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Non-archimedean Fields

Let K be a field with a non-archimedean absolute value
‘ . | K — R.

That is, for all x,y € K,
> |x| >0, with equality iff x =0,

> |xy| = |x|-|yl,
> |x +y| < max{|x], |y|}.

We assume | - | is nontrivial; that is, |K| 2 {0,1}.

We usually assume K is complete w.r.t. | -|.
(All Cauchy sequences converge).

Fun Fact: Let K be a complete non-archimedean field, and let
{an}n>0 be a sequence in K. Then

Z a, converges if and only if lim a, =0.

n—o00
n>0
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The Residue Field and Value Group

Let K be a non-archimedean field.
The ring of integers and (unique) maximal ideal of K are

Ok ={xeK:|x| <1} and Mg ={xe K:|x| <1}.

The residue field of K is

k= Ox/Mkg.

The value group of K is

|K*] € (0,00).



A Sketch of a Non-archimedean Field with k = [F3
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Extension Fields

Let K be a complete non-archimedean field, and let L/K be an
algebraic extension.

Then | - | extends uniquely to L.

The new residue field £ is an algebraic extension of k.
The new value group |L*| contains |[K*| as a subgroup.
The algebraic closure K of K may not be complete.

But its completion Ck is both complete and algebraically closed.
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Example: p-adic numbers
Fix p > 2 prime. The p-adic absolute value on Q is given by

=p for r,s € Z not divisible by p.

Idea: numbers divisible by large powers of p are “small”.

Qp ::{Zanp”:nOEZ,ane{O,l,...,p—l}}

n>ng

is the completion of Q w.r.t. |- |, with ring of integers

n>0

maximal ideal Mg, := pZp, value group |Q; [, = p%, and residue
field Zp/pZp = 7/ pZ = ).
The completion C, of an algebraic closure @p has residue field F,
and value group |C;| = p<.
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Example: Laurent and Puiseux Series

Fix F a field. The field of formal Laurent series

F((t)) == { D ant":ng € Z,ap € IF}

n>no
has a non-archimedean absolute value

|| := gorde=of,
where 0 < € < 1 is any (fixed) thing you want.

The ring of integers is the ring F[[t]] of power series, with maximal
ideal tF[[t]], residue field

k = F[[e]]/¢R([e]] = F,

and value group |F((t))*| = 2.

The completion L of an algebraic closure F((t)) is the field of
formal Puiseux series over F, with residue field F and value group
IL¥| = 2.
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Disks

Given a € Ck and r > 0,

D(a,r):={xeCk:|x—a]<r} and
D(a,r):={x€Cx:|x—al <r}

are the associated open disk and closed disk.

> if r ¢ |Cx|, then D(a,r) = D(a,r) is an irrational disk
> if r € |C¥|, then then D(a,r) C D(a,r).

» D(a,r) is a rational open disk

» D(a,r) is a rational closed disk

Note:

» All disks are (topologically) both open and closed

» Any disk is exactly one of: rational open, rational closed, or
irrational (as a disk).



More about Disks

» Any point of a disk is a center:
D(a,r) = D(b,r) (resp., b(a,L) = D(b,r))
for all b € D(a,r) (resp., b € D(a,r))



More about Disks

» Any point of a disk is a center:
D(a,r) = D(b,r) (resp., D(a,r) = D(b,r))
for all b € D(a,r) (resp., b € D(a,r))
> Since our disks lie in Ck, and |Cy/| is dense in (0, 00),
the radius of a disk D C Ck is well-defined,
and equal to the diameter sup{|x — y| : x,y € D}.



More about Disks

» Any point of a disk is a center:
D(a,r) = D(b,r) (resp., D(a,r) = D(b,r))
for all b € D(a,r) (resp., b € D(a,r))
> Since our disks lie in Ck, and |Cy/| is dense in (0, 00),
the radius of a disk D C Ck is well-defined,
and equal to the diameter sup{|x — y| : x,y € D}.

» Two disks intersect if and only if one contains the other.



More about Disks

» Any point of a disk is a center: B
D(a,r) = D(b,r) (resp., D(a,L) = D(b, r))
for all b € D(a,r) (resp., b € D(a,r))
> Since our disks lie in Ck, and |Cy/| is dense in (0, 00),
the radius of a disk D C Ck is well-defined,
and equal to the diameter sup{|x — y| : x,y € D}.
» Two disks intersect if and only if one contains the other.

» All non-archimedean fields are totally disconnected.
(l.e., the only connected nonempty subsets are singletons.)



More about Disks

» Any point of a disk is a center:
D(a,r) = D(b,r) (resp., b(a,L) = D(b,r))
for all b € D(a,r) (resp., b € D(a,r))
> Since our disks lie in Ck, and |Cy/| is dense in (0, 00),
the radius of a disk D C Ck is well-defined,
and equal to the diameter sup{|x — y| : x,y € D}.
» Two disks intersect if and only if one contains the other.

» All non-archimedean fields are totally disconnected.
(l.e., the only connected nonempty subsets are singletons.)

> Qp and Fgy((t)) are locally compact,
but Ck is not locally compact.
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(Power Series and) Polynomials on Disks

Theorem

Let a€ Ck and r > 0.

Letg(z)=co+ca(z—a)+ - +cm(z—a) € Cklz] be a
polynomial. (Or more generally, g(z) € Ck[[z — a]] is a power
series satisfying certain mild convergence conditions)

Let s := r,r11>ai<{]cn\r”}, and

i := minimum n > 1 for which |c,|r" = s,
J = maximum n > 1 for which |c,|r" = s.
Then g maps

D(a,r) i-to-1 onto D(co,s), and
D(a,r) j-to-1onto D(c,s),

counting multiplicity.
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Example

Ck =Cp, and g(z) = pjz5 + p2237+ z° + pz + p3.
Then for any r > 0, g(D(0, r)) = D(p3,s), where

. 1
\plpr = p~Lr |f0<r§]p],,:;,
_ it 1 4/3
S=4r if = = |plp < r < |plp*? = p*,
p*pr® = p*r®  if r > |pl, " = p*R,

[Note: D(p?,s) = D(0,s) for s > [p|3 = p—3]

2-1 for \p|p<r< Iplp 3

5-1 for r > \p\p
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P!(Ck)-Disks
Recall P}(Ck) = Ck U {oo}.
Definition
A PY(Ck)-disk is either
» adisk D C Ckg, or
> the complement P!(Ck) . D of a disk D C Ck.

We can attach the adjectives rational open, rational closed, or
irrational in the obvious way.

Theorem

Let g(z) € Ck(z) be a non-constant rational function,
and let D C P}(Ck) be a P}(Ck)-disk.
Then g(D) is either

> all of PY(Ck), or
> a P1(Ck)-disk of the same type as D.
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Connected Affinoids

Definition

A connected affinoid in P*(Ck) is a nonempty intersection of
finitely many P1(C)-disks. Equivalently, a connected affinoid is
P!(Ck) with finitely many P!(Cx)-disks removed.

We can attach the adjectives rational open, rational closed, or
irrational in the obvious way.

Theorem
Let g(z) € Ck(z) be a rational function of degree d > 1,
and let U C PY(Ck) be a connected affinoid. Then

» g(U) is either P}(Ck) or a connected affinoid of the same
type as U.

» g (V) is a union of 1 < ¢ < d connected affinoids
Vi,..., Vy of the same type, and g : V; — U is d;-to-1, where

VA
1<d <d, andZd,-:d.
=1
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Ck = Cp, and g(z) = pz3 — 22 + z. Then
> Let U be the rational closed annulus D(0,1) ~. D(0,1).
Then g(U) = D(0,1).
[Note: some points map 1-to-1, but others map 2-to-1.]
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A Polynomial Example

Ck = Cp, and g(z) = pz3 — 22 + z. Then
> Let U be the rational closed annulus D(0,1) ~. D(0,1).
Then g(U) = D(0,1).
[Note: some points map 1-to-1, but others map 2-to-1.]

~1(D(0,1)) = D(0,1) U D(1/p, |plp), with
g : D(0,1) — D(0,1) mapping 2-to-1, and
g : D(1/p,|plp) — D(0,1) mapping 1-to-1.

vy

> g 1(D(0, |p|;3)) = D(0, |p|,*"*), mapping 3-to-1.



A Rational Example

Ck is any complete, algebraically closed non-archimedean field,

1 21
andh(z):z—f:Z )
V4

V4



A Rational Example

Ck is any complete, algebraically closed non-archimedean field,

1 21
andh(z):z—f:Z )
V4

» h~1(D(0,1)) = D(1,1) U D(—1,1), with

» each of D(£1,1) mapping 1-1 onto D(0, 1) if the residue
characteristic is not 2, or



A Rational Example

Ck is any complete, algebraically closed non-archimedean field,

1 21
andh(z):z—f:Z )
V4

» h~1(D(0,1)) = D(1,1) U D(—1,1), with

» each of D(£1,1) mapping 1-1 onto D(0, 1) if the residue
characteristic is not 2, or

» D(—1,1) = D(1,1) mapping 2-1 onto D(0,1) if the residue
characteristic is 2.



A Rational Example

Ck is any complete, algebraically closed non-archimedean field,

1 21
andh(z):z—f:Z )
V4

» h~1(D(0,1)) = D(1,1) U D(—1,1), with

» each of D(£1,1) mapping 1-1 onto D(0, 1) if the residue
characteristic is not 2, or

» D(—1,1) = D(1,1) mapping 2-1 onto D(0,1) if the residue
characteristic is 2.

» h=1(D(0,1)) is the annulus D(0,1) ~ D(0, 1),
which maps 2-to-1 onto D(0,1).
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Dynamics on P}(Ck): Classifying Periodic Points

Fix a rational function ¢(z) € Ck(z) of degree d > 2.

If x € P}(Ck) is periodic of exact period n, then
A = (¢")(x) is the multiplier of x. We say x is
> attracting if |\| < 1.
> repelling if [\ > 1.

» indifferent (or neutral) if |A\| = 1.

Note:

» The multiplier is the the same for all points in the periodic
cycle of x.

» The multiplier is coordinate-independent.
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The Spherical Metric on P}(Ck)

There is a spherical metric on P*(Cx) analogous to that on P*(C):

|z1 — 2|

Az, z) =

max{1, |z1|} max{1, |z|}

More precisely, to allow the point at oo,
in homogeneous coordinates we write:

Ix1y2 — xoy1|
max{|xi|, [y1]} max{|xa|, |y2|}

A([x1, y1], [x2, yo]) =
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Fatou and Julia Sets

Definition
Let ¢ € Ck(z) be a rational function of degree d > 2.
The (classical) Fatou set F = F; of ¢ is

F = {x e P! :{¢"}n>0 is equicontinuous on a neighborhood of x}
={xe P! for all n > 1 and y € P}(Ck) s.t. A(x,y) is small,
A(9"(x), ¢"(y)) is also small.}

The (classical) Julia set 7 = Js is ¢ is J = P}(Ck) \ F.
Idea:

» In the Fatou set, small errors stay small under iteration.

» In the Julia set, small errors may become large.
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> Fyn = Fy, and Ty = Ts.
> )(F)=F =¢"HF), and () =T = ¢~ 1(J).
» All attracting periodic points are Fatou.

» All repelling periodic points are Julia.

An equivalent definition for Ck:

Theorem

Let ¢ € Ck(z), and let x € P(Ck). Then x € F, if and only if
there is a P*(Ck)-disk D > x such that

#P (C) N [ 0"(D)] 2 2

n>0
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A Quadratic Example

#(z) = 22 + az € Ck|z].

» If |a] <1, then ¢(D(0,1)) C D(0,1),
and #(P}(Ck) ~ D(0,1)) C P}(Ck) ~ D(0,1).

So f¢> = Pl((CK), and j¢ = .
> If |]al = R > 1, set Up = D(0, R).
Then ¢(P*(Ck) ~ Ug) € P(Ck) ~ Up, so PH(Ck) ~ Up C Fo.

Forall n > 1, set U, := ¢~ "(Up).
Then U, is a disjoint union of 2" closed disks of radius R-n.

Ty = ﬂn>0 U, is a Cantor set, and all points of
Fy =PY(Ck) \ Ty are attracted to oo under iteration.

Similarly: Over C,, Smart and Woodcock showed
#(z) = (2P — z)/p has Ty = Zp.
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A Cubic Example (due to Hsia)

Assume the residue characteristic is not 2, and set

#(z) = az®> + 22 + bz + ¢, where 0 < |a] <1, and |b|,|c| < 1.
Then ¢(D(0,1)) C D(0,1), so D(0,1) C Fp.
But ¢ has a repelling fixed point a with |a| = |a|7! > 1.
For all n > 1, there is a point 8, € ¢~"(a) s.t. |Ba] = |a|~/?".
Since 3, € Jp, the set J is not compact!!!
Note: if we set Uy = D(0, |a|~1), then

d(PH(Ck) \ Uo) € PY(Ck) ~ Uo

as before, and U, := ¢~ "(Up) is a disjoint union of many disks.

In fact, Fy is the union of P*(Ck) \ (1,51 Un and all preimages of
D(0,1).
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Contrasts with C

C Ck

Some indifferent points are | All indifferent points are Fatou
Fatou, and some are Julia.

J is compact J may not be compact
J is nonempty J may be empty

F may be empty JF is nonempty

J is the closure of the set 777

of repelling periodic points (see Project # 1)
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A Quick Technical Note

The field Ck is complete, but it is usually not spherically
complete.

That is, it is possible to have a decreasing chain of disks
Dy2D;2D32---

in a (not spherically complete field) Ck such that

ﬂD,,:@.

n>1

In this case, the disks D, must have radius bounded below by some
R>0.

For example, C, and the Puiseux series field L. are not spherically
complete.



