–it true that a transcendental
entire function f takes usually
transcendental values at algebraic
arguments ?

Answers by Weierstrass (letter to Strauss in 1886), Strauss,
Stäckel, Faber, van der Poorten, Gramain. . .
If S is a countable subset of C and T is a dense subset of
C, there exist transcendental entire functions f mapping S
into T , as well as all its derivatives.
Also there are transcendental entire functions f such that
Dkf(α) ∈ Q(α) for all k ≥ 0 and all algebraic α.
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Integer valued entire functions

An integer valued entire function is a function f , which is
analytic in C, and maps N into Z.

Example : 2z is an integer valued entire function, not a
polynomial.

Question : Are-there integer valued entire function growing
slower than 2z without being a polynomial ?

Let f be a transcendental entire function in C. For R > 0
set

|f |R = sup
|z|=R

|f(z)|.
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Integer valued entire functions

G. Pólya (1914) :
if f is not a polynomial
and f(n) ∈ Z for n ∈ Z≥0, then

lim sup
R→∞

2−R|f |R ≥ 1.

Further works on this topic by G.H. Hardy, G. Pólya,
D. Sato, E.G. Straus, A. Selberg, Ch. Pisot, F. Carlson,
F. Gross,. . .
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Arithmetic functions

Pólya’s proof starts by expanding the function f into a
Newton interpolation series at the points 0, 1, 2, . . . :

f(z) = a0 + a1z + a2z(z − 1) + a3z(z − 1)(z − 2) + · · ·

Since f(n) is an integer for all n ≥ 0, the coefficients an are
rational and one can bound the denominators. If f does not
grow fast, one deduces that these coefficients vanish for
sufficiently large n.
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Newton interpolation series

From

f(z) = f(α1) + (z − α1)f1(z), f1(z) = f1(α2) + (z − α2)f2(z), . . .

we deduce

f(z) = a0 + a1(z − α1) + a2(z − α1)(z − α2) + · · ·

with

a0 = f(α1), a1 = f1(α2), . . . , an = fn(αn+1).
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An identity due to Ch. Hermite

1

x− z
=

1

x− α
+
z − α
x− α

· 1

x− z
·

Repeat :

1

x− z
=

1

x− α1

+
z − α1

x− α1

·
(

1

x− α2

+
z − α2

x− α2

· 1

x− z

)
·

Michel Waldschmidt http://www.math.jussieu.fr/∼miw/



An identity due to Ch. Hermite

Inductively we deduce the next formula due to Hermite :

1

x− z
=

n−1∑
j=0

(z − α1)(z − α2) · · · (z − αj)
(x− α1)(x− α2) · · · (x− αj+1)

+
(z − α1)(z − α2) · · · (z − αn)

(x− α1)(x− α2) · · · (x− αn)
· 1

x− z
·
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Newton interpolation expansion

Application. Multiply by (1/2iπ)f(z) and integrate :

f(z) =
n−1∑
j=0

aj(z − α1) · · · (z − αj) +Rn(z)

with

aj =
1

2iπ

∫
C

f(x)dx

(x− α1)(x− α2) · · · (x− αj+1)
(0 ≤ j ≤ n− 1)

and

Rn(z)= (z − α1)(z − α2) · · · (z − αn)·
1

2iπ

∫
C

f(x)dx

(x− α1)(x− α2) · · · (x− αn)(x− z)
·
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Rational interpolation

René Lagrange (1935).

1

x− z
=

α− β
(x− α)(x− β)

+
x− β
x− α

· z − α
z − β

· 1

x− z
·

Iterating and integrating yield

f(z) =
N−1∑
n=0

Bn
(z − α1) · · · (z − αn)

(z − β1) · · · (z − βn)
+ R̃N(z).
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Hurwitz zeta function

T. Rivoal (2006) : consider Hurwitz zeta function

ζ(s, z) =
∞∑
k=1

1

(k + z)s
·

Expand ζ(2, z) as a series in

z2(z − 1)2 · · · (z − n+ 1)2

(z + 1)2 · · · (z + n)2
·

The coefficients of the expansion belong to Q + Qζ(3).
This produces a new proof of Apéry’s Theorem on the
irrationality of ζ(3).
In the same way : new proof of the irrationality of log 2 by
expanding

∞∑
k=1

(−1)k

k + z
·
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Mixing C. Hermite and R. Lagrange

T. Rivoal (2006) : new proof of the irrationality of ζ(2) by
expanding

∞∑
k=1

(
1

k
− 1

k + z

)
as a Hermite–Lagrange series in(

z(z − 1) · · · (z − n+ 1)
)2

(z + 1) · · · (z + n)
·
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Taylor series and interpolation series

Taylor series are the special case of Hermite’s formula with
a single point and multiplicities — they give rise to Padé
approximants.

Multiplicities can also be introduced in René Lagrange
interpolation.
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Integer valued entire function on Z[i]

A.O. Gel’fond (1929) : growth of entire functions mapping
the Gaussian integers into themselves.
Newton interpolation series at the points in Z[i].

An entire function f which is not a polynomial and satisfies
f(a+ ib) ∈ Z[i] for all a+ ib ∈ Z[i] satisfies

lim sup
R→∞

1

R2
log |f |R ≥ γ.

F. Gramain (1981) : γ = π/(2e).
This is best possible : D.W. Masser (1980).
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Transcendence of eπ

A.O. Gel’fond (1929).

If
eπ = 23, 140 692 632 779 269 005 729 086 367 . . .

is rational, then the function eπz takes values in Q(i) when
the argument z is in Z[i].

Expand eπz into an interpolation series at the Gaussian
integers.
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Hilbert’s seventh problem

A.O. Gel’fond and Th. Schneider (1934).
Solution of Hilbert’s seventh problem :
transcendence of αβ

and of (logα1)/(logα2)
for algebraic α, β, α2 and α2.

Duality between the methods of Gel’fond and Schneider :
Fourier-Borel transform.
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Gel’fond and Schneider methods

Assume α, β and αβ = exp(logα) are algebraic with β 6∈ Q
and logα 6= 0. Let K = Q(α, β, αβ).

A.O. Gelfond :
The two entire functions ez and eβz are algebraically
independent, they satisfy differential equations with
algebraic coefficients and they take simultaneously values in
K for infinitely many z, viz. z ∈ Z logα.

Th. Schneider :
The two entire functions z and αz = ez logα are algebraically
independent, they take simultaneously values in K for
infinitely many z, viz. z ∈ Z + Zβ.
No use of differential equations (coefficients are not all
algebraic).
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Duality between Gel’fond and Schneider

A.O. Gelfond : (
d

dz

)t0 (
e(s1+s2β)z

)
z=t1 logα

Th. Schneider : (
zt0αt1z

)
z=s1+s2β

Result :
(s1 + s2β)t0αt1s1(αβ)t1s2 .
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Dirichlet’s box principle

Gel’fond and Schneider
use an auxiliary function,
the existence of which follows
from Dirichlet’s box principle
(pigeonhole principle,
Thue-Siegel Lemma).
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Thue’s work on Diophantine Approximation

A. Thue (∼1910). First improvement of Liouville’s
inequality on a lower bound for |α− p/q|.

Idea : in place of evaluating the values at p/q of a
polynomial in a single variable (viz. the irreducible
polynomial of α), consider two approximations p1/q1 and
p2/q2 of α and evaluate at the point (p1/q1, p2/q2) a
polynomial P in two variables.

This polynomial P ∈ Z[X, Y ] is constructed (or rather is
shown to exist) by means of Dirichlet’s box principle. The
required conditions are that P has zeroes of sufficiently
large order at (0, 0) and at (p1/q1, p2/q2). The order is
weighted (index of P at a point).
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Thue’s work on Diophantine Approximation

One of the main difficulties that Thue had to overcome was
to produce a zero estimate (to find a non–zero value of
some derivative).

For the method to work, one needs to select the second
approximation p2/q2 depending on the first p1/q1. Hence a
first very sharp approximation p1/q1 is required.
The method provides a satisfactory result for all p/q with
at most one exception (J.W.S. Cassels, H. Davenport :
upper bound for the number of solutions of Diophantine
equations).
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Diophantine Approximation

E. Bombieri has produced examples where a sufficiently
sharp approximation exists for the method to work in an
effective way. Later he produced effective refinements to
Liouville’s inequality by extending the argument.

Further improvement by C.L. Siegel in the 1920’s – and
application of the idea to transcendence questions (periods
of elliptic functions).

K. F. Roth (1955) : introduces many variables – get the
essentially sharpest possible exponent in Liouville’s
inequality, namely 2 + ε in place of the degree d of θ.

W.M. Schmidt (1970) : higher dimensional generalization of
Thue–Siegel–Roth Theorem, Subspace Theorem. Requires a
refined zero estimate.
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Algebraic values of transcendental functions

Assume f is a transcendental entire function (analytic in
C) which takes algebraic values at a sequence of algebraic
points, say z1, z2, . . . (may include derivatives : repeat the
points).

For instance f(z) = ez with the points α, 2α, 3α, . . .

We want to get a contradiction (under suitable
assumptions).

To say that f is transcendental means that if P is a
non–zero polynomial in two variables, then the function
P (z, f(z)) is not the zero function.
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Algebraic values of transcendental functions

The idea is to get a contradiction by showing the existence
of a non-zero polynomial P such that the function
F (z) = P (z, f(z)) vanishes at all the zk.

One first show the existence of P such that F vanishes at
z1, z2, . . . , zN .

Then, by an extrapolation argument using an induction,
one shows that F vanishes also at zN+1, zN+2, . . .
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Auxiliary functions

C.L. Siegel (1929) :
Hermite’s explicit formulae
can be replaced by
Dirichlet’s box principle
( Thue–Siegel Lemma)
which shows the existence
of suitable auxiliary functions.
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Auxiliary functions

C.L. Siegel (1929) : auxiliary function for the study of
values of E and G functions.

In case of G functions : consider two points, 0 and α, with
multiplicity.

Similar with Hermite-Padé approximants of the first type,
but the auxiliary functions are not explicit.

K. Mahler (1930’s) : functions satisfying a functional
equation ; the auxiliary function is constructed by means of
linear algebra.
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Transcendence criterion of Schneider–Lang

1949, Th. Schneider, general statement on values of
analytic functions.
Corollaries : Hermite–Lindemann, Gel’fond–Schneider,
Six Exponentials
1957, variants in his book on transcendental numbers.

∼1964’s, S. Lang, simpler statements,
• one for functions satisfying differential equations –
contains the Theorem of Hermite–Lindemann and the
solution of Hilbert’s seventh problem by Gel’fond’s method,
• one for other functions– contains the solution of Hilbert’s
seventh problem by Schneider’s method as well as the Six
Exponentials Theorem.
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Order of growth of an entire functions

Definition : An entire function f has finite order of growth
if

|f |r := sup
|z|=r
|f(z)|

satisfies
|f |r ≤ eCr

%

.
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Transcendence criterion of Schneider–Lang

Theorem. Let f1, f2 be two algebraically independent entire
functions of finite order of growth. Let K be a number field.
Assume the derivatives f ′1 and f ′2 of f1 and f2 are
polynomials with coefficients in K in f1 and f2. Then the
set of w ∈ C such that f1(w) and f2(w) are in K is finite.

Assumption : differential equations

f ′1 = A1(f1, f2), f ′2 = A2(f1, f2)

with A1 and A2 in K[X1, X2].

Conclusion :

S =
{
w ∈ C ; f1(w) ∈ K , f2(w) ∈ K

}
is finite.
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Corollaries

Examples.
• Hermite–Lindemann’s Theorem on the transcendence of
eβ for algebraic β 6= 0.
Take f1(z) = z, f2(z) = ez, the differential equations are

f ′1 = 1, f ′2 = f2,

and the two functions take values in Q(β, eβ) at w = sβ,
s ∈ Z.
• Gel’fond–Schneider’s Theorem on the transcendence of αβ

for algebraic α 6= 0, 1 and β 6∈ Q.
Take f1(z) = ez, f2(z) = eβz, the differential equations are

f ′1 = f1, f ′2 = βf2,

and the two functions take values in Q(α, β, αβ) at
w = s logα, s ∈ Z.
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Remarks

• Explicit upper bounds for the number of exceptional w,
in terms of the growth order %i of fi (i = 1, 2) and the
degree [K : Q] :

CardS ≤ (%1 + %2)[K : Q].

• Extends to meromorphic functions (need to avoid poles).

• More general differential equations are allowed – for
instance elliptic functions.
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Higher dimension

Extensions to several variables : Th. Schneider, S. Lang,
E. Bombieri (conjecture of M. Nagata). Generalization of
the finiteness condition to higher dimension : subsets of
algebraic hypersurfaces.

Replace the number of elements of a finite set by the
smallest degree of an algebraic hypersurface containing the
set.

Schwarz’ Lemma in several variables : Schneider for
Cartesian products, Bombieri–Lang using Lelong’s theory
of functions in several variables, Bombieri using
L2–estimates of L. Hörmander.
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Idea of the proof

We argue by contradiction : assume f1 and f2 take
simultaneously their values in K for many w ∈ C. We want
to show that there exists a non–zero polynomial
P ∈ K[X1, X2] such that the function P (f1, f2) is the zero
function.

The first step is to show that there exists a non–zero
polynomial P ∈ K[X1, X2] such that F = P (f1, f2) has a
zero of high multiplicity at each w :(

d

dz

)t
F (w) = 0 for 0 ≤ t < T.

Michel Waldschmidt http://www.math.jussieu.fr/∼miw/



Linear algebra vs Thue–Siegel Lemma

(
d

dz

)t
F (w) = 0 for 0 ≤ t < T

is a finite set of homogeneous linear equations with
coefficients in K. As soon as the number T of equations is
less than the number of unknown, namely the coefficients of
P , there is a non–trivial solution.

Thue–Siegel Lemma : estimate for the coefficients of P
(rational integers). Needs only to have sufficiently many
unknowns (say twice the number of equations).
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Induction

Our goal is to prove that F = 0. We already know(
d

dz

)t
F (w) = 0 for 0 ≤ t < T.

By induction on T ′ ≥ T we shall prove(
d

dz

)t
F (w) = 0 for 0 ≤ t < T ′.

At the end of the induction we deduce F = 0, which is the
contradiction with the algebraic independence of f1 and f2.
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Extrapolation

If F has a zero of multiplicity ≥ T ′ at each w, then F has
many zeroes, hence it is small in a disk containing these
points (Schwarz Lemma), and also its derivatives (Cauchy’s
inequalitites) have small absolute values.

From the assumptions it follows that (d/dz)T
′
F (w) is an

algebraic number in K with a small absolute value. From
the product formula (or the size inequality, or other variants
of Liouville’s inequality) one deduces (d/dz)T

′
F (w) = 0.

Michel Waldschmidt http://www.math.jussieu.fr/∼miw/



Schwarz Lemma for functions of a single variable

Lemma. Let f be an analytic function in a disc |z| ≤ R
having at least N zeroes (counting multiplicities) in a disc
of radius r with r < R. Recall |f |r = sup|z|=r |f(z)|. Then

|f |r ≤
(

2rR

R2 + r2

)N
|f |R.

Proof. Let z1, . . . , zN be zeroes of f in |z| ≤ r, counting
multiplicities. Then the function

g(z) = f(z)
N∏
j=1

(
R2 − zzj
R(z − zj)

)N
is analytic in |z| ≤ R, hence |g|r ≤ |g|R.
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Universal auxiliary functions

Alternative argument for the construction of the auxiliary
function : joint work with M. Mignotte (1974).

Given arbitrary analytic functions f1, . . . , fn, construct a
non–zero polynomial P ∈ Z[X1, . . . , Xn] such that the the
first Taylor coefficients at the origin of F = P (f1, . . . , fn)
are small.

To solve a system of finitely many linear inequalities, use
Dirichlet’s box principle – get also an upper bound for the
coefficients of P in Z.

It follows that |f |r is small. Hence f and its first derivatives
have small absolute values in |z| ≤ r.
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Using the universal auxiliary function

If all fi(w) are algebraic (maybe including some
derivatives), use Liouville’s inequality to produce many
zeroes of F .

Very efficient with a zero estimate : avoids use of Schwarz’
Lemma.

Especially useful in several variables.
Example : Transcendence of values of exponential functions
in several variables.
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Lehmer’s Problem

Let θ be a non–zero algebraic integer of degree d. Mahler’s
measure of θ is

M(θ) =
d∏
i=1

max(1, |θi|) = exp

(∫ 1

0

log |f(e2iπt|dt
)
,

where θ = θ1 and θ2, · · · , θd are the conjugates of θ and f
the monic irreducible polynomial of θ in Z[X].

Kronecker : M(θ) ≥ 1, and M(θ) = 1 if and only if θ is a
root of unity.

D.H. Lehmer asked whether there is a constant c > 1 such
that M(θ) < c implies that θ is a root of unity.

M. Mignotte (1977) : Ordinary Vandermonde determinants.
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Auxiliary functions and interpolation

determinants

C.L. Stewart (1978) introduces an auxiliary function, using
Thue–Siegel’s Lemma.

E. Dobrowolski (1979) : refined estimate, using congruences
modulo p.

D. Cantor and E.G. Straus (1982) : replace
Stewart-Dobrowolski auxiliary function by a determinant.
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Dobrowolski’s Theorem

Theorem [E. Dobrowolski (1979)].
There is a constant c such that, for θ a non–zero algebraic
integer of degree d,

M(θ) < 1 + c(log log d/ log d)3

implies that θ is a root of unity.

Best unconditional result so far in this direction –
improvements only on the numerical value for c.

Dobrowolski’s Lemma. For θ not a root of unity,∏
i,j

|θpi − θj| ≥ pd

for any prime p.
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Introducing determinants

D. Cantor and E.G. Straus (1979) : Generalised
Vandermonde determinant.

This determinant is big : has many factors of the form∏
i,j |θ

p
i − θj|k, for many primes p.

Hadamard’s inequality : upper bound for the determinant,
in terms of M(θ).

Remark : lower bounds for the determinants also follow
from Schwarz’ inequality for p–adic function.

Extensions of the argument : F. Amoroso and S. David.
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Laurent’s interpolation determinants

Underlying idea : a zero estimate shows that some matrix
whose components are values of polynomials has maximal
rank.

Select a non-zero maximal minor, bound it from above and
from below.

M. Laurent (1991) : instead of using the pigeonhole
principle for proving the existence of solutions to
homogeneous linear systems of equations, consider the
matrices of such systems and take determinants.
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Slope inequalities in Arakelov theory

J–B. Bost (1994) :
matrices and determinants require
choices of bases.
Arakelov’s Theory produces
slope inequalities which
avoid the need of bases.

Périodes et isogénies des variétés abéliennes sur les corps
de nombres, (d’après D. Masser et G. Wüstholz).
Séminaire Nicolas Bourbaki, Vol. 1994/95.
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