Some aspects of the algebraic theory of quadratic forms

R. Parimala

March 14 - March 18, 2009
(Notes for lectures at AWS 2009)
There are many good references for this material including [EKM], [L], [Pf] and [S].

1 Quadratic forms

Let k be a field with char $k \neq 2$.

Definition 1.1. A quadratic form $q: V \rightarrow k$ on a finite-dimensional vector space V over k is a map satisfying:

1. $q(\lambda v)=\lambda^{2} q(v)$ for $v \in V, \lambda \in k$.
2. The map $b_{q}: V \times V \rightarrow k$, defined by

$$
b_{q}(v, w)=\frac{1}{2}[q(v+w)-q(v)-q(w)]
$$

is bilinear.
We denote a quadratic form by (V, q), or simply as q.
The bilinear form b_{q} is symmetric; q determines b_{q} and for all $v \in V$, $q(v)=b_{q}(v, v)$.

For a choice of basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V, b_{q} is represented by a symmetric $\operatorname{matrix} A(q)=\left(a_{i j}\right)$ with $a_{i j}=b_{q}\left(e_{i}, e_{j}\right)$. If $v=\sum_{1 \leq i \leq n} X_{i} e_{i} \in V, X_{i} \in k$, then

$$
q(v)=\sum_{1 \leq i, j \leq n} a_{i j} X_{i} X_{j}=\sum_{1 \leq i \leq n} a_{i i} X_{i}^{2}+2 \sum_{i<j} a_{i j} X_{i} X_{j} .
$$

Thus q is represented by a homogeneous polynomial of degree 2. Clearly, every homogeneous polynomial of degree 2 corresponds to a quadratic form on V with respect to the chosen basis. We define the dimension of q to be the dimension of the underlying vector space V and denote it by $\operatorname{dim}(q)$.

Definition 1.2. Two quadratic forms $\left(V_{1}, q_{1}\right),\left(V_{2}, q_{2}\right)$ are isometric if there is an isomorphism $\phi: V_{1} \xrightarrow{\sim} V_{2}$ such that $q_{2}(\phi(v))=q_{1}(v), \forall v \in V_{1}$.

If $A\left(q_{1}\right), A\left(q_{2}\right)$ are the matrices representing q_{1} and q_{2} with respect to bases B_{1} and B_{2} of V_{1} and V_{2} respectively, ϕ yields a matrix $T \in M_{n}(k)$, $n=\operatorname{dim} V$, such that

$$
T A\left(q_{2}\right) T^{t}=A\left(q_{1}\right)
$$

In other words, the symmetric matrices $A\left(q_{1}\right)$ and $A\left(q_{2}\right)$ are congruent. Thus isometry classes of quadratic forms yield congruence classes of symmetric matrices.

Definition 1.3. The form $q: V \rightarrow k$ is said to be regular if $b_{q}: V \times V \rightarrow k$ is nondegenerate.

Thus q is regular if and only if the map $V \rightarrow V^{*}=\operatorname{Hom}(V, k)$, defined by $v \mapsto\left(w \mapsto b_{q}(v, w)\right)$, is an isomorphism. This is the case if $A(q)$ is invertible.

Henceforth, we shall only be concerned with regular quadratic forms.
Definition 1.4. Let W be a subspace of V and $q: V \rightarrow k$ be a quadratic form. The orthogonal complement of W denoted W^{\perp} is the subspace

$$
W^{\perp}=\left\{v \in V: b_{q}(v, w)=0 \forall w \in W\right\} .
$$

Exercise 1.5. Let (V, q) be a regular quadratic form and W a subspace of V. Then

1. $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)$.
2. $\left(W^{\perp}\right)^{\perp}=W$.

1.1 Orthogonal sums

Let $\left(V_{1}, q_{1}\right),\left(V_{2}, q_{2}\right)$ be quadratic forms. The form

$$
\left(V_{1}, q_{1}\right) \perp\left(V_{2}, q_{2}\right)=\left(V_{1} \oplus V_{2}, q_{1} \perp q_{2}\right)
$$

with $q_{1} \perp q_{2}$ defined by

$$
\left(q_{1} \perp q_{2}\right)\left(v_{1}, v_{2}\right)=q_{1}\left(v_{1}\right)+q_{2}\left(v_{2}\right), v_{1} \in V_{1}, v_{2} \in V_{2}
$$

is called the orthogonal sum of $\left(V_{1}, q_{1}\right)$ and $\left(V_{2}, q_{2}\right)$.

1.2 Diagonalization

Let (V, q) be a quadratic form. There exists a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V such that $b_{q}\left(e_{i}, e_{j}\right)=0$ for $i \neq j$. Such a basis is called an orthogonal basis for q and, with respect to an orthogonal basis, b_{q} is represented by a diagonal matrix.

If $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthogonal basis of q and $q\left(e_{i}\right)=d_{i}$, we write $q=$ $\left\langle d_{1}, \ldots, d_{n}\right\rangle$. In this case, $V=k e_{1} \oplus \cdots \oplus k e_{n}$ is an orthogonal sum and $q \mid k e_{i}$ is represented by $\left\langle d_{i}\right\rangle$. Thus every quadratic form is diagonalizable.

1.3 Hyperbolic forms

Definition 1.6. A quadratic form (V, q) is said to be isotropic if there is a nonzero $v \in V$ such that $q(v)=0$. It is anisotropic if q is not isotropic. A quadratic form (V, q) is said to be universal if it represents every nonzero element of k.

Example 1.7. The quadratic form $X^{2}-Y^{2}$ is isotropic over k. Suppose (V, q) is a regular form which is isotropic. Let $v \in V$ be such that $q(v)=0$, $v \neq 0$. Since q is regular, there exists $w \in V$ such that $b_{q}(v, w) \neq 0$. After scaling we may assume $b_{q}(v, w)=1$. If $q(w) \neq 0$, we may replace w by $w+\lambda v, \lambda=-\frac{1}{2} q(w)$, and assume that $q(w)=0$. Thus $W=k v \oplus k w$ is a 2-dimensional subspace of V and $q \mid W$ is represented by $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ with respect to $\{v, w\}$.

Definition 1.8. A binary quadratic form isometric to $\left(k^{2},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$ is called a hyperbolic plane. A quadratic form (V, q) is hyperbolic if it is isometric to an orthogonal sum of hyperbolic planes. A subspace W of V such that q restricts to zero on W and $\operatorname{dim} W=\frac{1}{2} \operatorname{dim} V$ is called a Lagrangian.

Every regular quadratic form which admits a Lagrangian can easily be seen to be hyperbolic.

Exercise 1.9. Let (V, q) be a regular quadratic form and $(W, q \mid W)$ a regular form on the subspace W. Then $(V, q) \xrightarrow{\sim}(W, q \mid W) \perp\left(W^{\perp}, q \mid W^{\perp}\right)$.

Let (V, q) be a quadratic form. Then

$$
V_{0}=\left\{v \in V: b_{q}(v, w)=0 \forall w \in V\right\}
$$

is called the radical of V. If V_{1} is any complementary subspace of V_{0} in V, then $q \mid V_{1}$ is regular and $(V, q)=\left(V_{0}, 0\right) \perp\left(V_{1}, q \mid V_{1}\right)$. Note that V is regular if and only if the radical of V is zero. If (V, q) is any quadratic form, we define the rank of q to be the dimension of V / V^{\perp}. Of course if (V, q) is regular, then $\operatorname{rank}(q)=\operatorname{dim}(q)$.

Theorem 1.10 (Witt's Cancellation Theorem). Let $\left(V_{1}, q_{1}\right),\left(V_{2}, q_{2}\right),(V, q)$ be quadratic forms over k. Suppose

$$
\left(V_{1}, q_{1}\right) \perp(V, q) \cong\left(V_{2}, q_{2}\right) \perp(V, q) .
$$

Then $\left(V_{1}, q_{1}\right) \cong\left(V_{2}, q_{2}\right)$.
The key ingredient of Witt's cancellation theorem is the following.
Proposition 1.11. Let (V, q) be a quadratic form and $v, w \in V$ with $q(v)=$ $q(w) \neq 0$. Then there is an isometry $\tau:(V, q) \xrightarrow{\sim}(V, q)$ such that $\tau(v)=w$.
Proof. Let $q(v)=q(w)=d \neq 0$. Then

$$
q(v+w)+q(v-w)=2 q(v)+2 q(w)=4 d \neq 0
$$

Thus $q(v+w) \neq 0$ or $q(v-w) \neq 0$. For any vector $u \in V$ with $q(u) \neq 0$, define $\tau_{u}: V \rightarrow V$ by

$$
\tau_{u}(z)=z-\frac{2 b_{q}(z, u) u}{q(u)}
$$

Then τ_{u} is an isometry called the reflection with respect to u.
Suppose $q(v-w) \neq 0$. Then $\tau_{v-w}: V \rightarrow V$ is an isometry of V which sends v to w. Suppose $q(v+w) \neq 0$. Then $\tau_{w} \circ \tau_{v+w}$ sends v to w.

Remark 1.12. The orthogonal group of (V, q) denoted by $O(q)$ is the set of isometries of V onto itself. This group is generated by reflections. This is seen by an inductive argument on $\operatorname{dim}(q)$, using the above proposition.

Theorem 1.13 (Witt's decomposition). Let (V, q) be a quadratic form. Then there is a decomposition

$$
(V, q)=\left(V_{0}, 0\right) \perp\left(V_{1}, q_{1}\right) \perp\left(V_{2}, q_{2}\right)
$$

where V_{0} is the radical of $q, q_{1}=q \mid V_{1}$ is anisotropic and $q_{2}=q \mid V_{2}$ is hyperbolic. If $(V, q)=\left(V_{0}, 0\right) \perp\left(W_{1}, f_{1}\right) \perp\left(W_{2}, f_{2}\right)$ with f_{1} anisotropic and f_{2} hyperbolic, then

$$
\left(V_{1}, q_{1}\right) \cong\left(W_{1}, f_{1}\right),\left(V_{2}, q_{2}\right) \cong\left(W_{2}, f_{2}\right)
$$

Remark 1.14. A hyperbolic form (W, f) is determined by $\operatorname{dim}(W)$; for if $\operatorname{dim}(W)=2 n,(W, f) \cong n H$, where $H=\left(k^{2},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$ is the hyperbolic plane.

From now on, we shall assume (V, q) is a regular quadratic form. We denote by $q_{a n}$ the quadratic form $\left(V_{1}, q_{1}\right)$ in Witt's decomposition which is determined by q up to isometry. We call $\frac{1}{2} \operatorname{dim}\left(V_{2}\right)$ the Witt index of q. Thus any regular quadratic form q admits a decomposition $q \cong q_{a n} \perp(n H)$, with $q_{a n}$ anisotropic and H denoting the hyperbolic plane. We also sometime denote by H^{n} the sum of n hyperbolic planes.

2 Witt group of forms

2.1 Witt groups

We set

$$
W(k)=\{\text { isomorphism classes of regular quadratic forms over } k\} / \sim
$$

where the Witt equivalence \sim is given by:

$$
\left(V_{1}, q_{1}\right) \sim\left(V_{2}, q_{2}\right) \quad \Longleftrightarrow \quad \begin{aligned}
& \text { there exist } r, s \in \mathbb{Z} \text { such that } \\
& \left(V_{1}, q_{1}\right) \perp H^{r} \cong\left(V_{2}, q_{2}\right) \perp H^{s}
\end{aligned}
$$

$W(k)$ is a group under orthogonal sum:

$$
\left[\left(V_{1}, q_{1}\right)\right] \perp\left[\left(V_{2}, q_{2}\right)\right]=\left[\left(V_{1}, q_{1}\right) \perp\left(V_{2}, q_{2}\right)\right]
$$

The zero element in $W(k)$ is represented by the class of hyperbolic forms. For a regular quadratic form $(V, q),(V, q) \perp(V,-q)$ has Lagrangian

$$
W=\{(v, v): v \in V\}
$$

so that $(V, q) \perp(V,-q) \cong H^{n}, n=\operatorname{dim}(V)$. Thus, $[(V,-q)]=-[(V, q)]$ in $W(k)$.

It follows from Witt's decomposition theorem that every element in $W(k)$ is represented by a unique anisotropic quadratic form up to isometry. Thus $W(k)$ may be thought of as a group made out of isometry classes of anisotropic quadratic forms over k.

The abelian group $W(k)$ admits a ring structure induced by tensor product on the associated bilinear forms. For example, if $q_{1} \cong\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and q_{2} is a quadratic form, then $q_{1} \otimes q_{2} \cong a_{1} q_{2} \perp a_{2} q_{2} \perp \cdots \perp a_{n} q_{2}$.

Definition 2.1. Let $I(k)$ denote the ideal of classes of even-dimensional quadratic forms in $W(k)$. The ideal $I(k)$ is called the fundamental ideal. $I^{n}(k)$ stands for the $n^{\text {th }}$ power of the ideal $I(k)$.

Definition 2.2. Let $P_{n}(k)$ denote the set of isomorphism classes of forms of the type

$$
\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle:=\left\langle 1, a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{n}\right\rangle .
$$

Elements in $P_{n}(k)$ are called n-fold Pfister forms.
The ideal $I(k)$ is generated by the forms $\langle 1, a\rangle, a \in k^{*}$. Moreover, the ideal $I^{n}(k)$ is generated additively by n-fold Pfister forms. For instance, for $n=2$, the generators of $I^{2}(k)$ are of the form

$$
\langle a, b\rangle \otimes\langle c, d\rangle \cong\langle 1, a c, a d, c d\rangle-\langle 1, c d,-b c,-b d\rangle=\langle\langle a c, a d\rangle\rangle-\langle\langle c d,-b c\rangle\rangle
$$

Example 2.3. If $k=\mathbb{C}$, every 2-dimensional quadratic form over k is isotropic.

$$
\begin{gathered}
W(k) \cong \mathbb{Z} / 2 \mathbb{Z} \\
{[(V, q)] \mapsto \operatorname{dim}(V) \quad(\bmod 2)}
\end{gathered}
$$

is an isomorphism.

Example 2.4. If $k=\mathbb{R}$, every quadratic form q is represented by

$$
\langle 1, \ldots, 1,-1, \ldots,-1\rangle
$$

with respect to an orthogonal basis. The number r of +1 's and the number s of -1 's in the diagonalization above are uniquely determined by the isomorphism class of q. The signature of q is defined as $r-s$. The signature yields a homomorphism $\operatorname{sgn}: W(\mathbb{R}) \rightarrow \mathbb{Z}$ which is an isomorphism.

2.2 Quadratic forms over p-adic fields

Let k be a finite extension of the field \mathbb{Q}_{p} of p-adic numbers. We call k a nondyadic p-adic field if $p \neq 2$. The field k has a discrete valuation v extending the p-adic valuation on \mathbb{Q}_{p}. Let π be a uniformizing parameter for v and κ the residue field for v. The field κ is a finite field of characteristic $p \neq 2$. Let u be a unit in k^{*} such that $\bar{u} \in \kappa$ is not a square. Then

$$
k^{*} / k^{* 2}=\{1, u, \pi, u \pi\} .
$$

Since κ is finite, every 3 -dimensional quadratic form over κ is isotropic. By Hensel's lemma, every 3 -dimensional form $\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ over k, with u_{i} units in k is isotropic. Since every form q in k has a diagonal representation

$$
\left\langle u_{1}, \ldots, u_{r}\right\rangle \perp \pi\left\langle v_{1}, \ldots, v_{s}\right\rangle
$$

if r or s exceeds $3, q$ is isotropic. In particular every 5 -dimensional quadratic form over k is isotropic. Further, up to isometry, there is a unique quadratic form in dimension 4 which is anisotropic, namely,

$$
\langle 1,-u,-\pi, u \pi\rangle .
$$

This is the norm form of the unique quaternion division algebra $H(u, \pi)$ over k (cf. section 2.3).

2.3 Central simple algebras and the Brauer group

Recall that a finite-dimensional algebra A over a field k is a central simple algebra over k if A is simple (has no two-sided ideals) and the center of A is k. Recall also that for a field k,

$$
\operatorname{Br}(k)=\{\text { Isomorphism classes of central simple algebras over } k\} / \sim
$$

where the Brauer equivalence \sim is given by: $A \sim B$ if and only if $M_{n}(A) \cong$ $M_{m}(B)$ for some integers m, n. The pair $(\operatorname{Br}(k), \otimes)$ is a group. The inverse of $[A]$ is $\left[A^{\mathrm{op}}\right]$ where A^{op} is the opposite algebra of A : the multiplication structure, $*$, on $A^{\text {op }}$ is given by $a * b=b a$. We have a k-algebra isomorphism $\phi: A \otimes A^{\mathrm{op}} \xrightarrow{\sim} \operatorname{End}_{k}(A)$ induced by $\phi(a \otimes b)(c)=a c b$. The identity element in $\operatorname{Br}(k)$ is given by $[k]$. By Wedderburn's theorem on central simple algebras, the elements of $\operatorname{Br}(k)$ parametrize the isomorphism classes of finite-dimensional central division algebras over k.

For elements $a, b \in k^{*}$, we define the quaternion algebra $H(a, b)$ to be the 4-dimensional central simple algebra over k generated by $\{i, j\}$ with the relations $i^{2}=a, j^{2}=b, i j=-j i$. This is a generalization of the standard Hamiltonian quaternion algebra $H(-1,-1)$. The algebra $H(a, b)$ admits a canonical involution ${ }^{-}: H(a, b) \rightarrow H(a, b)$ given by

$$
\overline{\alpha+i \beta+j \gamma+i j \delta}=\alpha-i \beta-j \gamma-i j \delta
$$

This involution gives an isomorphism $H(a, b) \cong H(a, b)^{\text {op }}$; in particular, $H(a, b)$ has order 2 in ${ }_{2} \operatorname{Br}(k)$, where ${ }_{2} \operatorname{Br}(k)$ denotes the 2 -torsion subgroup of the Brauer group of k. The norm form for this algebra is given by $N(x)=x \bar{x}$, which is a quadratic form on $H(a, b)$ represented with respect to the orthogonal basis $\{1, i, j, i j\}$ by $\langle 1,-a,-b, a b\rangle=\langle\langle-a,-b\rangle\rangle$.

2.4 Classical invariants for quadratic forms

Let (V, q) be a regular quadratic form. We $\operatorname{define~} \operatorname{dim}(q)=\operatorname{dim}(V)$ and $\operatorname{dim}_{2}(q)=\operatorname{dim}(V)$ modulo 2 . We have a ring homomorphism $\operatorname{dim}_{2}: W(k) \rightarrow$ $\mathbb{Z} / 2 \mathbb{Z}$. We note that $I(k)$ is the kernel of dim_{2}. This gives an isomorphism

$$
\operatorname{dim}_{2}: W(k) / I(k) \xrightarrow{\sim} \mathbb{Z} / 2 \mathbb{Z} .
$$

Let $\operatorname{disc}(q)=(-1)^{n(n-1) / 2}[\operatorname{det}(A(q))] \in k^{*} / k^{* 2}$. Since $A(q)$ is determined up to congruence, $\operatorname{det}(A(q))$ is determined modulo squares. We have $\operatorname{disc}(H)=1$, and $\operatorname{disc}(q)$ induces a group homomorphism

$$
\operatorname{disc}: I(k) \rightarrow k^{*} / k^{* 2}
$$

which is clearly onto. It is easy to verify that $\operatorname{ker}(\operatorname{disc})=I^{2}(k)$. Thus the discriminant homomorphism induces an isomorphism $I(k) / I^{2}(k) \rightarrow k^{*} / k^{* 2}$.

The next invariant for quadratic forms is the Clifford invariant. To each quadratic form (V, q) we wish to construct a central simple algebra containing V whose multiplication on elements of V satisfies $v \cdot v=q(v)$. The smallest such algebra (defined by a universal property) will be the Clifford algebra.

Definition 2.5. The Clifford algebra $C(q)$ of the quadratic form (V, q) is $T(V) / I_{q}$, where I_{q} is the two-sided ideal in the tensor algebra $T(V)$ generated by $\{v \otimes v-q(v), v \in V\}$.

The algebra $C(q)$ has a $\mathbb{Z} / 2 \mathbb{Z}$ gradation $C(q)=C_{0}(q) \oplus C_{1}(q)$ induced by the gradation $T(V)=T_{0}(V) \oplus T_{1}(V)$, where

$$
T_{0}(V)=\bigoplus_{i \geq 0, i \text { even }} V^{\otimes i} \quad \text { and } \quad T_{1}(V)=\bigoplus_{i \geq 1, i \text { odd }} V^{\otimes i}
$$

If $\operatorname{dim}(q)$ is even, then $C(q)$ is a central simple algebra over k. If $\operatorname{dim}(q)$ is odd, $C_{0}(q)$ is a central simple algebra over k. The Clifford algebra $C(q)$ comes equipped with an involution τ defined by $\tau(v)=-v, v \in V$. Thus, if $\operatorname{dim}(q)$ is even, $C(q)$ determines a 2-torsion element in $\operatorname{Br}(k)$.

Definition 2.6. The Clifford invariant $c(q)$ of (V, q) in $\operatorname{Br}(k)$ is defined as

$$
c(q)= \begin{cases}{[C(q)],} & \text { if } \operatorname{dim}(q) \text { is even } \\ {\left[C_{0}(q)\right],} & \text { if } \operatorname{dim}(q) \text { is odd }\end{cases}
$$

The Clifford invariant induces a homomorphism $c: I^{2}(k) \rightarrow{ }_{2} \operatorname{Br}(k),{ }_{2} \operatorname{Br}(k)$ again denoting the 2 -torsion in the Brauer group of k. The very first case of the Milnor conjecture (see section 3) states: c is surjective and $\operatorname{ker}(c)=I^{3}(k)$.

Theorem 2.7 (Merkurjev [M1]). The map c induces an isomorphism

$$
I^{2}(k) / I^{3}(k) \cong{ }_{2} \operatorname{Br}(k)
$$

Example 2.8. Let $q \cong \otimes_{i=1}^{n}\left\langle\left\langle-a_{i},-b_{i}\right\rangle\right\rangle \in I^{2}(k)$. Then

$$
c(q) \cong \otimes_{1 \leq i \leq n} H_{i}
$$

where $H_{i}=H\left(a_{i}, b_{i}\right)$.

Exercise 2.9. Given $\bigotimes_{1 \leq i \leq n} H_{i}$, a tensor product of n quaternion algebras over k, show that there is a quadratic form q over k of dimension $2 n+2$ such that $c(q) \cong \bigotimes_{1 \leq i \leq n} H_{i}$.

Thus the image of $I^{2}(q)$ in ${ }_{2} \operatorname{Br}(k)$ is spanned by quaternion algebras. It was a longstanding question whether ${ }_{2} \operatorname{Br}(k)$ is spanned by quaternion algebras. Merkurjev's theorem answers this question in the affirmative; further, it gives precise relations between quaternion algebras in ${ }_{2} \operatorname{Br}(k)$.

3 Galois cohomology and the Milnor conjecture

Let $\Gamma_{k}=\operatorname{Gal}(\bar{k} \mid k), \bar{k}$ denoting the separable closure of k, be the absolute Galois group of k. The group
is a profinite group. A discrete Γ_{k}-module M is a continuous Γ_{k}-module for the discrete topology on M and the profinite topology on Γ_{k}. For a discrete Γ_{k}-module M, we define $H^{n}(k, M)$ as the direct limit of the cohomology of the finite quotients

$$
H^{n}(k, M)=\underset{L \subset \bar{k}, L \mid k \text { finite Galois }}{\lim _{\longrightarrow}} H^{n}\left(\operatorname{Gal}(L \mid k), M^{\Gamma_{L}}\right) .
$$

Suppose $\operatorname{char}(k) \neq 2$ and $M=\mu_{2}$. The module μ_{2} has trivial Γ_{k} action. We denote this module by $\mathbb{Z} / 2 \mathbb{Z}$. We have

$$
\begin{aligned}
H^{0}(k, \mathbb{Z} / 2 \mathbb{Z}) & =\mathbb{Z} / 2 \mathbb{Z} \\
H^{1}(k, \mathbb{Z} / 2 \mathbb{Z}) & \cong k^{*} / k^{* 2} \\
H^{2}(k, \mathbb{Z} / 2 \mathbb{Z}) & \cong{ }_{2} \operatorname{Br}(k)
\end{aligned}
$$

These can be seen from the Kummer exact sequence of Γ_{k}-modules:

$$
0 \longrightarrow \mu_{2} \longrightarrow \bar{k}^{*} \xrightarrow{\cdot 2} \bar{k}^{*} \longrightarrow 0
$$

and noting that $H^{1}\left(\Gamma_{k}, \bar{k}^{*}\right)=0$ (Hilbert's Theorem 90) and $H^{2}\left(\Gamma_{k}, \bar{k}^{*}\right)=$ $\operatorname{Br}(k)$.

For an element $a \in k^{*}$, we denote by (a) its class in $H^{1}(k, \mathbb{Z} / 2 \mathbb{Z})$ and for $a_{1}, \ldots, a_{n} \in k^{*}$, the cup product $\left(a_{1}\right) \cup \cdots \cup\left(a_{n}\right) \in H^{n}(k, \mathbb{Z} / 2 \mathbb{Z})$ is denoted by $\left(a_{1}\right) . \cdots .\left(a_{n}\right)$.

For $a, b \in k^{*}$, the element $(a) .(b)$ represents the class of $H(a, b)$ in ${ }_{2} \operatorname{Br}(k)$. The map

$$
c: I^{2}(k) \rightarrow H^{2}(k, \mathbb{Z} / 2 \mathbb{Z})
$$

sends $\langle 1,-a,-b, a b\rangle$ to the class of $H(a, b)$ in $H^{2}(k, \mathbb{Z} / 2 \mathbb{Z})$. The forms $\langle 1,-a,-b, a b\rangle$ additively generate $I^{2}(k)$. Merkurjev's theorem asserts that $H^{2}(k, \mathbb{Z} / 2 \mathbb{Z})$ is generated by $(a) .(b)$, with $a, b \in k^{*}$. The Milnor conjecture (quadratic form version) proposes higher invariants $I^{n}(k) \rightarrow H^{n}(k, \mathbb{Z} / 2 \mathbb{Z})$ extending the classical invariants.

Milnor Conjecture. The assignment

$$
\left\langle 1, a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{n}\right\rangle \mapsto\left(a_{1}\right) \cdots .\left(a_{n}\right)
$$

yields a map $e_{n}: P_{n}(k) \rightarrow H^{n}(k, \mathbb{Z} / 2 \mathbb{Z})$. This map extends to a homomorphism $e_{n}: I^{n}(k) \rightarrow H^{n}(k, \mathbb{Z} / 2 \mathbb{Z})$ which is onto and $\operatorname{ker}\left(e_{n}\right)=I^{n+1}(k)$.

The maps dimension mod 2, discriminant and Clifford invariant coincide with e_{0}, e_{1} and e_{2}. Unlike these classical invariants, which are defined on all quadratic forms, conjecturally $e_{n}, n \geq 3$, are defined only on elements in $I^{n}(k)$ on which the invariants $e_{i}, i \leq n-1$, vanish. In 1975, Arason [Ar] proved that $e_{3}: I^{3}(k) \rightarrow H^{3}(k, \mathbb{Z} / 2 \mathbb{Z})$ is well defined and is one-one on $P_{3}(k)$. As we mentioned earlier, the first nontrivial case of the Milnor conjecture was proved by Merkurjev for $n=2$. The Milnor conjecture (quadratic form version) is now a theorem due to Orlov-Vishik-Voevodsky [OVV].

The Milnor conjecture gives a classification of quadratic forms by their Galois cohomology invariants: Given anisotropic quadratic forms q_{1} and q_{2}, suppose $e_{i}\left(q_{1} \perp-q_{2}\right)=0$ for $i \geq 0$. Then $q_{1}=q_{2}$ in $W(k)$. We need only to verify $e_{i}\left(q_{1} \perp-q_{2}\right)=0$ for $i \leq N$ where $N \leq 2^{n}$ and $\operatorname{dim}\left(q_{1} \perp-q_{2}\right) \leq 2^{n}$, by the following theorem of Arason and Pfister.

Theorem 3.1 (Arason-Pfister Hauptsatz). Let k be a field. The dimension of an anisotropic quadratic form in $I^{n}(k)$ is at least 2^{n}.

4 Pfister forms

The theory of Pfister forms (or multiplicative forms, as Pfister called them) evolved from questions on classification of quadratic forms whose nonzero values form a group (hereditarily).

Definition 4.1. A regular quadratic form q over k is called multiplicative if the nonzero values of q over any extension field L over k form a group.

We have the following examples of quadratic forms which are multiplicative.

Example 4.2. $\langle 1\rangle$: nonzero squares are multiplicatively closed in k^{*}.

Example 4.3. $\langle 1,-a\rangle: x^{2}-a y^{2}, a \in k^{*}$ is the norm from the quadratic algebra $k[t] /\left(t^{2}-a\right)$ over k and the norm is multiplicative.

Example 4.4. $\langle 1,-a\rangle \otimes\langle 1,-b\rangle: x^{2}-a y^{2}-b z^{2}+a b t^{2}$ is a norm form from the quaternion algebra $H(a, b): N(\alpha+i \beta+j \gamma+i j \delta)=\alpha^{2}-a \beta^{2}-b \gamma^{2}+a b \delta^{2}$. The norm once again is multiplicative.

Example 4.5. $\langle 1,-a\rangle \otimes\langle 1,-b\rangle \otimes\langle 1,-c\rangle:\left(x^{2}-a y^{2}-b z^{2}+a b t^{2}\right)-c\left(u^{2}-\right.$ $\left.a v^{2}-b w^{2}+a b s^{2}\right)$ is the norm form from an octonion algebra associated to the triple (a, b, c); it is a non-associative algebra obtained from the quaternion algebra $H(a, b)$ by a doubling process. The norm is once again multiplicative.

Theorem 4.6 (Pfister). An anisotropic quadratic form q over k is multiplicative if and only if q is isomorphic to a Pfister form.

We shall sketch a proof of this theorem. The main ingredients are
Theorem 4.7 (Cassels-Pfister). Let $q=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be a regular quadratic form over k and $f(X) \in k[X]$, a polynomial over k which is a value of q over $k(X)$. Then there exist polynomials $g_{1}, \ldots, g_{n} \in k[X]$ such that $f(X)=$ $a_{1} g_{1}^{2}(X)+\cdots+a_{n} g_{n}^{2}(X)$.

Corollary 4.8 (Specialization Lemma). Let $q=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be a quadratic form over $k, X=\left\{X_{1}, \ldots, X_{n}\right\}, p(X) \in k(X)$ a rational function represented by q over $k(X)$. Then for any $v \in k^{n}$ where $p(v)$ is defined, $p(v)$ is represented by q over k.

Proof. We may assume, by multiplying $p(X)$ by a square, that $p(X) \in k[X]$. Let $p(X)=p_{1}\left(X_{n}\right)$, where p_{1} is a polynomial in X_{n} with coefficients in $k\left[X_{1}, \ldots, X_{n-1}\right]$. By Cassels-Pfister theorem, $p_{1}\left(X_{n}\right)$ is represented by q over $k\left(X_{1}, \ldots, X_{n-1}\right)\left[X_{n}\right]$. Let $v=\left(v_{1}, \ldots, v_{n}\right)$. Then specializing X_{n} to v_{n}, we have $p_{1}\left(v_{n}\right) \in k\left[X_{1}, \ldots, X_{n-1}\right]$ is represented by q over $k\left(X_{1}, \ldots, X_{n-1}\right)$. By an induction argument, one concludes that $p\left(v_{1}, \ldots, v_{n}\right)$ is a value of q over k.

Corollary 4.9. Let q be an anisotropic quadratic form over k of dimension n. Then q is multiplicative if and only if for indeterminates $X=\left(X_{1}, \ldots, X_{n}\right)$, $Y=\left(Y_{1}, \ldots, Y_{n}\right), q(X) q(Y)$ is a value of q over $k\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$.

Proof. The only non-obvious part is "only if". Suppose $L \mid k$ is a field extension and $v, w \in L^{n}$. Let $q(v)=c$ and $q(w)=d$. Since $q(X) q(Y)$ is a value of q over $k(X, Y)$, by Specialization Lemma, $q(X) q(w)$ is a value of q over $L(X)$ and by the same lemma, $q(v) q(w)$ is a value of q over L.

Theorem 4.10 (Subform Theorem). Let $q=\left\langle a_{1}, \ldots, a_{n}\right\rangle, \gamma=\left\langle b_{1}, \ldots, b_{m}\right\rangle$ be anisotropic quadratic forms over k. Then γ is a subform of q (i.e., $q \cong$ $\gamma \perp \gamma^{\prime}$ for some form γ^{\prime} over k) if and only if $b_{1} X_{1}^{2}+\cdots+b_{m} X_{m}^{2}$ is a value of q over $k\left(X_{1}, \ldots, X_{m}\right)$.

Corollary 4.11. Let q be an anisotropic quadratic form over k of dimension n. Let $X=\left\{X_{1}, \ldots, X_{n}\right\}$ be a set of n indeterminates. Then q is multiplicative if and only if $q \cong q(X) q$ over $k(X)$.

Proof. Suppose $q \cong q(X) q$ over $k(X)$. Let A be the matrix representing q over k. There exists $W \in \mathrm{GL}_{n}(k(X))$ such that $q(X) A=W A W^{t}$. Let $Y=\left\{Y_{1}, \ldots, Y_{n}\right\}$ be a set of n indeterminates. Over $k(X, Y)$,

$$
q(X) q(Y)=Y(q(X) A) Y^{t}=(Y W) A(Y W)^{t}=q(Z)
$$

where $Z=Y W$. Thus $q(X) q(Y)$ is a value of q over $k(X, Y)$ and by Corollary $4.9, q$ is multiplicative. Suppose conversely that q is multiplicative. Then
$q(X) q(Y)$ is a value of q over $k(X, Y)$. By the subform theorem, $q(X) q$ is a subform of q. A dimension count yields $q \cong q(X) q$.

Proof of Pfister's theorem 4.6. Let $q=\left\langle 1, a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{n}\right\rangle$ be an anisotropic quadratic form over k. Over any field extension $L \mid k$, either q is an anisotropic Pfister form or isotropic in which case it is universal. Thus it suffices to show that the nonzero values of q form a subgroup of k^{*} for any anisotropic n-fold Pfister form q. The proof is by induction on n; for $n=1, q$ is the norm form from a quadratic extension of k (see Example 4.3). Let $n \geq 2$. We have $q \cong q_{1} \perp a_{n} q_{1}$, where $q_{1}=\left\langle 1, a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{n-1}\right\rangle$ is an anisotropic $(n-1)$-fold Pfister form. Let $X=\left\{X_{1}, \ldots, X_{2^{n-1}}\right\}, Y=\left\{Y_{1}, \ldots, Y_{2^{n-1}}\right\}$ be two sets of 2^{n-1} indeterminates. Since q_{1} is multiplicative, by Corollary 4.11, $q_{1}(X) q_{1} \cong q_{1}$ over $k(X)$ and $q_{1}(Y) q_{1} \cong q_{1}$ over $k(Y)$. We have, over $k(X, Y)$,

$$
q \cong q_{1}(X) q_{1} \perp a_{n} q_{1}(Y) q_{1} \cong\left\langle q_{1}(X), a_{n} q_{1}(Y)\right\rangle \otimes q_{1} .
$$

Since $q(X, Y)=q_{1}(X)+a_{n} q_{1}(Y),\left\langle q_{1}(X), a_{n} q_{1}(Y)\right\rangle$ represents $q(X, Y)$. Therefore, by a comparison of discriminants,

$$
\begin{aligned}
\left\langle q_{1}(X), a_{n} q_{1}(Y)\right\rangle & \cong\left\langle q(X, Y), a_{n} q(X, Y) q_{1}(X) q_{1}(Y)\right\rangle \\
& \cong q(X, Y)\left(1 \perp a_{n} q_{1}(X) q_{1}(Y)\right)
\end{aligned}
$$

In particular,

$$
\begin{aligned}
q & \cong q(X, Y)\left\langle 1, a_{n} q_{1}(X) q_{1}(Y)\right\rangle \otimes q_{1} \\
& \cong q(X, Y)\left(q_{1} \perp a_{n} q_{1}\right) \\
& \cong q(X, Y) q
\end{aligned}
$$

Thus by Corollary 4.11, q is multiplicative.
Conversely, let q be an anisotropic quadratic form over k which is multiplicative. Let n be the largest such that q contains an n-fold Pfister form $q_{1}=\left\langle 1, a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{n}\right\rangle$ as a subform. Suppose $q \cong q_{1} \perp \gamma, \gamma=\left\langle b_{1}, \ldots, b_{m}\right\rangle$, with $m \geq 1$. Let $Z=\left\{Z_{1}, \ldots, Z_{2^{n}}\right\}$. Over $k(Z)$,

$$
q \cong q(Z, 0) q \cong q_{1}(Z)\left(q_{1} \perp \gamma\right) \cong q_{1}(Z) q_{1} \perp q_{1}(Z) \gamma \cong q_{1} \perp q_{1}(Z) \gamma .
$$

By Witt's cancellation, $\gamma \cong q_{1}(Z) \gamma$ over $k(Z)$. Thus γ represents $b_{1} q_{1}(Z)$ over $k(Z)$ and by the subform theorem, $\gamma \cong b_{1} q_{1} \perp \gamma_{1}$. Then $q \cong q_{1} \perp$
$b_{1} q_{1} \perp \gamma_{1} \cong\left\langle 1, b_{1}\right\rangle \otimes q_{1} \perp \gamma_{1}$ contains an $(n+1)$-fold Pfister form $\left\langle 1, b_{1}\right\rangle \otimes q_{1}$, leading to a contradiction to maximality of n. Thus $q \cong q_{1}$.

An important property of Pfister forms is stated in the following.
Proposition 4.12. Let ϕ be an n-fold Pfister form. If ϕ is isotropic then ϕ is hyperbolic.

Proof. Let $\phi=r\langle 1,-1\rangle \perp \phi_{0}$, with ϕ_{0} anisotropic, $\operatorname{dim}\left(\phi_{0}\right) \geq 1$ and $r \geq 1$. Let $\operatorname{dim}(\phi)=m$ and $X=\left\{X_{1}, \ldots, X_{m}\right\}$ be a set of m indeterminates. Over $k\left(X_{1}, \ldots, X_{m}\right)$

$$
\phi=r\langle 1,-1\rangle \perp \phi_{0} \cong \phi\left(X_{1}, \ldots, X_{m}\right) \phi \cong r\langle 1,-1\rangle \perp \phi\left(X_{1}, \ldots, X_{m}\right) \phi_{0} .
$$

By Witt's cancellation theorem

$$
\phi_{0} \cong \phi\left(X_{1}, \ldots, X_{m}\right) \phi_{0}
$$

If b is a value of $\phi_{0}, b \phi\left(X_{1}, \ldots, X_{m}\right)$ is a value of ϕ_{0} and by the subform theorem, $b \phi$ is a subform of ϕ_{0} contradicting $\operatorname{dim}\left(\phi_{0}\right)<\operatorname{dim}(\phi)$. Thus $\phi \cong$ $r\langle 1,-1\rangle$ is hyperbolic.

Corollary 4.13. The only integers n such that a product of sums of n squares is again a sum of n squares over any field of characteristic zero are $n=2^{m}$ for all $m \geq 0$.

5 Level of a field

Definition 5.1. The level of a field k is the least positive integer n such that -1 is a sum of n squares in k. We denote the level of k by $s(k)$.

If the field is formally real (i.e., -1 is not a sum of squares), then the level is infinite. It was a longstanding open question whether the level of a field, if finite, is always a power of 2 . Pfister's theory of quadratic forms leads to an affirmative answer to this question.

Theorem 5.2 (Pfister). The level of a field is a power of 2 if it is finite.

Proof. Let $n=s(k)$. We choose an integer m such that $2^{m} \leq n<2^{m+1}$. Suppose

$$
\begin{equation*}
-1=\left(u_{1}^{2}+u_{2}^{2}+\cdots+u_{2^{m}}^{2}\right)+\left(u_{2^{m}+1}^{2}+\cdots+u_{n}^{2}\right) \tag{5.3}
\end{equation*}
$$

The element $u_{1}^{2}+u_{2}^{2}+\cdots+u_{2^{m}}^{2} \neq 0$ since $s(k) \geq 2^{m}$. Every ratio of sums of 2^{m} squares is again a sum of 2^{m} squares since $\langle 1,1\rangle^{\otimes m}$ is a multiplicative form. Thus, from (5.3) we see that

$$
\begin{aligned}
0 & =1+\frac{u_{2^{m}+1}^{2}+\cdots+u_{n}^{2}+1}{u_{1}^{2}+\cdots+u_{2^{m}}^{2}} \\
& =1+\left(v_{1}^{2}+\cdots+v_{2^{m}}^{2}\right)
\end{aligned}
$$

Therefore, $-1=v_{1}^{2}+\cdots+v_{2^{m}}^{2}$ and $s(k)=2^{m}$.

Remark 5.4. There exist fields with level 2^{n} for any $n \geq 1$. For instance, $\mathbb{R}\left(X_{1}, \ldots, X_{2^{n}}\right)\left(\sqrt{-\left(X_{1}^{2}+\cdots+X_{2^{n}}^{2}\right)}\right)$ is a field of level 2^{n}.

Exercise 5.5. Let k be a p-adic field with $p \neq 2$ and with residue field \mathbb{F}_{q}. Prove the following:

1. $s(k)=1$ if $q \equiv 1(\bmod 4)$.
2. $s(k)=2$ if $q \equiv-1(\bmod 4)$.

6 The u-invariant

Definition 6.1. The u-invariant of a field k, denoted by $u(k)$, is defined to be the largest integer n such that every $(n+1)$-dimensional quadratic form over k is isotropic and there is an anisotropic form in dimension n over k.

$$
u(k)=\max \{\operatorname{dim}(q): q \text { anisotropic form over } k\}
$$

If k admits an ordering, then sums of nonzero squares are never zero and there is a refined u-invariant for fields with orderings, due to Elman-Lam [EL].
Example 6.2. 1. $u\left(\mathbb{F}_{q}\right)=2$.
2. $u(k(X))=2$, if k is algebraically closed and X is an integral curve over k (Tsen's theorem).
3. $u(k)=4$ for k a p-adic field.
4. $u(k)=4$ for k a totally imaginary number field. This follows from the Hasse-Minkowski theorem.
5. Suppose $u(k)=n<\infty$. Let $k((t))$ denote the field of Laurent series over k. Then $u(k((t)))=2 n$. In fact, the square classes in $k((t))^{*}$ are $\left\{u_{\alpha}, t u_{\alpha}\right\}_{\alpha \in I}$ where $\left\{u_{\alpha}\right\}_{\alpha \in I}$ are the square classes in k^{*}. As in the p adic field case, every form over $k((t))$ is isometric to $\left\langle u_{1}, \ldots, u_{r}\right\rangle \perp$ $t\left\langle v_{1}, \ldots, v_{s}\right\rangle, u_{i}, v_{i} \in k^{*}$ and this form is anisotropic if and only if $\left\langle u_{1}, \ldots, u_{r}\right\rangle$ and $\left\langle v_{1}, \ldots, v_{s}\right\rangle$ are anisotropic.
6. More generally, if K is a complete discrete valuated field with residue field κ of u-invariant n, then $u(K)=2 n$.

Definition 6.3. A field k is $\boldsymbol{C}_{\boldsymbol{i}}$ if every homogeneous polynomial in N variables of degree d with $N>d^{i}$ has a nontrivial zero.

Example 6.4. Finite fields and function fields in one variable over algebraically closed fields are C_{1}.

If k is a C_{i} field, $u(k) \leq 2^{i}$. Further, the property C_{i} behaves well with respect to function field extensions. If $l \mid k$ is finite and k is C_{i} then l is C_{i};, further, if t_{1}, \ldots, t_{n} are indeterminates, $k\left(t_{1}, \ldots, t_{n}\right)$ is C_{i+n}.

Example 6.5. The u-invariant of transcendental extensions:

1. $u\left(k\left(t_{1}, \ldots, t_{n}\right)\right)=2^{n}$ if k is algebraically closed. In fact,

$$
u\left(k\left(t_{1}, \ldots, t_{n}\right)\right) \leq 2^{n}
$$

since $k\left(t_{1}, \ldots, t_{n}\right)$ is a C_{n} field. Further, the form

$$
\left\langle\left\langle t_{1}, \ldots, t_{n}\right\rangle\right\rangle=\left\langle 1, t_{1}\right\rangle \otimes \cdots \otimes\left\langle 1, t_{n}\right\rangle
$$

is anisotropic over $k\left(\left(t_{1}\right)\right)\left(\left(t_{2}\right)\right) \ldots\left(\left(t_{n}\right)\right)$ and hence also over $k\left(t_{1}, \ldots, t_{n}\right)$.
2. $u\left(\mathbb{F}_{q}\left(t_{1}, \ldots, t_{n}\right)\right)=2^{n+1}$.

All fields of known u-invariant in the 1950's happened to have u-invariant a power of 2 . Kaplansky raised the question whether the u-invariant of a field is always a power of 2 .
Proposition 6.6. The u-invariant does not take the values $3,5,7$.
Proof. Let q be an anisotropic form of dimension 3. By scaling, we may assume that $q \cong\langle 1, a, b\rangle$. Then the form $\langle 1, a, b, a b\rangle$ is anisotropic; if $\langle 1, a, b, a b\rangle$ is isotropic, since discriminant is one, it is hyperbolic and Witt's cancellation yields $\langle a, b, a b\rangle \cong\langle 1,-1,-1\rangle$ is isotropic and $q \cong a\langle a, b, a b\rangle$ is isotropic leading to a contradiction. Thus $u(k) \neq 3$.

Let $u(k)<8$. Every 3-fold Pfister form (which has dimension 8) is isotropic and hence hyperbolic. Thus $I^{3}(k)$ which is generated by 3 -fold Pfister forms is zero. Let $q \in I^{2}(k)$ be any quadratic form. For any $c \in k^{*}$, $\langle 1,-c\rangle q \in I^{3}(k)$ is zero and $c q$ is Witt equivalent to q, hence isometric to q by Witt's cancellation. We conclude that every quadratic form whose class is in $I^{2}(k)$ is universal.

Suppose $u(k)=5$ or 7 . Let q be an anisotropic form of dimension $u(k)$. Since every form in dimension $u(k)+1$ is isotropic, if $\operatorname{disc}(q)=d, q \perp-d$ is isotropic and therefore q represents d. We may write $q \cong q_{1} \perp\langle d\rangle$ where q_{1} is even-dimensional with trivial discriminant. Hence $\left[q_{1}\right] \in I^{2}(k)$ so that q_{1} is universal. This in turn implies that $q_{1} \perp\langle d\rangle \cong q$ is isotropic, leading to a contradiction.

In the 1990's Merkurjev [M2] constructed examples of fields k with $u(k)=$ $2 n$ for any $n \geq 1, n=3$ being the first open case, answering Kaplansky's question in the negative. Since then, it has been shown that the u-invariant could be odd. In [I], Izhboldin proves there exist fields k with $u(k)=9$ and in [V] Vishik has shown that there exist fields k with $u(k)=2^{r}+1$ for all $r \geq 3$.

Merkurjev's construction yields fields k which are not of arithmetic type, i.e., not finitely generated over a number field or a p-adic field. It is still an interesting question whether $u(k)$ is a power of 2 if k is of arithmetic type.

The behavior of the u-invariant is very little understood under rational function field extensions. For instance, it is an open question if $u(k)<\infty$ implies $u(k(t))<\infty$ for the rational function field in one variable over k. This was unknown for $k=\mathbb{Q}_{p}$ until the late 1990's. Conjecturally, $u\left(\mathbb{Q}_{p}(t)\right)=8$, in analogy with the positive characteristic local field case, $u\left(\mathbb{F}_{p}((X))(t)\right)=8$.

We indicate some ways of bounding the u-invariant of a field k once we know how efficiently the Galois cohomology groups $H^{n}(k, \mathbb{Z} / 2 \mathbb{Z})$ are generated by symbols for all n.

We set

$$
H_{\mathrm{dec}}^{n}(k, \mathbb{Z} / 2 \mathbb{Z})=\left\{\left(a_{1}\right) . \cdots .\left(a_{n}\right), a_{i} \in k^{*}\right\}
$$

and call elements in this set symbols. By Voevodsky's theorem on Milnor conjecture, $H^{n}(k, \mathbb{Z} / 2 \mathbb{Z})$ is additively generated by $H_{\text {dec }}^{n}(k, \mathbb{Z} / 2 \mathbb{Z})$.

Proposition 6.7. Let k be a field such that $H^{n+1}(k, \mathbb{Z} / 2 \mathbb{Z})=0$ and for $2 \leq i \leq n$, there exist integers N_{i} such that every element in $H^{i}(k, \mathbb{Z} / 2 \mathbb{Z})$ is a sum of N_{i} symbols. Then $u(k)$ is finite.

Proof. Let q be a quadratic form over k of dimension m and discriminant d. Let $q_{1}=\langle d\rangle$ if m is odd and $\langle 1,-d\rangle$ if m is even. Then $q \perp-q_{1}$ has even dimension and trivial discriminant. Hence $q \perp-q_{1} \in I^{2}(k)$. Let $e_{2}(q \perp$ $\left.-q_{1}\right)=\sum_{j \leq N_{2}} \xi_{2 j}$ where $\xi_{2 j} \in H_{\text {dec }}^{2}(k, \mathbb{Z} / 2 \mathbb{Z})$. Let $\phi_{2 j}$ be 2-fold Pfister forms such that $e_{2}\left(\phi_{2 j}\right)=\xi_{2 j}$. Then $q_{2}=\sum_{j \leq N_{2}} \phi_{2 j}$ has dimension at most $4 N_{2}$ and $e_{2}\left(q \perp-q_{1} \perp-q_{2}\right)=0$ and $q \perp-q_{1} \perp-q_{2} \in I^{3}(k)$, by Merkurjev's theorem. Repeating this process and using Milnor Conjecture, we get $q_{i} \in I^{i}(k)$ which is a sum of $N_{i} i$-fold Pfister forms and $q-\sum_{1 \leq i \leq n} q_{i} \in I^{n+1}(k)=0$, since $H^{n+1}(k, \mathbb{Z} / 2 \mathbb{Z})=0$. Thus $[q]=\sum_{1 \leq i \leq n} q_{i}$ and $\operatorname{dim}\left(q_{a n}\right) \leq \sum_{1 \leq i \leq n} 2^{i} N_{i}$. Thus $u(k) \leq \sum_{1 \leq i \leq n} 2^{i} N_{i}$.

Definition 6.8. A field k is said to have cohomological dimension at most \boldsymbol{n} (in symbols, $\operatorname{cd}(k) \leq n)$ if $H^{i}(k, M)=0$ for $i \geq n+1$ for all finite discrete Γ_{k}-modules M (cf. [Se] §3).
Example 6.9. Finite fields and function fields in one variable over algebraically closed fields have cohomological dimension 1. Totally imaginary number fields and p-adic fields are of cohomological dimension 2 . Thus if k is a p-adic field, and $k(X)$ a function field in one variable over $k, \operatorname{cd}(k(X)) \leq 3$. In particular, $H^{4}(k(X), \mathbb{Z} / 2 \mathbb{Z})=0$.

Theorem 6.10 (Saltman). Let k be a non-dyadic p-adic field and $k(X)$ a function field in one variable over k. Every element in $H^{2}(k(X), \mathbb{Z} / 2 \mathbb{Z})$ is a sum of two symbols.

Theorem 6.11 (Parimala-Suresh). Let $k(X)$ be as in the previous theorem. Then every element in $H^{3}(k(X), \mathbb{Z} / 2 \mathbb{Z})$ is a symbol.

Corollary 6.12. For $k(X)$ as above, $u(k(X)) \leq 2+8+8=18$.
It is not hard to show from the above theorems that $u(k(X)) \leq 12$. With some further work it was proved in [PS1] that $u(k(X)) \leq 10$. More recently in [PS2] the estimated value $u(k(X))=8$ was proved. For an alternate approach to $u(k(X))=8$, we refer to ([HH], [HHK], [CTPS]). More recently, Heath-Brown and Leep [HB] have proved the following spectacular theorem: If k is any p-adic field and $k(X)$ the function field in n variables over k, then $u(k(X))=2^{n+2}$.

7 Hilbert's seventeenth problem

An additional reference for sums of squares is available from H. Cohen at http://www.math.u-bordeaux1.fr/~cohen/Cohensquares.pdf, which is a translation of the original paper [C].

Definition 7.1. An element $f \in \mathbb{R}\left(X_{1}, \ldots, X_{n}\right)$ is called positive semidefinite if $f(a) \geq 0$ for all $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ where f is defined.

Hilbert's seventeenth problem:

Let $\mathbb{R}\left(X_{1}, \ldots, X_{n}\right)$ be the rational function field in n variables over the field \mathbb{R} of real numbers. Hilbert's seventeenth problem asks whether every positive semi-definite $f \in \mathbb{R}\left(X_{1}, \ldots, X_{n}\right)$ is a sum of squares in $\mathbb{R}\left(X_{1}, \ldots, X_{n}\right)$. E. Artin settled this question in the affirmative and Pfister gave an effective version of Artin's result (cf. [Pf], chapter 6).

Theorem 7.2 (Artin, Pfister). Every positive semi-definite function $f \in$ $\mathbb{R}\left(X_{1}, \ldots, X_{n}\right)$ can be written as a sum of 2^{n} squares in $\mathbb{R}\left(X_{1}, \ldots, X_{n}\right)$.

For $n \leq 2$ the above was due to Hilbert himself. If one asks for expressions of positive definite polynomials in $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ as sums of 2^{n} squares in $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, there are counterexamples for $n=2$; the Motzkin polynomial

$$
f\left(X_{1}, X_{2}\right)=1-3 X_{1}^{2} X_{2}^{2}+X_{1}^{4} X_{2}^{2}+X_{1}^{2} X_{2}^{4}
$$

is positive semi-definite but not a sum of 4 squares in $\mathbb{R}\left[X_{1}, X_{2}\right]$. In fact, Pfister's result has the following precise formulation.

Theorem 7.3 (Pfister). Let $\mathbb{R}(X)$ be a function field in n variables over \mathbb{R}. Then every n-fold Pfister form in $\mathbb{R}(X)$ represents every sum of squares in $\mathbb{R}(X)$.

We sketch a proof of this theorem below.
Definition 7.4. Let ϕ be an n-fold Pfister form with $\phi=1 \perp \phi^{\prime}$. The form ϕ^{\prime} is called the pure subform of ϕ.

Proposition 7.5 (Pure Subform Theorem). Let k be any field, ϕ an anisotropic n-fold Pfister form over k and ϕ^{\prime} its pure subform. If b_{1} is any value of ϕ^{\prime}, then $\phi \cong\left\langle\left\langle b_{1}, \ldots, b_{n}\right\rangle\right\rangle$.

Proof. The proof is by induction on n; for $n=1$ the statement is clear. Let $n>1$. We assume the statement holds for all $(n-1)$-fold Pfister forms. Let $\phi=\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle, \psi=\left\langle\left\langle a_{1}, \ldots, a_{n-1}\right\rangle\right\rangle$, and let $\phi^{\prime}, \psi^{\prime}$ denote the pure subforms of ϕ and ψ respectively. We have $\phi=\psi \perp a_{n} \psi, \phi^{\prime}=\psi^{\prime} \perp a_{n} \psi$. Let b_{1} be a value of ϕ^{\prime}. We may write $b_{1}=b_{1}^{\prime}+a_{n} b$, with b_{1}^{\prime} a value of ψ^{\prime} and b a value of ψ. The only nontrivial case to discuss is when $b \neq 0$ and $b_{1}^{\prime} \neq 0$. By induction, $\psi \cong\left\langle\left\langle b_{1}^{\prime}, b_{2}, \ldots, b_{n-1}\right\rangle\right\rangle$ and $b \psi \cong \psi$. We thus have

$$
\begin{aligned}
\phi & \cong\left\langle\left\langle b_{1}^{\prime}, b_{2}, \ldots, b_{n-1}, a_{n}\right\rangle\right\rangle \cong\left\langle\left\langle b_{1}^{\prime}, b_{2}, \ldots, b_{n-1}, a_{n} b\right\rangle\right\rangle \\
& \cong\left\langle\left\langle b_{1}^{\prime}, a_{n} b\right\rangle\right\rangle \otimes\left\langle\left\langle b_{2}, \ldots, b_{n-1}\right\rangle\right\rangle
\end{aligned}
$$

Since $b_{1}=b_{1}^{\prime}+a_{n} b,\left\langle b_{1}^{\prime}, a_{n} b\right\rangle \cong\left\langle b_{1}, b_{1} b_{1}^{\prime} a_{n} b\right\rangle$ and we have

$$
\begin{aligned}
\left\langle\left\langle b_{1}^{\prime}, a_{n} b\right\rangle\right\rangle & =\left\langle 1, b_{1}^{\prime}, a_{n} b, a_{n} b b_{1}^{\prime}\right\rangle \\
& =\left\langle 1, b_{1}, b_{1} b_{1}^{\prime} a_{n} b, a_{n} b b_{1}^{\prime}\right\rangle \\
& =\left\langle\left\langle b_{1}, c_{1}\right\rangle\right\rangle,
\end{aligned}
$$

where $c_{1}=b_{1} b_{1}^{\prime} a_{n} b$. Thus,

$$
\phi \cong\left\langle\left\langle b_{1}, c_{1}, b_{2}, \cdots, b_{n-1}\right\rangle\right\rangle
$$

Proof of Pfister's theorem. Let ϕ be an anisotropic n-fold Pfister form over $K=\mathbb{R}(X)$. Let $b=b_{1}^{2}+\cdots+b_{m}^{2}, b_{i} \in K^{*}$. We show that ϕ represents b by induction on m. For $m=1, b$ is a square and is represented by ϕ. Suppose $m=2, b=b_{1}^{2}+b_{2}^{2}, b_{1} \neq 0, b_{2} \neq 0$. The field $K(\sqrt{-1})$ is a function field in n variables over \mathbb{C} and is C_{n}. Then ϕ is universal over $K(\sqrt{-1})$ and hence
represents $\beta=b_{1}+i b_{2}$. Let $v, w \in K^{2^{n}}$ such that $\phi_{K(\sqrt{-1})}(v+\beta w)=\beta$. Hence

$$
\phi(v)+\beta^{2} \phi(w)+\beta(2 \phi(v, w)-1)=0
$$

The irreducible polynomial of β over K is

$$
\phi(w) X^{2}+(2 \phi(v, w)-1) X+\phi(v)
$$

and hence $N(\beta)=b=\frac{\phi(v)}{\phi(w)}$ is a value of ϕ since ϕ is multiplicative.
Suppose $m>2$. We argue by induction on m. Suppose ϕ represents all sums of $m-1$ squares. Let b be a sum of m squares. After scaling b by a square, we may assume that $b=1+c, c=c_{1}^{2}+\cdots+c_{m-1}^{2}, c \neq 0$. Let $\phi \cong 1 \perp \phi^{\prime}$. By induction hypothesis, ϕ represents c. Let $c=c_{0}^{2}+c^{\prime}, c^{\prime}$ a value of ϕ^{\prime}. Let $\psi=\phi \otimes\langle 1,-b\rangle$ and $\psi=1 \perp \psi^{\prime}$ with $\psi^{\prime}=\langle-b\rangle \perp \phi^{\prime} \perp-b \phi^{\prime}$. The form ψ^{\prime} represents $c^{\prime}-b=\left(c-c_{0}^{2}\right)-(1+c)=-1-c_{0}^{2}$. Thus, by the Pure Subform theorem,

$$
\psi \cong\left\langle\left\langle-1-c_{0}^{2}, d_{1}, \ldots, d_{n}\right\rangle\right\rangle=\left\langle 1,-1-c_{0}^{2}\right\rangle \otimes\left\langle\left\langle d_{1}, \ldots, d_{n}\right\rangle\right\rangle .
$$

By induction, the n-fold Pfister form $\left\langle\left\langle d_{1}, \ldots, d_{n}\right\rangle\right\rangle$ represents $1+c_{0}^{2}$ which is a sum of 2 squares; thus ψ is isotropic, hence hyperbolic. Thus $\phi \cong b \phi$ represents b.

Corollary 7.6. Let $K=\mathbb{R}(X)$ be a function field in n variables over \mathbb{R}. Then every sum of squares in K is a sum of 2^{n} squares.

Proof. Set $\phi=\langle 1,1\rangle^{\otimes n}$ in the above theorem.

8 Pythagoras number

Definition 8.1. The Pythagoras number $p(k)$ of a field k is the least positive integer n such that every sum of squares in k^{*} is a sum of at most n squares.

Example 8.2. If \mathbb{R} is the field of real numbers, $p(\mathbb{R})=1$.
Example 8.3. If $\mathbb{R}\left(X_{1}, \ldots, X_{n}\right)$ is a function field in n variables over \mathbb{R}, by Pfister's theorem, $p\left(\mathbb{R}\left(X_{1}, \ldots, X_{n}\right)\right) \leq 2^{n}$.

8.1 Effectiveness of the bound $p(\mathbb{R}(X)) \leq 2^{n}$

Let

$$
K=\mathbb{R}\left(X_{1}, \ldots, X_{n}\right)
$$

be the rational function field in n variables over \mathbb{R}. For $n=1$ the bound is sharp. For $n=2$ the Motzkin polynomial

$$
f\left(X_{1}, X_{2}\right)=1-3 X_{1}^{2} X_{2}^{2}+X_{1}^{4} X_{2}^{2}+X_{1}^{2} X_{2}^{4}
$$

is positive semi-definite; Cassels-Ellison-Pfister [CEP] show that this polynomial is not a sum of three squares in $\mathbb{R}\left(X_{1}, X_{2}\right)$ (see also [CT]). Therefore $p\left(\mathbb{R}\left(X_{1}, X_{2}\right)\right)=4$.
Lemma 8.4 (Key Lemma). Let k be a field and $n=2^{m}$. Let $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right) \in k^{n}$ be such that $u \cdot v=\sum_{1 \leq i \leq n} u_{i} v_{i}=0$. Then there exist $w_{j} \in k, 1 \leq j \leq n-1$ such that

$$
\sum_{1 \leq i \leq n} u_{i}^{2} \sum_{1 \leq i \leq n} v_{i}^{2}=\sum_{1 \leq j \leq n-1} w_{j}^{2}
$$

Proof. Let $\lambda=\sum_{1 \leq i \leq n} u_{i}^{2}, \mu=\sum_{1 \leq i \leq n} v_{i}^{2}$. We may assume without loss of generality that $u \neq 0$ and $v \neq 0$. The elements λ and μ are values of $\phi_{m}=$ $\langle 1,1\rangle^{\otimes m}$ and $\lambda \phi_{m} \cong \phi_{m}, \mu \phi_{m} \cong \phi_{m}$. We choose isometries $f: \lambda \phi_{m} \cong \phi_{m}$, $g: \mu \phi_{m} \cong \phi_{m}$ such that $f(1,0, \ldots, 0)=u$ and $g(1,0, \ldots, 0)=v$. If U and V are matrices representing f, g respectively, we have

$$
U U^{t}=\lambda^{-1}, \quad V V^{t}=\mu^{-1}, \quad \lambda^{-1} \mu^{-1}=\lambda^{-1} V V^{t}=\left(V U^{t}\right)\left(V U^{t}\right)^{t}
$$

The first row of $V U^{t}$ is of the form $\left(0, w_{2}, \ldots, w_{n}\right)$ since $u \cdot v=0$. Thus $\lambda^{-1} \mu^{-1}=\sum_{2 \leq i \leq n} w_{i}^{2}$.

Corollary 8.5. Let k be an ordered field with $p(k)=n$. Then $p(k(t)) \geq n+1$.

Proof. Let $\lambda \in k^{*}$ be such that λ is a sum of n squares and not a sum of less than n squares. Suppose $\lambda+t^{2}$ is a sum of n squares in $k(t)$. By Cassels-Pfister theorem,

$$
\lambda+t^{2}=\left(\mu_{1}+\nu_{1} t\right)^{2}+\cdots+\left(\mu_{n}+\nu_{n} t\right)^{2}
$$

with $\mu_{i}, \nu_{i} \in k^{*}$. If $u=\left(\mu_{1}, \ldots, \mu_{n}\right), v=\left(\nu_{1}, \ldots, \nu_{n}\right)$, then $u \cdot v=0$, $\sum_{1 \leq i \leq n} \mu_{i}^{2}=\lambda, \sum_{1 \leq i \leq n} \nu_{i}^{2}=1$. Thus $\lambda=\left(\sum_{1 \leq i \leq n} \mu_{i}^{2}\right)\left(\sum_{1 \leq i \leq n} \nu_{i}^{2}\right)$ is a sum of $n-1$ squares by the Key Lemma, 8.4, contradicting the choice of λ.

Corollary 8.6. $p\left(\mathbb{R}\left(X_{1}, \ldots, X_{n}\right)\right) \geq n+2$. Thus

$$
n+2 \leq p\left(\mathbb{R}\left(X_{1}, \ldots, X_{n}\right)\right) \leq 2^{n}
$$

Proof. By [CEP], we know that $p\left(\mathbb{R}\left(X_{1}, X_{2}\right)\right)=4$. The fact that $n+2 \leq$ $p\left(\mathbb{R}\left(X_{1}, \ldots, X_{n}\right)\right)$ now follows by Corollary 8.5 and induction.

Remark 8.7. It is open whether $p\left(\mathbb{R}\left(X_{1}, X_{2}, X_{3}\right)\right)=5,6,7$ or 8 .
Remark 8.8. The possible values of the Pythagoras number of a field have all been listed ([H], [Pf, p. 97]).
Proposition 8.9. If k is a non-formally real field, $p(k)=s(k)$ or $s(k)+1$.
Proof. If $s(k)=n,-1$ is not a sum of less than n squares, so that $p(k) \geq s(k)$. For $a \in k^{*}$,

$$
a=\left(\frac{a+1}{2}\right)^{2}+(-1)\left(\frac{a-1}{2}\right)^{2}
$$

is a sum of $n+1$ squares if -1 is a sum of n squares. Thus $p(k) \leq s(k)+1$.
Let k be a p-adic field and $K=k\left(X_{1}, \ldots, X_{n}\right)$ a rational function field in n variables over k. Then $s(k)=1,2$ or 4 so that $s(K)=1,2$, or 4 . Thus $p(K) \leq 5$ (in fact it is easy to see that if $s(k)=s, p(K)=s+1$).

Thus we have bounds for $p\left(k\left(X_{1}, \ldots, X_{n}\right)\right)$ if k is the field of real or complex numbers or the field of p-adic numbers. The natural questions concern a number field k.

9 Function fields over number fields

Let k be a number field and $F=k(t)$ the rational function field in one variable over k. In this case $p(k(t))=5$ is a theorem ([La]). The fact that $p(k(t)) \leq 8$ can be easily deduced from the following injectivity in the Witt groups ([CTCS], Prop. 1.1):

$$
W(k(t)) \longrightarrow \prod_{w \in \Omega(k)} W\left(k_{w}(t)\right)
$$

with $\Omega(k)$ denoting the set of places of k. In fact, if $f \in k(t)$ is a sum of squares, f is a sum of at most two squares in $k_{w}(t)$ for a real place w, by Pfister's theorem (which in the case of function fields of curves goes back to Witt). Further, for a finite place w of k or a complex place, $\langle 1,1\rangle^{\otimes 3}=0$ in $W\left(k_{w}\right)$. Thus $\langle 1,1\rangle^{\otimes 3} \otimes\langle 1,-f\rangle$ is hyperbolic over $k_{w}(t)$ for all $w \in \Omega(k)$.

By the above injectivity, this form is hyperbolic over $k(t)$, leading to the fact that f is a sum of at most eight squares in $k(t)$.

We have the following conjecture due to Pfister for function fields over number fields.

Conjecture (Pfister). Let k be a number field and $F=k(X)$ a function field in d variables over k. Then

1. for $d=1, p(F) \leq 5$.
2. for $d \geq 2, p(F) \leq 2^{d+1}$.

For a general function field $k(X)$ in one variable over $k,(d=1)$, the best known result is due to F. Pop, $p(F) \leq 6[\mathrm{P}]$. We sketch some results and conjectures from the arithmetic side which could lead to a solution of the conjecture for $d \geq 2$ (see Colliot-Thélène, Jannsen [CTJ] for more details).

For any field k, by Voevodsky's theorem, we have an injection

$$
e_{n}: P_{n}(k) \rightarrow H^{n}(k, \mathbb{Z} / 2 \mathbb{Z})
$$

In fact, for any field k, if $\phi_{1}, \phi_{2} \in P_{n}(k)$ have the same image under e_{n} then $\phi_{1} \perp-\phi_{2} \in \operatorname{ker}\left(e_{n}\right)=I^{n+1}(k)$. In $W(k), \phi_{1} \perp-\phi_{2}=\phi_{1}^{\prime} \perp-\phi_{2}^{\prime}$ where ϕ_{1}^{\prime} and ϕ_{2}^{\prime} are the pure subforms of ϕ_{1} and ϕ_{2}. Moreover, $\operatorname{dim}\left(\phi_{1}^{\prime} \perp\right.$ $\left.-\phi_{2}^{\prime}\right)_{\mathrm{an}} \leq 2^{n+1}-2<2^{n+1}$. By the Arason-Pfister Hauptsatz, (Theorem 3.1), anisotropic forms in $I^{n+1}(k)$ must have dimension at least 2^{n+1}. Therefore $\phi_{1}=\phi_{2}$.

Let k be a number field and $F=k(X)$ be a function field in d variables over k. Let $f \in F$ be a function which is a sum of squares in F. One would like to show that f is a sum of 2^{d+1} squares. Let $\phi_{d+1}=\langle 1,1\rangle^{\otimes(d+1)}$ and $q=\phi_{d+1} \otimes\langle 1,-f\rangle$. This is a $(d+2)$-fold Pfister form and ϕ_{d+1} represents f if and only if q is hyperbolic or equivalently, by the injectivity of e_{n} above, $e_{d+2}\left(\phi_{d+1} \otimes\langle 1,-f\rangle\right)=0$.

We look at this condition locally at all completions k_{v} at places v of k. Let $k_{v}(X)$ denote the function field of X over k_{v}. (We may assume
that X is geometrically integral). Let v be a complex place. The field $k_{v}(X)$ has cohomological dimension d so that $H^{m}\left(k_{v}(X), \mathbb{Z} / 2 \mathbb{Z}\right)=0$ for $m \geq d+1$. Hence $e_{d+2}\left(\phi_{d+1} \otimes\langle 1,-f\rangle\right)=0$ over $k_{v}(X)$. Let v be a real place. Over $k_{v}(X), f$ is a sum of squares, hence a sum of at most 2^{d} squares (by Pfister's theorem 7.3) so that $\phi_{d+1} \otimes\langle 1,-f\rangle$ is hyperbolic over $k_{v}(X)$. Hence $e_{d+2}\left(\phi_{d+1} \otimes\langle 1,-f\rangle\right)=0$.

Let v be a non-dyadic p-adic place of k. Then ϕ_{2} is hyperbolic over k_{v} so that $\phi_{d+1} \otimes\langle 1,-f\rangle=0$ and $e_{d+2}\left(\phi_{d+1} \otimes\langle 1,-f\rangle\right)=0$.

Let v be a dyadic place of k. Over k_{v}, ϕ_{3} is hyperbolic so that $e_{d+2}\left(\phi_{d+1} \otimes\right.$ $\langle 1,-f\rangle)=0$. Thus for all completions v of $k, e_{d+2}\left(\phi_{d+1} \otimes\langle 1,-f\rangle\right)$ is zero. The following conjecture of Kato implies Pfister's conjecture for $d \geq 2$.

Conjecture (Kato). Let k be a number field, X a geometrically integral variety over k of dimension d. Then the map

$$
H^{d+2}(k(X), \mathbb{Z} / 2 \mathbb{Z}) \rightarrow \prod_{v \in \Omega_{k}} H^{d+2}\left(k_{v}(X), \mathbb{Z} / 2 \mathbb{Z}\right)
$$

has trivial kernel.
The above conjecture is the classical Hasse-Brauer-Noether theorem if the dimension of X is zero, i.e., the injectivity of the Brauer group map:

$$
\operatorname{Br}(k) \hookrightarrow \bigoplus_{v \in \Omega_{k}} \operatorname{Br}\left(k_{v}\right)
$$

For $\operatorname{dim} X=1$, the conjecture is a theorem of Kato $([\mathrm{K}])$. For $\operatorname{dim} X=2$, Kato's conjecture was proved by Jannsen ([Ja]). Using Jannsens's theorem, Colliot-Thélène-Jannsen [CTJ] derived Pfister's conjecture: every sum of squares in $k(X), X$ a surface over a number field, is a sum of at most 8 squares.

We explain how Kato's theorem was used by Colliot-Thélène to derive $p(k(X)) \leq 7$ for a curve X over a number field.

Suppose $K=k(X)$ has no ordering. We claim that $s(K) \leq 4$. To show this it suffices to show that $\langle 1,1\rangle^{\otimes 3}$ is zero over $k_{v}(X)$ for every place v of k. At finite places $v,\langle 1,1\rangle^{\otimes 3}$ is already zero in k_{v}. If v is a real place of $k, k_{v}(X)$ is the function field of a real curve over the field of real numbers which has no orderings. By a theorem of Witt, $\operatorname{Br}\left(k_{v}(X)\right)=0$ and every sum of squares is
a sum of two squares in $k_{v}(X)$. Thus -1 is a sum of two squares in $k_{v}(X)$ and $\langle 1,1\rangle^{\otimes 3}=0$ over $k_{v}(X)$. Since $H^{3}(k(X), \mathbb{Z} / 2 \mathbb{Z}) \rightarrow \prod_{v \in \Omega_{k}} H^{3}\left(k_{v}(X), \mathbb{Z} / 2 \mathbb{Z}\right)$ is injective by Kato's theorem, $e_{3}\left(\langle 1,1\rangle^{\otimes 3}\right)=0$ in $H^{3}(k(X), \mathbb{Z} / 2 \mathbb{Z})$. Since e_{3} is injective on 3 -fold Pfister forms, $\langle 1,1\rangle^{\otimes 3}=0$ in $k(X)$. Thus $s(k(X)) \leq 4$. In this case, $p(k(X)) \leq 5$.

Suppose K has an ordering. Let $f \in K^{*}$ be a sum of squares in K. Then $K(\sqrt{-f})$ has no orderings and hence -1 is a sum of 4 squares in $K(\sqrt{-f})$. Let $a_{i}, b_{i} \in K$ be such that

$$
-1=\sum_{1 \leq i \leq 4}\left(a_{i}+b_{i} \sqrt{-f}\right)^{2}, \quad a_{i}, b_{i} \in K
$$

Then

$$
1+\sum_{1 \leq i \leq 4} a_{i}^{2}=f\left(\sum_{1 \leq i \leq 4} b_{i}^{2}\right), \quad \sum_{1 \leq i \leq 4} a_{i} b_{i}=0 .
$$

By the Key Lemma, 8.4, $\left(1+\sum_{1 \leq i \leq 4} a_{i}^{2}\right) \sum_{1 \leq i \leq 4} b_{i}^{2}$ is a sum of at most 7 squares.

References

[A] Albert, A.A., Normal division algebras of degree four over an algebraic field, Trans. Amer. Math. Soc., 34 (1932), 363-372.
[Ar] Arason, J.K., Cohomologische Invarianten quadratischer Formen, J. Algebra, 36 (1975), 448-491.
[CEP] Cassels, J.W.S., Ellison, W.J., Pfister, A., On sums of squares and on elliptic curves over function fields, J. Number Th. 3 (1971), 125-149.
[C] Cohen, H., Représentations comme sommes de carrés, Séminaire de Théorie des Nombres, 1971-1972 (Univ. Bordeaux I, Talence), Exp. No. 21, (1972). English translation available at http://www.math.ubordeaux1.fr/~cohen/Cohensquares.pdf
[CT] Colliot-Thélène, J.-L., The Noether-Lefschetz theorem and sums of 4 squares in the rational function field $\mathbb{R}(x, y)$, Compos.Math. 86 (1993), 235-243.
[CTCS] Colliot-Thélène, J.-L., Coray, D., Sansuc, J.-J., Descente et principe de Hasse pour certaines variétés rationnelles, J. Reine Angew. Math., 320 (1980), 150-191.
[CTJ] Colliot-Thélène, J.-L., Jannsen, U., Sommes de carrès dans les corps de fonctions, C. R. Acad. Paris, Sèr. I 312 (1991), 759-762.
[CTPS] Colliot-Thélène, J.-L., Parimala, R., Suresh, V., Patching and localglobal principles for homogeneous spaces over function fields of p-adic curves, preprint arXiv:0812.3099.
[CTSaSw] Colliot-Thélène, J.-L., Sansuc, J.-J., Swinnerton-Dyer, P., Intersections of two quadrics and Châtelet surfaces. II, J. Reine Angew. Math., $\mathbf{3 7 4}$ (1987), 72-168.
[EKM] Elman, R., Karpenko, N., Merkurjev, A., The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications, 56 (2008).
[EL] Elman, R. and Lam,T.-Y., Quadratic forms and the u-invariant I, Math. Z. 131 (1973), 238-304.
[H] Hoffmann, D.W., Pythagoras numbers of fields, J. Amer. Math. Soc., 12 (1999), 3, 839-848.
[HB] Heath-Brown, D.R., Artin's Conjecture on Zeros of p-Adic Forms, preprint arXiv:1002.3754v1.
[HH] Harbater, D., Hartmann, J., Patching over fields, preprint arXiv:0710.1392, to appear in Israel Journal of Mathematics.
[HHK] Harbater, D., Hartmann, J., Krashen, D., Applications of patching to quadratic forms and central simple algebras, preprint arXiv:0809.4481.
[I] Izhboldin, Oleg T., Fields of u-invariant 9. Ann. of Math. (2) 154 (2001).
[Ja] Jannsen, U., Principe de Hasse cohomologique, Séminaire de Théorie des Nombres, Paris, 1989-90, Progr. Math., Birkhäuser Boston, 102 121-140 (1992).
[K] Kato, Kazuya, A Hasse principle for two-dimensional global fields, with an appendix by Jean-Louis Colliot-Thélène, J. Reine Angew. Math. 366 (1986).
[L] Lam, T.-Y., Introduction to quadratic forms over fields, GSM, AMS 67 (2004).
[La] Landau, E., Über die Darstellung definiter Funktionen durch Quadrate, Math. Ann., 62 (1906), 2, 272-285.
[Li] Lichtenbaum, S., Duality theorems for curves over p-adic fields, Invent. Math. 7 (1969), 120-136.
[OVV] Orlov, D., Vishik, A., and Voevodsky, V., An exact sequence for $K_{*}^{M} / 2$ with applications to quadratic forms, Annals of Math. 165 (2007), 113.
[M1] Merkurjev, A.S. On the norm residue symbol of degree 2, Dokl. Akad. Nauk SSSR 261 (1981), 542-547.
[M2] Merkurjev, A.S., Simple algebras and quadratic forms, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 218-224; translation in Math. USSR-Izv. 38 (1992), 1, 215-221.
[Pf] Pfister, A., Quadratic forms with applications to algebraic geometry and topology, London Mathematical Society Lecture Note Series, Cambridge University Press, 217 (1995).
[P] Pop, F., Summen von Quadraten in arithmetischen Funktionenkorpern, preprint (http://www.math.upenn.edu/~pop/Research/Papers.html).
[PS1] Parimala, R. and Suresh, V., Isotropy of quadratic forms over function fields in one variable over p-adic fields, Publ. de I.H.É.S. 88 (1998), 129-150.
[PS2] Parimala, R. and Suresh, V., The u-invariant of the function fields of p-adic curves, arXiv:0708.3128v1.
[Po] Pourchet, Y., Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques, Acta Arith., Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica, 19 (1971), 89-104.
[RST] Rowen, L.H., Sivatski, A.S., Tignol, J.-P., Division algebras over rational function fields in one variable, in Algebra and Number Theory, 158-180, Hindustan Book Agency, Delhi (2005).
[Sa] Saltman, D., Division algebras over p-adic curves with an appendix by William Jacob and J.-P. Tignol, Journal of Ramanujan Math. Soc. 12 (1997), 25-47.
[S] Scharlau, W., Quadratic and Hermitian forms, Springer-Verlag 270 (1985).
[Se] Serre, J-P., Galois cohomology, Springer-Verlag (1997).
[V] Vishik, A., Fields of u-invariant $2^{r}+1$. Algebra, Arithmetic and Geometry - Manin Festschrift, Birkhauser, (2007), in press.

Department of Mathematics and Computer Science Emory University
400 Dowman Drive
Atlanta, Georgia 30322
USA
E-mail: parimala@mathcs.emory.edu

