Quadratic forms and Automorphic forms (AWS '09 outline)

Course Outline:

- 1. Local/Global Invariants
 - a. Local Rational Invariants
 - i. Dim, Det, Hasse invariant
 - ii. Isotropic/anisotropic dimensions, signature
 - b. Local Integral Invariants
 - i. Jordan Decomopositions
 - ii. Local Densities
 - iii. Difficulties when p=2
 - c. Global Invariants
 - i. Class number
 - ii. Automorphisms
 - iii. Representation numbers and Theta series
- 2. Transformation formulas for Theta series
 - a. Fourier transforms and Gaussians
 - b. Poisson Summation
 - c. Computation of Gauss sums
 - d. Modular Forms
 - e. Circle Method and Siegel's Formula (Siegel-Weil Formula?)
 - f. The Basis Problem
- 3. Clifford Algebras and Quaternion Algebras
 - a. The Clifford Algebra
 - i. Explicitly when \$n <= 4\$
 - b. Quaternion Algebras
 - i. Local/rational invariant theory
 - ii. Orders and Eichler Orders
 - iii. Class numbers and Eichler's Trace formula
 - iv. Relation to quadratic subfields
 - v. Norm Forms and Quadratic forms
 - c. Arithmetic Representation results for Ternary quadratic forms
 - d. Results of Shimura for existence of genera over number fields
- 4. Automorphic Forms
 - a. Algebraic Modular Forms vs. Classical Modular Forms
 - b. Gross Curves
 - c. The Weil representation
 - d. Theta series as a lift from the quaternion algebra
 - e. Siegel's theorem revisited
 - i. Representation theory
 - ii. Eisenstein series -- Euler product
 - f. Hecke Actions??

Quadratic forms and Automorphic forms (AWS '09 outline)

Possible Project Ideas:

- 1. Explicit representation results via quaternion algebras (e.g. Donkar's Thesis)
- 2. Computing class numbers of quaternion algebra and quadratic forms
- 3. Trace formula computations for Eichler-Deuring Mass formula
- 4. Explicit Basis problem computations for certain spaces of modular forms
- 5. Explicit representation formulas from Siegel's theorem for certain forms
- 6. Compatibility of Hecke Actions through the Weil rep'n
- 7. Computation of Models for the Weil representation
- 8. Generalizations for Hermitian forms.