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1 Quadratic forms

Let k be a field with char k 6= 2.

Definition 1.1. A quadratic form q : V → k on a finite-dimensional vector
space V over k is a map satisfying:

1. q(λv) = λ2q(v) for v ∈ V , λ ∈ k.

2. The map bq : V × V → k, defined by

bq(v, w) =
1

2
[q(v + w)− q(v)− q(w)]

is bilinear.

We denote a quadratic form by (V, q), or simply as q.

The bilinear form bq is symmetric; q determines bq and for all v ∈ V ,
q(v) = bq(v, v).
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For a choice of basis {e1, . . . , en} of V , bq is represented by a symmetric
matrix A(q) = (aij) with aij = bq(ei, ej). If v =

∑
1≤i≤nXiei ∈ V , Xi ∈ k,

then
q(v) =

∑
1≤i,j≤n

aijXiXj =
∑

1≤i≤n

aiiX
2
i + 2

∑
i<j

aijXiXj.

Thus q is represented by a homogeneous polynomial of degree 2. Clearly,
every homogeneous polynomial of degree 2 corresponds to a quadratic form
on V with respect to the chosen basis. We define the dimension of q to be
the dimension of the underlying vector space V and denote it by dim(q).

Definition 1.2. Two quadratic forms (V1, q1), (V2, q2) are isometric if there
is an isomorphism φ : V1

∼→ V2 such that q2(φ(v)) = q1(v), ∀v ∈ V1.

If A(q1), A(q2) are the matrices representing q1 and q2 with respect to
bases B1 and B2 of V1 and V2 respectively, φ yields a matrix T ∈ Mn(k),
n = dimV , such that

TA(q2)T t = A(q1).

In other words, the symmetric matrices A(q1) and A(q2) are congruent. Thus
isometry classes of quadratic forms yield congruence classes of symmetric
matrices.

Definition 1.3. The form q : V → k is said to be regular if bq : V × V → k
is nondegenerate.

Thus q is regular if and only if the map V → V ∗ = Hom(V, k), defined by
v 7→ (w 7→ bq(v, w)), is an isomorphism. This is the case if A(q) is invertible.

Henceforth, we shall only be concerned with regular quadratic forms.

Definition 1.4. Let W be a subspace of V and q : V → k be a quadratic
form. The orthogonal complement of W denoted W⊥ is the subspace

W⊥ = {v ∈ V : bq(v, w) = 0 ∀ w ∈ W}.

Exercise 1.5. Let (V, q) be a regular quadratic form and W a subspace of
V . Then

1. dim(W ) + dim(W⊥) = dim(V ).

2. (W⊥)⊥ = W.

2



1.1 Orthogonal sums

Let (V1, q1), (V2, q2) be quadratic forms. The form

(V1, q1) ⊥ (V2, q2) = (V1 ⊕ V2, q1 ⊥ q2),

with q1 ⊥ q2 defined by

(q1 ⊥ q2)(v1, v2) = q1(v1) + q2(v2), v1 ∈ V1, v2 ∈ V2

is called the orthogonal sum of (V1, q1) and (V2, q2).

1.2 Diagonalization

Let (V, q) be a quadratic form. There exists a basis {e1, . . . , en} of V such
that bq(ei, ej) = 0 for i 6= j. Such a basis is called an orthogonal basis for q
and, with respect to an orthogonal basis, bq is represented by a diagonal
matrix.

If {e1, . . . , en} is an orthogonal basis of q and q(ei) = di, we write q =
〈d1, . . . , dn〉. In this case, V = ke1⊕· · ·⊕ken is an orthogonal sum and q|kei
is represented by 〈di〉. Thus every quadratic form is diagonalizable.

1.3 Hyperbolic forms

Definition 1.6. A quadratic form (V, q) is said to be isotropic if there is a
nonzero v ∈ V such that q(v) = 0. It is anisotropic if q is not isotropic. A
quadratic form (V, q) is said to be universal if it represents every nonzero
element of k.

Example 1.7. The quadratic form X2 − Y 2 is isotropic over k. Suppose
(V, q) is a regular form which is isotropic. Let v ∈ V be such that q(v) = 0,
v 6= 0. Since q is regular, there exists w ∈ V such that bq(v, w) 6= 0. After
scaling we may assume bq(v, w) = 1. If q(w) 6= 0, we may replace w by
w + λv, λ = −1

2
q(w), and assume that q(w) = 0. Thus W = kv ⊕ kw is a

2-dimensional subspace of V and q|W is represented by ( 0 1
1 0 ) with respect to

{v, w}.
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Definition 1.8. A binary quadratic form isometric to (k2, ( 0 1
1 0 )) is called a

hyperbolic plane. A quadratic form (V, q) is hyperbolic if it is isometric
to an orthogonal sum of hyperbolic planes. A subspace W of V such that q
restricts to zero on W and dimW = 1

2
dimV is called a Lagrangian.

Every regular quadratic form which admits a Lagrangian can easily be
seen to be hyperbolic.

Exercise 1.9. Let (V, q) be a regular quadratic form and (W, q|W ) a regular
form on the subspace W . Then (V, q)

∼→ (W, q|W ) ⊥ (W⊥, q|W⊥).

Let (V, q) be a quadratic form. Then

V0 = {v ∈ V : bq(v, w) = 0 ∀ w ∈ V }

is called the radical of V . If V1 is any complementary subspace of V0 in V ,
then q|V1 is regular and (V, q) = (V0, 0) ⊥ (V1, q|V1). Note that V is regular if
and only if the radical of V is zero. If (V, q) is any quadratic form, we define
the rank of q to be the dimension of V/V ⊥. Of course if (V, q) is regular,
then rank(q) = dim(q).

Theorem 1.10 (Witt’s Cancellation Theorem). Let (V1, q1), (V2, q2), (V, q)
be quadratic forms over k. Suppose

(V1, q1) ⊥ (V, q) ∼= (V2, q2) ⊥ (V, q).

Then (V1, q1) ∼= (V2, q2).

The key ingredient of Witt’s cancellation theorem is the following.

Proposition 1.11. Let (V, q) be a quadratic form and v, w ∈ V with q(v) =
q(w) 6= 0. Then there is an isometry τ : (V, q)

∼→ (V, q) such that τ(v) = w.

Proof. Let q(v) = q(w) = d 6= 0. Then

q(v + w) + q(v − w) = 2q(v) + 2q(w) = 4d 6= 0.

Thus q(v + w) 6= 0 or q(v − w) 6= 0. For any vector u ∈ V with q(u) 6= 0,
define τu : V → V by

τu(z) = z − 2bq(z, u)u

q(u)
.

Then τu is an isometry called the reflection with respect to u.
Suppose q(v − w) 6= 0. Then τv−w : V → V is an isometry of V which

sends v to w. Suppose q(v + w) 6= 0. Then τw ◦ τv+w sends v to w.
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Remark 1.12. The orthogonal group of (V, q) denoted by O(q) is the set of
isometries of V onto itself. This group is generated by reflections. This is
seen by an inductive argument on dim(q), using the above proposition.

Theorem 1.13 (Witt’s decomposition). Let (V, q) be a quadratic form. Then
there is a decomposition

(V, q) = (V0, 0) ⊥ (V1, q1) ⊥ (V2, q2)

where V0 is the radical of q, q1 = q|V1 is anisotropic and q2 = q|V2 is hy-
perbolic. If (V, q) = (V0, 0) ⊥ (W1, f1) ⊥ (W2, f2) with f1 anisotropic and f2

hyperbolic, then

(V1, q1) ∼= (W1, f1), (V2, q2) ∼= (W2, f2).

Remark 1.14. A hyperbolic form (W, f) is determined by dim(W ); for if
dim(W ) = 2n, (W, f) ∼= nH, where H = (k2, ( 0 1

1 0 )) is the hyperbolic plane.

From now on, we shall assume (V, q) is a regular quadratic form. We
denote by qan the quadratic form (V1, q1) in Witt’s decomposition which is
determined by q up to isometry. We call 1

2
dim(V2) the Witt index of q. Thus

any regular quadratic form q admits a decomposition q ∼= qan ⊥ (nH), with
qan anisotropic and H denoting the hyperbolic plane. We also sometime
denote by Hn the sum of n hyperbolic planes.

2 Witt group of forms

2.1 Witt groups

We set

W (k) = {isomorphism classes of regular quadratic forms over k}/ ∼

where the Witt equivalence ∼ is given by:

(V1, q1) ∼ (V2, q2) ⇐⇒ there exist r, s ∈ Z such that
(V1, q1) ⊥ Hr ∼= (V2, q2) ⊥ Hs .
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W (k) is a group under orthogonal sum:

[(V1, q1)] ⊥ [(V2, q2)] = [(V1, q1) ⊥ (V2, q2)].

The zero element in W (k) is represented by the class of hyperbolic forms.
For a regular quadratic form (V, q), (V, q) ⊥ (V,−q) has Lagrangian

W = {(v, v) : v ∈ V }

so that (V, q) ⊥ (V,−q) ∼= Hn, n = dim(V ). Thus, [(V,−q)] = −[(V, q)] in
W (k).

It follows from Witt’s decomposition theorem that every element in W (k)
is represented by a unique anisotropic quadratic form up to isometry. Thus
W (k) may be thought of as a group made out of isometry classes of aniso-
tropic quadratic forms over k.

The abelian group W (k) admits a ring structure induced by tensor prod-
uct on the associated bilinear forms. For example, if q1

∼= 〈a1, . . . , an〉 and q2

is a quadratic form, then q1 ⊗ q2
∼= a1q2 ⊥ a2q2 ⊥ · · · ⊥ anq2.

Definition 2.1. Let I(k) denote the ideal of classes of even-dimensional
quadratic forms in W (k). The ideal I(k) is called the fundamental ideal.
In(k) stands for the nth power of the ideal I(k).

Definition 2.2. Let Pn(k) denote the set of isomorphism classes of forms of
the type

〈〈a1, . . . , an〉〉 := 〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉.
Elements in Pn(k) are called n-fold Pfister forms.

The ideal I(k) is generated by the forms 〈1, a〉, a ∈ k∗. Moreover, the
ideal In(k) is generated additively by n-fold Pfister forms. For instance, for
n = 2, the generators of I2(k) are of the form

〈a, b〉 ⊗ 〈c, d〉 ∼= 〈1, ac, ad, cd〉 − 〈1, cd,−bc,−bd〉 = 〈〈ac, ad〉〉 − 〈〈cd,−bc〉〉

Example 2.3. If k = C, every 2-dimensional quadratic form over k is
isotropic.

W (k) ∼= Z/2Z
[(V, q)] 7→ dim(V ) (mod 2)

is an isomorphism.
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Example 2.4. If k = R, every quadratic form q is represented by

〈1, . . . , 1,−1, . . . ,−1〉

with respect to an orthogonal basis. The number r of +1’s and the number
s of −1’s in the diagonalization above are uniquely determined by the iso-
morphism class of q. The signature of q is defined as r − s. The signature
yields a homomorphism sgn: W (R)→ Z which is an isomorphism.

2.2 Quadratic forms over p-adic fields

Let k be a finite extension of the field Qp of p-adic numbers. We call k a non-
dyadic p-adic field if p 6= 2. The field k has a discrete valuation v extending
the p-adic valuation on Qp. Let π be a uniformizing parameter for v and κ
the residue field for v. The field κ is a finite field of characteristic p 6= 2. Let
u be a unit in k∗ such that u ∈ κ is not a square. Then

k∗/k∗2 = {1, u, π, uπ}.

Since κ is finite, every 3-dimensional quadratic form over κ is isotropic. By
Hensel’s lemma, every 3-dimensional form 〈u1, u2, u3〉 over k, with ui units
in k is isotropic. Since every form q in k has a diagonal representation

〈u1, . . . , ur〉 ⊥ π〈v1, . . . , vs〉,

if r or s exceeds 3, q is isotropic. In particular every 5-dimensional quadratic
form over k is isotropic. Further, up to isometry, there is a unique quadratic
form in dimension 4 which is anisotropic, namely,

〈1,−u,−π, uπ〉.

This is the norm form of the unique quaternion division algebra H(u, π)
over k (cf. section 2.3).

2.3 Central simple algebras and the Brauer group

Recall that a finite-dimensional algebra A over a field k is a central simple
algebra over k if A is simple (has no two-sided ideals) and the center of A
is k. Recall also that for a field k,

Br(k) = {Isomorphism classes of central simple algebras over k} / ∼
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where the Brauer equivalence ∼ is given by: A ∼ B if and only if Mn(A) ∼=
Mm(B) for some integers m,n. The pair (Br(k),⊗) is a group. The inverse
of [A] is [Aop] where Aop is the opposite algebra of A: the multiplication
structure, ∗, on Aop is given by a ∗ b = ba. We have a k-algebra isomor-
phism φ : A ⊗ Aop ∼−→ Endk(A) induced by φ(a ⊗ b)(c) = acb. The identity
element in Br(k) is given by [k]. By Wedderburn’s theorem on central sim-
ple algebras, the elements of Br(k) parametrize the isomorphism classes of
finite-dimensional central division algebras over k.

For elements a, b ∈ k∗, we define the quaternion algebra H(a, b) to be
the 4-dimensional central simple algebra over k generated by {i, j} with the
relations i2 = a, j2 = b, ij = −ji. This is a generalization of the standard
Hamiltonian quaternion algebra H(−1,−1). The algebra H(a, b) admits a
canonical involution¯: H(a, b)→ H(a, b) given by

α + iβ + jγ + ijδ = α− iβ − jγ − ijδ

This involution gives an isomorphism H(a, b) ∼= H(a, b)op; in particular,
H(a, b) has order 2 in 2Br(k), where 2Br(k) denotes the 2-torsion subgroup of
the Brauer group of k. The norm form for this algebra is given by N(x) = xx,
which is a quadratic form on H(a, b) represented with respect to the orthog-
onal basis {1, i, j, ij} by 〈1,−a,−b, ab〉 = 〈〈−a,−b〉〉.

2.4 Classical invariants for quadratic forms

Let (V, q) be a regular quadratic form. We define dim(q) = dim(V ) and
dim2(q) = dim(V ) modulo 2. We have a ring homomorphism dim2 : W (k)→
Z/2Z. We note that I(k) is the kernel of dim2. This gives an isomorphism

dim2 : W (k)/I(k)
∼−→ Z/2Z.

Let disc(q) = (−1)n(n−1)/2[det(A(q))] ∈ k∗/k∗2. Since A(q) is deter-
mined up to congruence, det(A(q)) is determined modulo squares. We have
disc(H) = 1, and disc(q) induces a group homomorphism

disc : I(k)→ k∗/k∗2

which is clearly onto. It is easy to verify that ker(disc) = I2(k). Thus the
discriminant homomorphism induces an isomorphism I(k)/I2(k)→ k∗/k∗2.
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The next invariant for quadratic forms is the Clifford invariant. To each
quadratic form (V, q) we wish to construct a central simple algebra containing
V whose multiplication on elements of V satisfies v · v = q(v). The smallest
such algebra (defined by a universal property) will be the Clifford algebra.

Definition 2.5. The Clifford algebra C(q) of the quadratic form (V, q) is
T (V )/Iq, where Iq is the two-sided ideal in the tensor algebra T (V ) generated
by {v ⊗ v − q(v), v ∈ V }.

The algebra C(q) has a Z/2Z gradation C(q) = C0(q)⊕C1(q) induced by
the gradation T (V ) = T0(V )⊕ T1(V ), where

T0(V ) =
⊕

i≥0, i even

V ⊗i and T1(V ) =
⊕

i≥1, i odd

V ⊗i.

If dim(q) is even, then C(q) is a central simple algebra over k. If dim(q)
is odd, C0(q) is a central simple algebra over k. The Clifford algebra C(q)
comes equipped with an involution τ defined by τ(v) = −v, v ∈ V . Thus, if
dim(q) is even, C(q) determines a 2-torsion element in Br(k).

Definition 2.6. The Clifford invariant c(q) of (V, q) in Br(k) is defined as

c(q) =

{
[C(q)], if dim(q) is even

[C0(q)], if dim(q) is odd

The Clifford invariant induces a homomorphism c : I2(k)→ 2Br(k), 2Br(k)
again denoting the 2-torsion in the Brauer group of k. The very first case of
the Milnor conjecture (see section 3) states: c is surjective and ker(c) = I3(k).

Theorem 2.7 (Merkurjev [M1]). The map c induces an isomorphism

I2(k)/I3(k) ∼= 2Br(k)

Example 2.8. Let q ∼= ⊗ni=1〈〈−ai,−bi〉〉 ∈ I2(k). Then

c(q) ∼= ⊗1≤i≤nHi

where Hi = H(ai, bi).
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Exercise 2.9. Given
⊗

1≤i≤nHi, a tensor product of n quaternion algebras
over k, show that there is a quadratic form q over k of dimension 2n+ 2 such
that c(q) ∼=

⊗
1≤i≤nHi.

Thus the image of I2(q) in 2Br(k) is spanned by quaternion algebras. It
was a longstanding question whether 2Br(k) is spanned by quaternion alge-
bras. Merkurjev’s theorem answers this question in the affirmative; further,
it gives precise relations between quaternion algebras in 2Br(k).

3 Galois cohomology and the Milnor conjec-

ture

Let Γk = Gal(k̄|k), k̄ denoting the separable closure of k, be the absolute
Galois group of k. The group

Γk = lim←−
L⊂k̄, L|k finite Galois

Gal(L|k)

is a profinite group. A discrete Γk-module M is a continuous Γk-module for
the discrete topology on M and the profinite topology on Γk. For a discrete
Γk-module M , we define Hn(k,M) as the direct limit of the cohomology of
the finite quotients

Hn(k,M) = lim−→
L⊂k̄, L|k finite Galois

Hn(Gal(L|k),MΓL).

Suppose char(k) 6= 2 and M = µ2. The module µ2 has trivial Γk action.
We denote this module by Z/2Z. We have

H0(k,Z/2Z) = Z/2Z

H1(k,Z/2Z) ∼= k∗/k∗2

H2(k,Z/2Z) ∼= 2Br(k)

These can be seen from the Kummer exact sequence of Γk-modules:

0 −→ µ2 −→ k̄∗
·2−→ k̄∗ −→ 0

and noting that H1(Γk, k̄
∗) = 0 (Hilbert’s Theorem 90) and H2(Γk, k̄

∗) =
Br(k).
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For an element a ∈ k∗, we denote by (a) its class in H1(k,Z/2Z) and for
a1, . . . , an ∈ k∗, the cup product (a1) ∪ · · · ∪ (an) ∈ Hn(k,Z/2Z) is denoted
by (a1). · · · .(an).

For a, b ∈ k∗, the element (a).(b) represents the class of H(a, b) in 2Br(k).
The map

c : I2(k)→ H2(k,Z/2Z)

sends 〈1,−a,−b, ab〉 to the class of H(a, b) in H2(k,Z/2Z). The forms
〈1,−a,−b, ab〉 additively generate I2(k). Merkurjev’s theorem asserts that
H2(k,Z/2Z) is generated by (a).(b), with a, b ∈ k∗. The Milnor conjecture
(quadratic form version) proposes higher invariants In(k) → Hn(k,Z/2Z)
extending the classical invariants.

Milnor Conjecture. The assignment

〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉 7→ (a1). · · · .(an)

yields a map en : Pn(k) → Hn(k,Z/2Z). This map extends to a homomor-
phism en : In(k)→ Hn(k,Z/2Z) which is onto and ker(en) = In+1(k).

The maps dimension mod 2, discriminant and Clifford invariant coincide
with e0, e1 and e2. Unlike these classical invariants, which are defined on
all quadratic forms, conjecturally en, n ≥ 3, are defined only on elements in
In(k) on which the invariants ei, i ≤ n − 1, vanish. In 1975, Arason [Ar]
proved that e3 : I3(k)→ H3(k,Z/2Z) is well defined and is one-one on P3(k).
As we mentioned earlier, the first nontrivial case of the Milnor conjecture
was proved by Merkurjev for n = 2. The Milnor conjecture (quadratic form
version) is now a theorem due to Orlov–Vishik–Voevodsky [OVV].

The Milnor conjecture gives a classification of quadratic forms by their
Galois cohomology invariants: Given anisotropic quadratic forms q1 and q2,
suppose ei(q1 ⊥ −q2) = 0 for i ≥ 0. Then q1 = q2 in W (k). We need only to
verify ei(q1 ⊥ −q2) = 0 for i ≤ N where N ≤ 2n and dim(q1 ⊥ −q2) ≤ 2n,
by the following theorem of Arason and Pfister.

Theorem 3.1 (Arason–Pfister Hauptsatz). Let k be a field. The dimension
of an anisotropic quadratic form in In(k) is at least 2n.
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4 Pfister forms

The theory of Pfister forms (or multiplicative forms, as Pfister called them)
evolved from questions on classification of quadratic forms whose nonzero
values form a group (hereditarily).

Definition 4.1. A regular quadratic form q over k is called multiplicative
if the nonzero values of q over any extension field L over k form a group.

We have the following examples of quadratic forms which are multiplica-
tive.

Example 4.2. 〈1〉: nonzero squares are multiplicatively closed in k∗.

Example 4.3. 〈1,−a〉: x2 − ay2, a ∈ k∗ is the norm from the quadratic
algebra k[t]/(t2 − a) over k and the norm is multiplicative.

Example 4.4. 〈1,−a〉 ⊗ 〈1,−b〉: x2 − ay2 − bz2 + abt2 is a norm form from
the quaternion algebra H(a, b): N(α+ iβ+ jγ+ ijδ) = α2−aβ2−bγ2 +abδ2.
The norm once again is multiplicative.

Example 4.5. 〈1,−a〉 ⊗ 〈1,−b〉 ⊗ 〈1,−c〉: (x2 − ay2 − bz2 + abt2)− c(u2 −
av2−bw2 +abs2) is the norm form from an octonion algebra associated to the
triple (a, b, c); it is a non-associative algebra obtained from the quaternion
algebra H(a, b) by a doubling process. The norm is once again multiplicative.

Theorem 4.6 (Pfister). An anisotropic quadratic form q over k is multi-
plicative if and only if q is isomorphic to a Pfister form.

We shall sketch a proof of this theorem. The main ingredients are

Theorem 4.7 (Cassels–Pfister). Let q = 〈a1, . . . , an〉 be a regular quadratic
form over k and f(X) ∈ k[X], a polynomial over k which is a value of q
over k(X). Then there exist polynomials g1, . . . , gn ∈ k[X] such that f(X) =
a1g

2
1(X) + · · ·+ ang

2
n(X).
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Corollary 4.8 (Specialization Lemma). Let q = 〈a1, . . . , an〉 be a quadratic
form over k, X = {X1, . . . , Xn}, p(X) ∈ k(X) a rational function repre-
sented by q over k(X). Then for any v ∈ kn where p(v) is defined, p(v) is
represented by q over k.

Proof. We may assume, by multiplying p(X) by a square, that p(X) ∈ k[X].
Let p(X) = p1(Xn), where p1 is a polynomial in Xn with coefficients in
k[X1, . . . , Xn−1]. By Cassels–Pfister theorem, p1(Xn) is represented by q
over k(X1, . . . , Xn−1)[Xn]. Let v = (v1, . . . , vn). Then specializing Xn to vn,
we have p1(vn) ∈ k[X1, . . . , Xn−1] is represented by q over k(X1, . . . , Xn−1).
By an induction argument, one concludes that p(v1, . . . , vn) is a value of q
over k.

Corollary 4.9. Let q be an anisotropic quadratic form over k of dimension n.
Then q is multiplicative if and only if for indeterminates X = (X1, . . . , Xn),
Y = (Y1, . . . , Yn), q(X) q(Y ) is a value of q over k(X1, . . . , Xn, Y1, . . . , Yn).

Proof. The only non-obvious part is “only if”. Suppose L|k is a field exten-
sion and v, w ∈ Ln. Let q(v) = c and q(w) = d. Since q(X) q(Y ) is a value
of q over k(X, Y ), by Specialization Lemma, q(X) q(w) is a value of q over
L(X) and by the same lemma, q(v) q(w) is a value of q over L.

Theorem 4.10 (Subform Theorem). Let q = 〈a1, . . . , an〉, γ = 〈b1, . . . , bm〉
be anisotropic quadratic forms over k. Then γ is a subform of q (i.e., q ∼=
γ ⊥ γ′ for some form γ′ over k) if and only if b1X

2
1 + · · ·+ bmX

2
m is a value

of q over k(X1, . . . , Xm).

Corollary 4.11. Let q be an anisotropic quadratic form over k of dimen-
sion n. Let X = {X1, . . . , Xn} be a set of n indeterminates. Then q is
multiplicative if and only if q ∼= q(X) q over k(X).

Proof. Suppose q ∼= q(X) q over k(X). Let A be the matrix representing
q over k. There exists W ∈ GLn(k(X)) such that q(X)A = WAW t. Let
Y = {Y1, . . . , Yn} be a set of n indeterminates. Over k(X, Y ),

q(X) q(Y ) = Y (q(X)A)Y t = (YW )A(YW )t = q(Z)

where Z = YW . Thus q(X) q(Y ) is a value of q over k(X, Y ) and by Corol-
lary 4.9, q is multiplicative. Suppose conversely that q is multiplicative. Then

13



q(X) q(Y ) is a value of q over k(X, Y ). By the subform theorem, q(X) q is a
subform of q. A dimension count yields q ∼= q(X) q.

Proof of Pfister’s theorem 4.6. Let q = 〈1, a1〉⊗· · ·⊗〈1, an〉 be an anisotropic
quadratic form over k. Over any field extension L|k, either q is an anisotropic
Pfister form or isotropic in which case it is universal. Thus it suffices to show
that the nonzero values of q form a subgroup of k∗ for any anisotropic n-fold
Pfister form q. The proof is by induction on n; for n = 1, q is the norm
form from a quadratic extension of k (see Example 4.3). Let n ≥ 2. We
have q ∼= q1 ⊥ anq1, where q1 = 〈1, a1〉 ⊗ · · · ⊗ 〈1, an−1〉 is an anisotropic
(n − 1)-fold Pfister form. Let X = {X1, . . . , X2n−1}, Y = {Y1, . . . , Y2n−1}
be two sets of 2n−1 indeterminates. Since q1 is multiplicative, by Corollary
4.11, q1(X) q1

∼= q1 over k(X) and q1(Y ) q1
∼= q1 over k(Y ). We have, over

k(X, Y ),

q ∼= q1(X) q1 ⊥ anq1(Y ) q1
∼= 〈q1(X), anq1(Y )〉 ⊗ q1.

Since q(X, Y ) = q1(X)+anq1(Y ), 〈q1(X), anq1(Y )〉 represents q(X, Y ). There-
fore, by a comparison of discriminants,

〈q1(X), anq1(Y )〉 ∼= 〈q(X, Y ), anq(X, Y )q1(X)q1(Y )〉
∼= q(X, Y )(1 ⊥ anq1(X)q1(Y ))

In particular,

q ∼= q(X, Y )〈1, anq1(X)q1(Y )〉 ⊗ q1

∼= q(X, Y )(q1 ⊥ anq1)
∼= q(X, Y ) q

Thus by Corollary 4.11, q is multiplicative.

Conversely, let q be an anisotropic quadratic form over k which is mul-
tiplicative. Let n be the largest such that q contains an n-fold Pfister form
q1 = 〈1, a1〉⊗· · ·⊗〈1, an〉 as a subform. Suppose q ∼= q1 ⊥ γ, γ = 〈b1, . . . , bm〉,
with m ≥ 1. Let Z = {Z1, . . . , Z2n}. Over k(Z),

q ∼= q(Z, 0) q ∼= q1(Z)(q1 ⊥ γ) ∼= q1(Z) q1 ⊥ q1(Z) γ ∼= q1 ⊥ q1(Z) γ.

By Witt’s cancellation, γ ∼= q1(Z) γ over k(Z). Thus γ represents b1q1(Z)
over k(Z) and by the subform theorem, γ ∼= b1 q1 ⊥ γ1. Then q ∼= q1 ⊥
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b1 q1 ⊥ γ1
∼= 〈1, b1〉⊗ q1 ⊥ γ1 contains an (n+1)-fold Pfister form 〈1, b1〉⊗ q1,

leading to a contradiction to maximality of n. Thus q ∼= q1. �

An important property of Pfister forms is stated in the following.

Proposition 4.12. Let φ be an n-fold Pfister form. If φ is isotropic then φ
is hyperbolic.

Proof. Let φ = r 〈1,−1〉 ⊥ φ0, with φ0 anisotropic, dim(φ0) ≥ 1 and r ≥ 1.
Let dim(φ) = m and X = {X1, . . . , Xm} be a set of m indeterminates. Over
k(X1, . . . , Xm)

φ = r 〈1,−1〉 ⊥ φ0
∼= φ(X1, . . . , Xm)φ ∼= r 〈1,−1〉 ⊥ φ(X1, . . . , Xm)φ0.

By Witt’s cancellation theorem

φ0
∼= φ(X1, . . . , Xm)φ0.

If b is a value of φ0, bφ(X1, . . . , Xm) is a value of φ0 and by the subform
theorem, bφ is a subform of φ0 contradicting dim(φ0) < dim(φ). Thus φ ∼=
r 〈1,−1〉 is hyperbolic.

Corollary 4.13. The only integers n such that a product of sums of n squares
is again a sum of n squares over any field of characteristic zero are n = 2m

for all m ≥ 0.

5 Level of a field

Definition 5.1. The level of a field k is the least positive integer n such
that −1 is a sum of n squares in k. We denote the level of k by s(k).

If the field is formally real (i.e., −1 is not a sum of squares), then the level
is infinite. It was a longstanding open question whether the level of a field,
if finite, is always a power of 2. Pfister’s theory of quadratic forms leads to
an affirmative answer to this question.

Theorem 5.2 (Pfister). The level of a field is a power of 2 if it is finite.
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Proof. Let n = s(k). We choose an integer m such that 2m ≤ n < 2m+1.
Suppose

−1 = (u2
1 + u2

2 + · · ·+ u2
2m) + (u2

2m+1 + · · ·+ u2
n) (5.3)

The element u2
1 + u2

2 + · · · + u2
2m 6= 0 since s(k) ≥ 2m. Every ratio of sums

of 2m squares is again a sum of 2m squares since 〈1, 1〉⊗m is a multiplicative
form. Thus, from (5.3) we see that

0 = 1 +
u2

2m+1 + · · ·+ u2
n + 1

u2
1 + · · ·+ u2

2m

= 1 + (v2
1 + · · ·+ v2

2m)

Therefore, −1 = v2
1 + · · ·+ v2

2m and s(k) = 2m.

Remark 5.4. There exist fields with level 2n for any n ≥ 1. For instance,
R(X1, . . . , X2n)(

√
−(X2

1 + · · ·+X2
2n) ) is a field of level 2n.

Exercise 5.5. Let k be a p-adic field with p 6= 2 and with residue field Fq.
Prove the following:

1. s(k) = 1 if q ≡ 1 (mod 4).

2. s(k) = 2 if q ≡ −1 (mod 4).

6 The u-invariant

Definition 6.1. The u-invariant of a field k, denoted by u(k), is defined to
be the largest integer n such that every (n + 1)-dimensional quadratic form
over k is isotropic and there is an anisotropic form in dimension n over k.

u(k) = max {dim(q) : q anisotropic form over k}.

If k admits an ordering, then sums of nonzero squares are never zero and
there is a refined u-invariant for fields with orderings, due to Elman–Lam
[EL].

Example 6.2. 1. u(Fq) = 2.
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2. u(k(X)) = 2, if k is algebraically closed and X is an integral curve
over k (Tsen’s theorem).

3. u(k) = 4 for k a p-adic field.

4. u(k) = 4 for k a totally imaginary number field. This follows from the
Hasse–Minkowski theorem.

5. Suppose u(k) = n < ∞. Let k((t)) denote the field of Laurent series
over k. Then u(k((t))) = 2n. In fact, the square classes in k((t))∗ are
{uα, tuα}α∈I where {uα}α∈I are the square classes in k∗. As in the p-
adic field case, every form over k((t)) is isometric to 〈u1, . . . , ur〉 ⊥
t〈v1, . . . , vs〉, ui, vi ∈ k∗ and this form is anisotropic if and only if
〈u1, . . . , ur〉 and 〈v1, . . . , vs〉 are anisotropic.

6. More generally, if K is a complete discrete valuated field with residue
field κ of u-invariant n, then u(K) = 2n.

Definition 6.3. A field k is Ci if every homogeneous polynomial in N vari-
ables of degree d with N > di has a nontrivial zero.

Example 6.4. Finite fields and function fields in one variable over alge-
braically closed fields are C1.

If k is a Ci field, u(k) ≤ 2i. Further, the property Ci behaves well with
respect to function field extensions. If l|k is finite and k is Ci then l is Ci;
further, if t1, . . . , tn are indeterminates, k(t1, . . . , tn) is Ci+n.

Example 6.5. The u-invariant of transcendental extensions:

1. u(k(t1, . . . , tn)) = 2n if k is algebraically closed. In fact,

u(k(t1, . . . , tn)) ≤ 2n

since k(t1, . . . , tn) is a Cn field. Further, the form

〈〈t1, . . . , tn〉〉 = 〈1, t1〉 ⊗ · · · ⊗ 〈1, tn〉

is anisotropic over k((t1))((t2)) . . . ((tn)) and hence also over k(t1, . . . , tn).

2. u(Fq(t1, . . . , tn)) = 2n+1.
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All fields of known u-invariant in the 1950’s happened to have u-invariant
a power of 2. Kaplansky raised the question whether the u-invariant of a field
is always a power of 2.

Proposition 6.6. The u-invariant does not take the values 3, 5, 7.

Proof. Let q be an anisotropic form of dimension 3. By scaling, we may as-
sume that q ∼= 〈1, a, b〉. Then the form 〈1, a, b, ab〉 is anisotropic; if 〈1, a, b, ab〉
is isotropic, since discriminant is one, it is hyperbolic and Witt’s cancella-
tion yields 〈a, b, ab〉 ∼= 〈1,−1,−1〉 is isotropic and q ∼= a〈a, b, ab〉 is isotropic
leading to a contradiction. Thus u(k) 6= 3.

Let u(k) < 8. Every 3-fold Pfister form (which has dimension 8) is
isotropic and hence hyperbolic. Thus I3(k) which is generated by 3-fold
Pfister forms is zero. Let q ∈ I2(k) be any quadratic form. For any c ∈ k∗,
〈1,−c〉 q ∈ I3(k) is zero and cq is Witt equivalent to q, hence isometric to q
by Witt’s cancellation. We conclude that every quadratic form whose class
is in I2(k) is universal.

Suppose u(k) = 5 or 7. Let q be an anisotropic form of dimension u(k).
Since every form in dimension u(k) + 1 is isotropic, if disc(q) = d, q ⊥ −d is
isotropic and therefore q represents d. We may write q ∼= q1 ⊥ 〈d〉 where q1

is even-dimensional with trivial discriminant. Hence [q1] ∈ I2(k) so that q1

is universal. This in turn implies that q1 ⊥ 〈d〉 ∼= q is isotropic, leading to a
contradiction.

In the 1990’s Merkurjev [M2] constructed examples of fields k with u(k) =
2n for any n ≥ 1, n = 3 being the first open case, answering Kaplansky’s
question in the negative. Since then, it has been shown that the u-invariant
could be odd. In [I], Izhboldin proves there exist fields k with u(k) = 9 and
in [V] Vishik has shown that there exist fields k with u(k) = 2r + 1 for all
r ≥ 3.

Merkurjev’s construction yields fields k which are not of arithmetic type,
i.e., not finitely generated over a number field or a p-adic field. It is still an
interesting question whether u(k) is a power of 2 if k is of arithmetic type.

The behavior of the u-invariant is very little understood under rational
function field extensions. For instance, it is an open question if u(k) < ∞
implies u(k(t)) <∞ for the rational function field in one variable over k. This
was unknown for k = Qp until the late 1990’s. Conjecturally, u(Qp(t)) = 8,
in analogy with the positive characteristic local field case, u(Fp((X))(t)) = 8.
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We indicate some ways of bounding the u-invariant of a field k once we
know how efficiently the Galois cohomology groups Hn(k,Z/2Z) are gener-
ated by symbols for all n.

We set
Hn

dec(k,Z/2Z) = {(a1). · · · .(an), ai ∈ k∗}
and call elements in this set symbols. By Voevodsky’s theorem on Milnor
conjecture, Hn(k,Z/2Z) is additively generated by Hn

dec(k,Z/2Z).

Proposition 6.7. Let k be a field such that Hn+1(k,Z/2Z) = 0 and for
2 ≤ i ≤ n, there exist integers Ni such that every element in H i(k,Z/2Z) is
a sum of Ni symbols. Then u(k) is finite.

Proof. Let q be a quadratic form over k of dimension m and discriminant
d. Let q1 = 〈d〉 if m is odd and 〈1,−d〉 if m is even. Then q ⊥ −q1 has
even dimension and trivial discriminant. Hence q ⊥ −q1 ∈ I2(k). Let e2(q ⊥
−q1) =

∑
j≤N2

ξ2j where ξ2j ∈ H2
dec(k,Z/2Z). Let φ2j be 2-fold Pfister forms

such that e2(φ2j) = ξ2j. Then q2 =
∑

j≤N2
φ2j has dimension at most 4N2 and

e2(q ⊥ −q1 ⊥ −q2) = 0 and q ⊥ −q1 ⊥ −q2 ∈ I3(k), by Merkurjev’s theorem.
Repeating this process and using Milnor Conjecture, we get qi ∈ I i(k) which
is a sum of Ni i-fold Pfister forms and q −

∑
1≤i≤n qi ∈ In+1(k) = 0, since

Hn+1(k,Z/2Z) = 0. Thus [q] =
∑

1≤i≤n qi and dim(qan) ≤
∑

1≤i≤n 2iNi.
Thus u(k) ≤

∑
1≤i≤n 2iNi.

Definition 6.8. A field k is said to have cohomological dimension at
most n (in symbols, cd(k) ≤ n) if H i(k,M) = 0 for i ≥ n + 1 for all finite
discrete Γk-modules M (cf. [Se] §3).

Example 6.9. Finite fields and function fields in one variable over alge-
braically closed fields have cohomological dimension 1. Totally imaginary
number fields and p-adic fields are of cohomological dimension 2. Thus if k is
a p-adic field, and k(X) a function field in one variable over k, cd(k(X)) ≤ 3.
In particular, H4(k(X),Z/2Z) = 0.

Theorem 6.10 (Saltman). Let k be a non-dyadic p-adic field and k(X) a
function field in one variable over k. Every element in H2(k(X),Z/2Z) is a
sum of two symbols.

Theorem 6.11 (Parimala–Suresh). Let k(X) be as in the previous theorem.
Then every element in H3(k(X),Z/2Z) is a symbol.
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Corollary 6.12. For k(X) as above, u(k(X)) ≤ 2 + 8 + 8 = 18.

It is not hard to show from the above theorems that u(k(X)) ≤ 12. With
some further work it was proved in [PS1] that u(k(X)) ≤ 10. More recently
in [PS2] the estimated value u(k(X)) = 8 was proved. For an alternate
approach to u(k(X)) = 8, we refer to ([HH], [HHK], [CTPS]). More recently,
Heath-Brown and Leep [HB] have proved the following spectacular theorem:
If k is any p-adic field and k(X) the function field in n variables over k, then
u(k(X)) = 2n+2.

7 Hilbert’s seventeenth problem

An additional reference for sums of squares is available from H. Cohen
at http://www.math.u-bordeaux1.fr/∼cohen/Cohensquares.pdf, which is a
translation of the original paper [C].

Definition 7.1. An element f ∈ R(X1, . . . , Xn) is called positive semi-
definite if f(a) ≥ 0 for all a = (a1, . . . , an) ∈ Rn where f is defined.

Hilbert’s seventeenth problem:
Let R(X1, . . . , Xn) be the rational function field in n variables over the field
R of real numbers. Hilbert’s seventeenth problem asks whether every posi-
tive semi-definite f ∈ R(X1, . . . , Xn) is a sum of squares in R(X1, . . . , Xn).
E. Artin settled this question in the affirmative and Pfister gave an effective
version of Artin’s result (cf. [Pf], chapter 6).

Theorem 7.2 (Artin, Pfister). Every positive semi-definite function f ∈
R(X1, . . . , Xn) can be written as a sum of 2n squares in R(X1, . . . , Xn).

For n ≤ 2 the above was due to Hilbert himself. If one asks for expressions
of positive definite polynomials in R[X1, . . . , Xn] as sums of 2n squares in
R[X1, . . . , Xn], there are counterexamples for n = 2; the Motzkin polynomial

f(X1, X2) = 1− 3X2
1X

2
2 +X4

1X
2
2 +X2

1X
4
2

is positive semi-definite but not a sum of 4 squares in R[X1, X2]. In fact,
Pfister’s result has the following precise formulation.
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Theorem 7.3 (Pfister). Let R(X) be a function field in n variables over R.
Then every n-fold Pfister form in R(X) represents every sum of squares in
R(X).

We sketch a proof of this theorem below.

Definition 7.4. Let φ be an n-fold Pfister form with φ = 1 ⊥ φ′. The form
φ′ is called the pure subform of φ.

Proposition 7.5 (Pure Subform Theorem). Let k be any field, φ an aniso-
tropic n-fold Pfister form over k and φ′ its pure subform. If b1 is any value
of φ′, then φ ∼= 〈〈b1, . . . , bn〉〉.

Proof. The proof is by induction on n; for n = 1 the statement is clear. Let
n > 1. We assume the statement holds for all (n − 1)-fold Pfister forms.
Let φ = 〈〈a1, . . . , an〉〉, ψ = 〈〈a1, . . . , an−1〉〉, and let φ′, ψ′ denote the pure
subforms of φ and ψ respectively. We have φ = ψ ⊥ anψ, φ′ = ψ′ ⊥ anψ.
Let b1 be a value of φ′. We may write b1 = b′1 +anb, with b′1 a value of ψ′ and
b a value of ψ. The only nontrivial case to discuss is when b 6= 0 and b′1 6= 0.
By induction, ψ ∼= 〈〈b′1, b2, . . . , bn−1〉〉 and bψ ∼= ψ. We thus have

φ ∼= 〈〈b′1, b2, . . . , bn−1, an〉〉 ∼= 〈〈b′1, b2, . . . , bn−1, anb〉〉
∼= 〈〈b′1, anb〉〉 ⊗ 〈〈b2, . . . , bn−1〉〉

Since b1 = b′1 + anb, 〈b′1, anb〉 ∼= 〈b1, b1b
′
1anb〉 and we have

〈〈b′1, anb〉〉 = 〈1, b′1, anb, anbb′1〉
= 〈1, b1, b1b

′
1anb, anbb

′
1〉

= 〈〈b1, c1〉〉,

where c1 = b1b
′
1anb. Thus,

φ ∼= 〈〈b1, c1, b2, · · · , bn−1〉〉.

Proof of Pfister’s theorem. Let φ be an anisotropic n-fold Pfister form over
K = R(X). Let b = b2

1 + · · ·+ b2
m, bi ∈ K∗. We show that φ represents b by

induction on m. For m = 1, b is a square and is represented by φ. Suppose
m = 2, b = b2

1 + b2
2, b1 6= 0, b2 6= 0. The field K(

√
−1) is a function field in

n variables over C and is Cn. Then φ is universal over K(
√
−1) and hence

21



represents β = b1 + ib2. Let v, w ∈ K2n
such that φK(

√
−1)(v + βw) = β.

Hence
φ(v) + β2φ(w) + β(2φ(v, w)− 1) = 0.

The irreducible polynomial of β over K is

φ(w)X2 + (2φ(v, w)− 1)X + φ(v)

and hence N(β) = b = φ(v)
φ(w)

is a value of φ since φ is multiplicative.

Suppose m > 2. We argue by induction on m. Suppose φ represents all
sums of m − 1 squares. Let b be a sum of m squares. After scaling b by
a square, we may assume that b = 1 + c, c = c2

1 + · · · + c2
m−1, c 6= 0. Let

φ ∼= 1 ⊥ φ′. By induction hypothesis, φ represents c. Let c = c2
0 + c′, c′ a

value of φ′. Let ψ = φ⊗〈1,−b〉 and ψ = 1 ⊥ ψ′ with ψ′ = 〈−b〉 ⊥ φ′ ⊥ −bφ′.
The form ψ′ represents c′ − b = (c − c2

0) − (1 + c) = −1 − c2
0. Thus, by the

Pure Subform theorem,

ψ ∼= 〈〈−1− c2
0, d1, . . . , dn〉〉 = 〈1,−1− c2

0〉 ⊗ 〈〈d1, . . . , dn〉〉.

By induction, the n-fold Pfister form 〈〈d1, . . . , dn〉〉 represents 1 + c2
0 which

is a sum of 2 squares; thus ψ is isotropic, hence hyperbolic. Thus φ ∼= bφ
represents b.

Corollary 7.6. Let K = R(X) be a function field in n variables over R.
Then every sum of squares in K is a sum of 2n squares.

Proof. Set φ = 〈1, 1〉⊗n in the above theorem.

8 Pythagoras number

Definition 8.1. The Pythagoras number p(k) of a field k is the least
positive integer n such that every sum of squares in k∗ is a sum of at most n
squares.

Example 8.2. If R is the field of real numbers, p(R) = 1.

Example 8.3. If R(X1, . . . , Xn) is a function field in n variables over R, by
Pfister’s theorem, p(R(X1, . . . , Xn)) ≤ 2n.
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8.1 Effectiveness of the bound p(R(X)) ≤ 2n

Let
K = R(X1, . . . , Xn)

be the rational function field in n variables over R. For n = 1 the bound is
sharp. For n = 2 the Motzkin polynomial

f(X1, X2) = 1− 3X2
1X

2
2 +X4

1X
2
2 +X2

1X
4
2

is positive semi-definite; Cassels–Ellison–Pfister [CEP] show that this poly-
nomial is not a sum of three squares in R(X1, X2) (see also [CT]). Therefore
p(R(X1, X2)) = 4.

Lemma 8.4 (Key Lemma). Let k be a field and n = 2m. Let u = (u1, . . . , un)
and v = (v1, . . . , vn) ∈ kn be such that u · v =

∑
1≤i≤n uivi = 0. Then there

exist wj ∈ k, 1 ≤ j ≤ n− 1 such that∑
1≤i≤n

u2
i

∑
1≤i≤n

v2
i =

∑
1≤j≤n−1

w2
j .

Proof. Let λ =
∑

1≤i≤n u
2
i , µ =

∑
1≤i≤n v

2
i . We may assume without loss of

generality that u 6= 0 and v 6= 0. The elements λ and µ are values of φm =
〈1, 1〉⊗m and λφm ∼= φm, µφm ∼= φm. We choose isometries f : λφm ∼= φm,
g : µφm ∼= φm such that f(1, 0, . . . , 0) = u and g(1, 0, . . . , 0) = v. If U and V
are matrices representing f , g respectively, we have

UU t = λ−1, V V t = µ−1, λ−1µ−1 = λ−1V V t = (V U t)(V U t)t.

The first row of V U t is of the form (0, w2, . . . , wn) since u · v = 0. Thus
λ−1µ−1 =

∑
2≤i≤nw

2
i .

Corollary 8.5. Let k be an ordered field with p(k) = n. Then p(k(t)) ≥ n+1.

Proof. Let λ ∈ k∗ be such that λ is a sum of n squares and not a sum
of less than n squares. Suppose λ + t2 is a sum of n squares in k(t). By
Cassels–Pfister theorem,

λ+ t2 = (µ1 + ν1t)
2 + · · ·+ (µn + νnt)

2
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with µi, νi ∈ k∗. If u = (µ1, . . . , µn), v = (ν1, . . . , νn), then u · v = 0,∑
1≤i≤n µ

2
i = λ,

∑
1≤i≤n ν

2
i = 1. Thus λ = (

∑
1≤i≤n µ

2
i )(
∑

1≤i≤n ν
2
i ) is a sum

of n− 1 squares by the Key Lemma, 8.4, contradicting the choice of λ.

Corollary 8.6. p(R(X1, . . . , Xn)) ≥ n+ 2. Thus

n+ 2 ≤ p(R(X1, . . . , Xn)) ≤ 2n.

Proof. By [CEP], we know that p(R(X1, X2)) = 4. The fact that n + 2 ≤
p(R(X1, . . . , Xn)) now follows by Corollary 8.5 and induction.

Remark 8.7. It is open whether p(R(X1, X2, X3)) = 5, 6, 7 or 8.

Remark 8.8. The possible values of the Pythagoras number of a field have
all been listed ([H], [Pf, p. 97]).

Proposition 8.9. If k is a non-formally real field, p(k) = s(k) or s(k) + 1.

Proof. If s(k) = n, −1 is not a sum of less than n squares, so that p(k) ≥ s(k).
For a ∈ k∗,

a =

(
a+ 1

2

)2

+ (−1)

(
a− 1

2

)2

is a sum of n+1 squares if −1 is a sum of n squares. Thus p(k) ≤ s(k)+1.

Let k be a p-adic field and K = k(X1, . . . , Xn) a rational function field
in n variables over k. Then s(k) = 1, 2 or 4 so that s(K) = 1, 2, or 4. Thus
p(K) ≤ 5 (in fact it is easy to see that if s(k) = s, p(K) = s+ 1).

Thus we have bounds for p(k(X1, . . . , Xn)) if k is the field of real or com-
plex numbers or the field of p-adic numbers. The natural questions concern
a number field k.

9 Function fields over number fields

Let k be a number field and F = k(t) the rational function field in one
variable over k. In this case p(k(t)) = 5 is a theorem ([La]). The fact that
p(k(t)) ≤ 8 can be easily deduced from the following injectivity in the Witt
groups ([CTCS], Prop. 1.1):

W (k(t)) −→
∏

w∈Ω(k)

W (kw(t)),
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with Ω(k) denoting the set of places of k. In fact, if f ∈ k(t) is a sum of
squares, f is a sum of at most two squares in kw(t) for a real place w, by
Pfister’s theorem (which in the case of function fields of curves goes back to
Witt). Further, for a finite place w of k or a complex place, 〈1, 1〉⊗3 = 0 in
W (kw). Thus 〈1, 1〉⊗3 ⊗ 〈1,−f〉 is hyperbolic over kw(t) for all w ∈ Ω(k).

By the above injectivity, this form is hyperbolic over k(t), leading to the
fact that f is a sum of at most eight squares in k(t).

We have the following conjecture due to Pfister for function fields over
number fields.

Conjecture (Pfister). Let k be a number field and F = k(X) a function
field in d variables over k. Then

1. for d = 1, p(F ) ≤ 5.

2. for d ≥ 2, p(F ) ≤ 2d+1.

For a general function field k(X) in one variable over k, (d = 1), the best
known result is due to F. Pop, p(F ) ≤ 6 [P]. We sketch some results and
conjectures from the arithmetic side which could lead to a solution of the
conjecture for d ≥ 2 (see Colliot-Thélène, Jannsen [CTJ] for more details).

For any field k, by Voevodsky’s theorem, we have an injection

en : Pn(k)→ Hn(k,Z/2Z).

In fact, for any field k, if φ1, φ2 ∈ Pn(k) have the same image under en
then φ1 ⊥ −φ2 ∈ ker(en) = In+1(k). In W (k), φ1 ⊥ −φ2 = φ′1 ⊥ −φ′2
where φ′1 and φ′2 are the pure subforms of φ1 and φ2. Moreover, dim(φ′1 ⊥
−φ′2)an ≤ 2n+1−2 < 2n+1. By the Arason–Pfister Hauptsatz, (Theorem 3.1),
anisotropic forms in In+1(k) must have dimension at least 2n+1. Therefore
φ1 = φ2.

Let k be a number field and F = k(X) be a function field in d variables
over k. Let f ∈ F be a function which is a sum of squares in F . One would
like to show that f is a sum of 2d+1 squares. Let φd+1 = 〈1, 1〉⊗(d+1) and
q = φd+1 ⊗ 〈1,−f〉. This is a (d+ 2)-fold Pfister form and φd+1 represents f
if and only if q is hyperbolic or equivalently, by the injectivity of en above,
ed+2(φd+1 ⊗ 〈1,−f〉) = 0.

We look at this condition locally at all completions kv at places v of
k. Let kv(X) denote the function field of X over kv. (We may assume
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that X is geometrically integral). Let v be a complex place. The field
kv(X) has cohomological dimension d so that Hm(kv(X),Z/2Z) = 0 for
m ≥ d+1. Hence ed+2(φd+1⊗〈1,−f〉) = 0 over kv(X). Let v be a real place.
Over kv(X), f is a sum of squares, hence a sum of at most 2d squares (by
Pfister’s theorem 7.3) so that φd+1⊗〈1,−f〉 is hyperbolic over kv(X). Hence
ed+2(φd+1 ⊗ 〈1,−f〉) = 0.

Let v be a non-dyadic p-adic place of k. Then φ2 is hyperbolic over kv so
that φd+1 ⊗ 〈1,−f〉 = 0 and ed+2(φd+1 ⊗ 〈1,−f〉) = 0.

Let v be a dyadic place of k. Over kv, φ3 is hyperbolic so that ed+2(φd+1⊗
〈1,−f〉) = 0. Thus for all completions v of k, ed+2(φd+1 ⊗ 〈1,−f〉) is zero.
The following conjecture of Kato implies Pfister’s conjecture for d ≥ 2.

Conjecture (Kato). Let k be a number field, X a geometrically integral
variety over k of dimension d. Then the map

Hd+2(k(X),Z/2Z)→
∏
v∈Ωk

Hd+2(kv(X),Z/2Z)

has trivial kernel.

The above conjecture is the classical Hasse–Brauer–Noether theorem if
the dimension of X is zero, i.e., the injectivity of the Brauer group map:

Br(k) ↪→
⊕
v∈Ωk

Br(kv).

For dimX = 1, the conjecture is a theorem of Kato ([K]). For dimX = 2,
Kato’s conjecture was proved by Jannsen ([Ja]). Using Jannsens’s theorem,
Colliot-Thélène–Jannsen [CTJ] derived Pfister’s conjecture: every sum of
squares in k(X), X a surface over a number field, is a sum of at most 8
squares.

We explain how Kato’s theorem was used by Colliot-Thélène to derive
p(k(X)) ≤ 7 for a curve X over a number field.

Suppose K = k(X) has no ordering. We claim that s(K) ≤ 4. To show
this it suffices to show that 〈1, 1〉⊗3 is zero over kv(X) for every place v of k.
At finite places v, 〈1, 1〉⊗3 is already zero in kv. If v is a real place of k, kv(X)
is the function field of a real curve over the field of real numbers which has no
orderings. By a theorem of Witt, Br(kv(X)) = 0 and every sum of squares is
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a sum of two squares in kv(X). Thus −1 is a sum of two squares in kv(X) and
〈1, 1〉⊗3 = 0 over kv(X). Since H3(k(X),Z/2Z) →

∏
v∈Ωk

H3(kv(X),Z/2Z)
is injective by Kato’s theorem, e3(〈1, 1〉⊗3) = 0 in H3(k(X),Z/2Z). Since e3

is injective on 3-fold Pfister forms, 〈1, 1〉⊗3 = 0 in k(X). Thus s(k(X)) ≤ 4.
In this case, p(k(X)) ≤ 5.

Suppose K has an ordering. Let f ∈ K∗ be a sum of squares in K. Then
K(
√
−f) has no orderings and hence −1 is a sum of 4 squares in K(

√
−f).

Let ai, bi ∈ K be such that

−1 =
∑

1≤i≤4

(ai + bi
√
−f)2, ai, bi ∈ K.

Then
1 +

∑
1≤i≤4

a2
i = f

( ∑
1≤i≤4

b2
i

)
,
∑

1≤i≤4

aibi = 0.

By the Key Lemma, 8.4, (1 +
∑

1≤i≤4 a
2
i )
∑

1≤i≤4 b
2
i is a sum of at most 7

squares.
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