Non-archimedean Dynamics in Dimension One: Lecture 1

Robert L. Benedetto
Amherst College

Arizona Winter School

Saturday, March 13, 2010

Non-archimedean Fields

Let K be a field with a non-archimedean absolute value $|\cdot|: K \rightarrow \mathbb{R}$.

Non-archimedean Fields

Let K be a field with a non-archimedean absolute value $|\cdot|: K \rightarrow \mathbb{R}$.

That is, for all $x, y \in K$,

- $|x| \geq 0$, with equality iff $x=0$,
- $|x y|=|x| \cdot|y|$,
$-|x+y| \leq \max \{|x|,|y|\}$.

Non-archimedean Fields

Let K be a field with a non-archimedean absolute value $|\cdot|: K \rightarrow \mathbb{R}$.
That is, for all $x, y \in K$,

- $|x| \geq 0$, with equality iff $x=0$,
- $|x y|=|x| \cdot|y|$,
- $|x+y| \leq \max \{|x|,|y|\}$.

We assume $|\cdot|$ is nontrivial; that is, $|K| \supsetneq\{0,1\}$.

Non-archimedean Fields

Let K be a field with a non-archimedean absolute value $|\cdot|: K \rightarrow \mathbb{R}$.
That is, for all $x, y \in K$,

- $|x| \geq 0$, with equality iff $x=0$,
- $|x y|=|x| \cdot|y|$,
- $|x+y| \leq \max \{|x|,|y|\}$.

We assume $|\cdot|$ is nontrivial; that is, $|K| \supsetneq\{0,1\}$.
We usually assume K is complete w.r.t. $|\cdot|$.
(All Cauchy sequences converge).

Non-archimedean Fields

Let K be a field with a non-archimedean absolute value $|\cdot|: K \rightarrow \mathbb{R}$.
That is, for all $x, y \in K$,

- $|x| \geq 0$, with equality iff $x=0$,
- $|x y|=|x| \cdot|y|$,
- $|x+y| \leq \max \{|x|,|y|\}$.

We assume $|\cdot|$ is nontrivial; that is, $|K| \supsetneq\{0,1\}$.
We usually assume K is complete w.r.t. $|\cdot|$.
(All Cauchy sequences converge).

Fun Fact: Let K be a complete non-archimedean field, and let $\left\{a_{n}\right\}_{n \geq 0}$ be a sequence in K. Then

$$
\sum_{n \geq 0} a_{n} \text { converges } \quad \text { if and only if } \quad \lim _{n \rightarrow \infty} a_{n}=0
$$

The Residue Field and Value Group

Let K be a non-archimedean field.
The ring of integers and (unique) maximal ideal of K are

$$
\mathcal{O}_{K}=\{x \in K:|x| \leq 1\} \quad \text { and } \quad \mathcal{M}_{K}=\{x \in K:|x|<1\} .
$$

The Residue Field and Value Group

Let K be a non-archimedean field.
The ring of integers and (unique) maximal ideal of K are

$$
\mathcal{O}_{K}=\{x \in K:|x| \leq 1\} \quad \text { and } \quad \mathcal{M}_{K}=\{x \in K:|x|<1\} .
$$

The residue field of K is

$$
k:=\mathcal{O}_{K} / \mathcal{M}_{K}
$$

The Residue Field and Value Group

Let K be a non-archimedean field.
The ring of integers and (unique) maximal ideal of K are

$$
\mathcal{O}_{K}=\{x \in K:|x| \leq 1\} \quad \text { and } \quad \mathcal{M}_{K}=\{x \in K:|x|<1\} .
$$

The residue field of K is

$$
k:=\mathcal{O}_{K} / \mathcal{M}_{K}
$$

The value group of K is

$$
\left|K^{\times}\right| \subseteq(0, \infty)
$$

A Sketch of a Non-archimedean Field with $k \cong \mathbb{F}_{3}$

Extension Fields

Let K be a complete non-archimedean field, and let L / K be an algebraic extension.

Then $|\cdot|$ extends uniquely to L.

Extension Fields

Let K be a complete non-archimedean field, and let L / K be an algebraic extension.

Then $|\cdot|$ extends uniquely to L.
The new residue field ℓ is an algebraic extension of k.

Extension Fields

Let K be a complete non-archimedean field, and let L / K be an algebraic extension.

Then $|\cdot|$ extends uniquely to L.
The new residue field ℓ is an algebraic extension of k.
The new value group $\left|L^{\times}\right|$contains $\left|K^{\times}\right|$as a subgroup.

Extension Fields

Let K be a complete non-archimedean field, and let L / K be an algebraic extension.

Then $|\cdot|$ extends uniquely to L.
The new residue field ℓ is an algebraic extension of k.
The new value group $\left|L^{\times}\right|$contains $\left|K^{\times}\right|$as a subgroup.
The algebraic closure \bar{K} of K may not be complete.
But its completion \mathbb{C}_{K} is both complete and algebraically closed.

Example: p-adic numbers

Fix $p \geq 2$ prime. The p-adic absolute value on \mathbb{Q} is given by

$$
\left|\frac{r}{s} p^{n}\right|_{p}=p^{-n} \quad \text { for } r, s \in \mathbb{Z} \text { not divisible by } p .
$$

Example: p-adic numbers

Fix $p \geq 2$ prime. The p-adic absolute value on \mathbb{Q} is given by

$$
\left|\frac{r}{s} p^{n}\right|_{p}=p^{-n} \quad \text { for } r, s \in \mathbb{Z} \text { not divisible by } p .
$$

Idea: numbers divisible by large powers of p are "small".

Example: p-adic numbers

Fix $p \geq 2$ prime. The p-adic absolute value on \mathbb{Q} is given by

$$
\left|\frac{r}{s} p^{n}\right|_{p}=p^{-n} \quad \text { for } r, s \in \mathbb{Z} \text { not divisible by } p .
$$

Idea: numbers divisible by large powers of p are "small".

$$
\mathbb{Q}_{p}:=\left\{\sum_{n \geq n_{0}} a_{n} p^{n}: n_{0} \in \mathbb{Z}, a_{n} \in\{0,1, \ldots, p-1\}\right\}
$$

is the completion of \mathbb{Q} w.r.t. $|\cdot|_{p}$,

Example: p-adic numbers

Fix $p \geq 2$ prime. The p-adic absolute value on \mathbb{Q} is given by

$$
\left|\frac{r}{s} p^{n}\right|_{p}=p^{-n} \quad \text { for } r, s \in \mathbb{Z} \text { not divisible by } p .
$$

Idea: numbers divisible by large powers of p are "small".

$$
\mathbb{Q}_{p}:=\left\{\sum_{n \geq n_{0}} a_{n} p^{n}: n_{0} \in \mathbb{Z}, a_{n} \in\{0,1, \ldots, p-1\}\right\}
$$

is the completion of \mathbb{Q} w.r.t. $|\cdot|_{p}$, with ring of integers

$$
\mathbb{Z}_{p}:=\mathcal{O}_{\mathbb{Q}_{p}}=\left\{\sum_{n \geq 0} a_{n} p^{n}: a_{n} \in\{0,1, \ldots, p-1\}\right\}
$$

Example: p-adic numbers

Fix $p \geq 2$ prime. The p-adic absolute value on \mathbb{Q} is given by

$$
\left|\frac{r}{s} p^{n}\right|_{p}=p^{-n} \quad \text { for } r, s \in \mathbb{Z} \text { not divisible by } p .
$$

Idea: numbers divisible by large powers of p are "small".

$$
\mathbb{Q}_{p}:=\left\{\sum_{n \geq n_{0}} a_{n} p^{n}: n_{0} \in \mathbb{Z}, a_{n} \in\{0,1, \ldots, p-1\}\right\}
$$

is the completion of \mathbb{Q} w.r.t. $|\cdot|_{p}$, with ring of integers

$$
\mathbb{Z}_{p}:=\mathcal{O}_{\mathbb{Q}_{p}}=\left\{\sum_{n \geq 0} a_{n} p^{n}: a_{n} \in\{0,1, \ldots, p-1\}\right\}
$$

maximal ideal $\mathcal{M}_{\mathbb{Q}_{p}}:=p \mathbb{Z}_{p}$, value group $\left|\mathbb{Q}_{p}^{\times}\right|_{p}=p^{\mathbb{Z}}$, and residue field $\mathbb{Z}_{p} / p \mathbb{Z}_{p} \cong \mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$.

Example: p-adic numbers

Fix $p \geq 2$ prime. The p-adic absolute value on \mathbb{Q} is given by

$$
\left|\frac{r}{s} p^{n}\right|_{p}=p^{-n} \quad \text { for } r, s \in \mathbb{Z} \text { not divisible by } p .
$$

Idea: numbers divisible by large powers of p are "small".

$$
\mathbb{Q}_{p}:=\left\{\sum_{n \geq n_{0}} a_{n} p^{n}: n_{0} \in \mathbb{Z}, a_{n} \in\{0,1, \ldots, p-1\}\right\}
$$

is the completion of \mathbb{Q} w.r.t. $|\cdot|_{p}$, with ring of integers

$$
\mathbb{Z}_{p}:=\mathcal{O}_{\mathbb{Q}_{p}}=\left\{\sum_{n \geq 0} a_{n} p^{n}: a_{n} \in\{0,1, \ldots, p-1\}\right\}
$$

maximal ideal $\mathcal{M}_{\mathbb{Q}_{p}}:=p \mathbb{Z}_{p}$, value group $\left|\mathbb{Q}_{p}^{\times}\right|_{p}=p^{\mathbb{Z}}$, and residue field $\mathbb{Z}_{p} / p \mathbb{Z}_{p} \cong \mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$.
The completion \mathbb{C}_{p} of an algebraic closure $\overline{\mathbb{Q}}_{p}$ has residue field $\overline{\mathbb{F}}_{p}$ and value group $\left|\mathbb{C}_{p}^{\times}\right|=p^{\mathbb{Q}}$.

Example: Laurent and Puiseux Series

Fix \mathbb{F} a field. The field of formal Laurent series

$$
\mathbb{F}((t)):=\left\{\sum_{n \geq n_{0}} a_{n} t^{n}: n_{0} \in \mathbb{Z}, a_{n} \in \mathbb{F}\right\}
$$

has a non-archimedean absolute value

$$
|f|:=\varepsilon^{\operatorname{ord}_{t=0} f}
$$

where $0<\varepsilon<1$ is any (fixed) thing you want.

Example: Laurent and Puiseux Series

Fix \mathbb{F} a field. The field of formal Laurent series

$$
\mathbb{F}((t)):=\left\{\sum_{n \geq n_{0}} a_{n} t^{n}: n_{0} \in \mathbb{Z}, a_{n} \in \mathbb{F}\right\}
$$

has a non-archimedean absolute value

$$
|f|:=\varepsilon^{\text {ord }_{t=0} f}
$$

where $0<\varepsilon<1$ is any (fixed) thing you want.
The ring of integers is the ring $\mathbb{F}[[t]]$ of power series, with maximal ideal $t \mathbb{F}[[t]]$, residue field

$$
k=\mathbb{F}[[t]] / t \mathbb{F}[[t]] \cong \mathbb{F},
$$

and value group $\left|\mathbb{F}((t))^{\times}\right|=\varepsilon^{\mathbb{Z}}$.

Example: Laurent and Puiseux Series

Fix \mathbb{F} a field. The field of formal Laurent series

$$
\mathbb{F}((t)):=\left\{\sum_{n \geq n_{0}} a_{n} t^{n}: n_{0} \in \mathbb{Z}, a_{n} \in \mathbb{F}\right\}
$$

has a non-archimedean absolute value

$$
|f|:=\varepsilon^{\text {ord }_{t=0} f}
$$

where $0<\varepsilon<1$ is any (fixed) thing you want.
The ring of integers is the ring $\mathbb{F}[[t]]$ of power series, with maximal ideal $t \mathbb{F}[[t]]$, residue field

$$
k=\mathbb{F}[[t]] / t \mathbb{F}[[t]] \cong \mathbb{F},
$$

and value group $\left|\mathbb{F}((t))^{\times}\right|=\varepsilon^{\mathbb{Z}}$.
The completion \mathbb{L} of an algebraic closure $\overline{\mathbb{F}((t))}$ is the field of formal Puiseux series over \mathbb{F}, with residue field $\overline{\mathbb{F}}$ and value group
$\left|\mathbb{L}^{\times}\right|=\varepsilon^{\mathbb{Q}}$.

Disks

Given $a \in \mathbb{C}_{K}$ and $r>0$,

$$
\begin{aligned}
& D(a, r):=\left\{x \in \mathbb{C}_{K}:|x-a|<r\right\} \quad \text { and } \\
& \bar{D}(a, r):=\left\{x \in \mathbb{C}_{K}:|x-a| \leq r\right\}
\end{aligned}
$$

are the associated open disk and closed disk.

Disks

Given $a \in \mathbb{C}_{K}$ and $r>0$,

$$
\begin{aligned}
D(a, r) & :=\left\{x \in \mathbb{C}_{K}:|x-a|<r\right\} \quad \text { and } \\
\bar{D}(a, r) & :=\left\{x \in \mathbb{C}_{K}:|x-a| \leq r\right\}
\end{aligned}
$$

are the associated open disk and closed disk.

- if $r \notin\left|\mathbb{C}_{K}^{\times}\right|$, then $D(a, r)=\bar{D}(a, r)$ is an irrational disk

Disks

Given $a \in \mathbb{C}_{K}$ and $r>0$,

$$
\begin{aligned}
D(a, r) & :=\left\{x \in \mathbb{C}_{K}:|x-a|<r\right\} \quad \text { and } \\
\bar{D}(a, r) & :=\left\{x \in \mathbb{C}_{K}:|x-a| \leq r\right\}
\end{aligned}
$$

are the associated open disk and closed disk.

- if $r \notin\left|\mathbb{C}_{K}^{\times}\right|$, then $D(a, r)=\bar{D}(a, r)$ is an irrational disk
- if $r \in\left|\mathbb{C}_{K}^{\times}\right|$, then then $D(a, r) \subsetneq \bar{D}(a, r)$.

Disks

Given $a \in \mathbb{C}_{K}$ and $r>0$,

$$
\begin{aligned}
D(a, r) & :=\left\{x \in \mathbb{C}_{K}:|x-a|<r\right\} \quad \text { and } \\
\bar{D}(a, r) & :=\left\{x \in \mathbb{C}_{K}:|x-a| \leq r\right\}
\end{aligned}
$$

are the associated open disk and closed disk.

- if $r \notin\left|\mathbb{C}_{K}^{\times}\right|$, then $D(a, r)=\bar{D}(a, r)$ is an irrational disk
- if $r \in\left|\mathbb{C}_{K}^{\times}\right|$, then then $D(a, r) \subsetneq \bar{D}(a, r)$.
- $D(a, r)$ is a rational open disk
- $\bar{D}(a, r)$ is a rational closed disk

Disks

Given $a \in \mathbb{C}_{K}$ and $r>0$,

$$
\begin{aligned}
& D(a, r):=\left\{x \in \mathbb{C}_{K}:|x-a|<r\right\} \quad \text { and } \\
& \bar{D}(a, r):=\left\{x \in \mathbb{C}_{K}:|x-a| \leq r\right\}
\end{aligned}
$$

are the associated open disk and closed disk.

- if $r \notin\left|\mathbb{C}_{K}^{\times}\right|$, then $D(a, r)=\bar{D}(a, r)$ is an irrational disk
- if $r \in\left|\mathbb{C}_{K}^{\times}\right|$, then then $D(a, r) \subsetneq \bar{D}(a, r)$.
- $D(a, r)$ is a rational open disk
- $\bar{D}(a, r)$ is a rational closed disk

Note:

- All disks are (topologically) both open and closed
- Any disk is exactly one of: rational open, rational closed, or irrational (as a disk).

More about Disks

- Any point of a disk is a center:
$D(a, r)=D(b, r)($ resp., $\bar{D}(a, r)=\bar{D}(b, r))$
for all $b \in D(a, r)$ (resp., $b \in \bar{D}(a, r))$

More about Disks

- Any point of a disk is a center:
$D(a, r)=D(b, r)($ resp., $\bar{D}(a, r)=\bar{D}(b, r))$
for all $b \in D(a, r)$ (resp., $b \in \bar{D}(a, r))$
- Since our disks lie in \mathbb{C}_{K}, and $\left|\mathbb{C}_{K}^{\times}\right|$is dense in $(0, \infty)$, the radius of a disk $D \subseteq \mathbb{C}_{K}$ is well-defined, and equal to the diameter $\sup \{|x-y|: x, y \in D\}$.

More about Disks

- Any point of a disk is a center: $D(a, r)=D(b, r)($ resp., $\bar{D}(a, r)=\bar{D}(b, r))$ for all $b \in D(a, r)$ (resp., $b \in \bar{D}(a, r))$
- Since our disks lie in \mathbb{C}_{K}, and $\left|\mathbb{C}_{K}^{\times}\right|$is dense in $(0, \infty)$, the radius of a disk $D \subseteq \mathbb{C}_{K}$ is well-defined, and equal to the diameter $\sup \{|x-y|: x, y \in D\}$.
- Two disks intersect if and only if one contains the other.

More about Disks

- Any point of a disk is a center:
$D(a, r)=D(b, r)($ resp., $\bar{D}(a, r)=\bar{D}(b, r))$
for all $b \in D(a, r)$ (resp., $b \in \bar{D}(a, r))$
- Since our disks lie in \mathbb{C}_{K}, and $\left|\mathbb{C}_{K}^{\times}\right|$is dense in $(0, \infty)$, the radius of a disk $D \subseteq \mathbb{C}_{K}$ is well-defined, and equal to the diameter $\sup \{|x-y|: x, y \in D\}$.
- Two disks intersect if and only if one contains the other.
- All non-archimedean fields are totally disconnected. (I.e., the only connected nonempty subsets are singletons.)

More about Disks

- Any point of a disk is a center:
$D(a, r)=D(b, r)($ resp., $\bar{D}(a, r)=\bar{D}(b, r))$
for all $b \in D(a, r)$ (resp., $b \in \bar{D}(a, r))$
- Since our disks lie in \mathbb{C}_{K}, and $\left|\mathbb{C}_{K}^{\times}\right|$is dense in $(0, \infty)$, the radius of a disk $D \subseteq \mathbb{C}_{K}$ is well-defined, and equal to the diameter $\sup \{|x-y|: x, y \in D\}$.
- Two disks intersect if and only if one contains the other.
- All non-archimedean fields are totally disconnected. (I.e., the only connected nonempty subsets are singletons.)
- \mathbb{Q}_{p} and $\mathbb{F}_{q}((t))$ are locally compact, but \mathbb{C}_{K} is not locally compact.

(Power Series and) Polynomials on Disks

Theorem
Let $a \in \mathbb{C}_{K}$ and $r>0$.

(Power Series and) Polynomials on Disks

Theorem
Let $a \in \mathbb{C}_{K}$ and $r>0$.
Let $g(z)=c_{0}+c_{1}(z-a)+\cdots+c_{M}(z-a)^{M} \in \mathbb{C}_{K}[z]$ be a polynomial.

(Power Series and) Polynomials on Disks

Theorem
Let $a \in \mathbb{C}_{K}$ and $r>0$.
Let $g(z)=c_{0}+c_{1}(z-a)+\cdots+c_{M}(z-a)^{M} \in \mathbb{C}_{K}[z]$ be a polynomial. (Or more generally, $g(z) \in \mathbb{C}_{K}[[z-a]]$ is a power series satisfying certain mild convergence conditions)

(Power Series and) Polynomials on Disks

Theorem
Let $a \in \mathbb{C}_{K}$ and $r>0$.
Let $g(z)=c_{0}+c_{1}(z-a)+\cdots+c_{M}(z-a)^{M} \in \mathbb{C}_{K}[z]$ be a polynomial. (Or more generally, $g(z) \in \mathbb{C}_{K}[[z-a]]$ is a power series satisfying certain mild convergence conditions)
Let $s:=\max _{n \geq 1}\left\{\left|c_{n}\right| r^{n}\right\}$, and

$$
\begin{aligned}
& i:=\text { minimum } n \geq 1 \text { for which }\left|c_{n}\right| r^{n}=s, \\
& j:=\text { maximum } n \geq 1 \text { for which }\left|c_{n}\right| r^{n}=s .
\end{aligned}
$$

(Power Series and) Polynomials on Disks

Theorem
Let $a \in \mathbb{C}_{K}$ and $r>0$.
Let $g(z)=c_{0}+c_{1}(z-a)+\cdots+c_{M}(z-a)^{M} \in \mathbb{C}_{K}[z]$ be a polynomial. (Or more generally, $g(z) \in \mathbb{C}_{K}[[z-a]]$ is a power series satisfying certain mild convergence conditions)
Let $s:=\max _{n \geq 1}\left\{\left|c_{n}\right| r^{n}\right\}$, and

$$
\begin{aligned}
& i:=\text { minimum } n \geq 1 \text { for which }\left|c_{n}\right| r^{n}=s, \\
& j:=\text { maximum } n \geq 1 \text { for which }\left|c_{n}\right| r^{n}=s .
\end{aligned}
$$

Then g maps

$$
\begin{array}{lll}
D(a, r) & i \text {-to- } 1 \text { onto } \quad D\left(c_{0}, s\right), \quad \text { and } \\
\bar{D}(a, r) & j \text {-to- } 1 \text { onto } & \bar{D}\left(c_{0}, s\right),
\end{array}
$$

counting multiplicity.

Example

$$
\mathbb{C}_{K}=\mathbb{C}_{p}, \text { and } g(z)=p^{4} z^{5}+p^{2} z^{3}+z^{2}+p z+p^{3}
$$

Example

$$
\begin{aligned}
& \mathbb{C}_{K}=\mathbb{C}_{p}, \text { and } g(z)=p^{4} z^{5}+p^{2} z^{3}+z^{2}+p z+p^{3} . \\
& \text { Then for any } r>0, g(\bar{D}(0, r))=\bar{D}\left(p^{3}, s\right),
\end{aligned}
$$

Example

$\mathbb{C}_{K}=\mathbb{C}_{p}$, and $g(z)=p^{4} z^{5}+p^{2} z^{3}+z^{2}+p z+p^{3}$. Then for any $r>0, g(\bar{D}(0, r))=\bar{D}\left(p^{3}, s\right)$, where

$$
s= \begin{cases}|p|_{p} r=p^{-1} r & \text { if } 0<r \leq|p|_{p}=\frac{1}{p}, \\ r^{2} & \text { if } \frac{1}{p}=|p|_{p}<r \leq|p|_{p}^{-4 / 3}=p^{4 / 3}, \\ \left|p^{4}\right|_{p} r^{5}=p^{-4} r^{5} & \text { if } r \geq|p|_{p}^{-4 / 3}=p^{4 / 3}\end{cases}
$$

Example

$\mathbb{C}_{K}=\mathbb{C}_{p}$, and $g(z)=p^{4} z^{5}+p^{2} z^{3}+z^{2}+p z+p^{3}$.
Then for any $r>0, g(\bar{D}(0, r))=\bar{D}\left(p^{3}, s\right)$, where

$$
s= \begin{cases}|p|_{p} r=p^{-1} r & \text { if } 0<r \leq|p|_{p}=\frac{1}{p}, \\ r^{2} & \text { if } \frac{1}{p}=|p|_{p}<r \leq|p|_{p}^{-4 / 3}=p^{4 / 3}, \\ \left|p^{4}\right|_{p} r^{5}=p^{-4} r^{5} & \text { if } r \geq|p|_{p}^{-4 / 3}=p^{4 / 3} .\end{cases}
$$

[Note: $\bar{D}\left(p^{3}, s\right)=\bar{D}(0, s)$ for $s \geq|p|_{p}^{3}=p^{-3}$.]

Example

$\mathbb{C}_{K}=\mathbb{C}_{p}$, and $g(z)=p^{4} z^{5}+p^{2} z^{3}+z^{2}+p z+p^{3}$.
Then for any $r>0, g(\bar{D}(0, r))=\bar{D}\left(p^{3}, s\right)$, where

$$
s= \begin{cases}|p|_{p} r=p^{-1} r & \text { if } 0<r \leq|p|_{p}=\frac{1}{p}, \\ r^{2} & \text { if } \frac{1}{p}=|p|_{p}<r \leq|p|_{p}^{-4 / 3}=p^{4 / 3}, \\ \left|p^{4}\right|_{p} r^{5}=p^{-4} r^{5} & \text { if } r \geq|p|_{p}^{-4 / 3}=p^{4 / 3}\end{cases}
$$

$\left[\right.$ Note: $\bar{D}\left(p^{3}, s\right)=\bar{D}(0, s)$ for $s \geq|p|_{p}^{3}=p^{-3}$.]
The mapping is 1-1 for $r<|p|_{p}$,
2-1 for $|p|_{p} \leq r<|p|_{p}^{-4 / 3}$,
5-1 for $r \geq|p|_{p}^{-4 / 3}$.

$\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-Disks

Recall $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)=\mathbb{C}_{K} \cup\{\infty\}$.
Definition
A $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disk is either

- a disk $D \subseteq \mathbb{C}_{K}$, or
- the complement $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash D$ of a disk $D \subseteq \mathbb{C}_{K}$.

We can attach the adjectives rational open, rational closed, or irrational in the obvious way.

$\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-Disks

Recall $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)=\mathbb{C}_{K} \cup\{\infty\}$.
Definition
A $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disk is either

- a disk $D \subseteq \mathbb{C}_{K}$, or
- the complement $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash D$ of a disk $D \subseteq \mathbb{C}_{K}$.

We can attach the adjectives rational open, rational closed, or irrational in the obvious way.

Theorem
Let $g(z) \in \mathbb{C}_{K}(z)$ be a non-constant rational function, and let $D \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ be a $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disk.
Then $g(D)$ is either

- all of $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, or
- a $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disk of the same type as D.

Connected Affinoids

Definition
A connected affinoid in $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is a nonempty intersection of finitely many $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disks.

Connected Affinoids

Definition
A connected affinoid in $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is a nonempty intersection of finitely many $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disks. Equivalently, a connected affinoid is $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ with finitely many $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disks removed.

Connected Affinoids

Definition
A connected affinoid in $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is a nonempty intersection of finitely many $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disks. Equivalently, a connected affinoid is $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ with finitely many $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disks removed.
We can attach the adjectives rational open, rational closed, or irrational in the obvious way.

Connected Affinoids

Definition

A connected affinoid in $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is a nonempty intersection of finitely many $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disks. Equivalently, a connected affinoid is $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ with finitely many $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disks removed.
We can attach the adjectives rational open, rational closed, or irrational in the obvious way.

Theorem
Let $g(z) \in \mathbb{C}_{K}(z)$ be a rational function of degree $d \geq 1$, and let $U \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ be a connected affinoid. Then

- $g(U)$ is either $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ or a connected affinoid of the same type as U.

Connected Affinoids

Definition

A connected affinoid in $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is a nonempty intersection of finitely many $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disks. Equivalently, a connected affinoid is $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ with finitely many $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disks removed.
We can attach the adjectives rational open, rational closed, or irrational in the obvious way.

Theorem
Let $g(z) \in \mathbb{C}_{K}(z)$ be a rational function of degree $d \geq 1$, and let $U \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ be a connected affinoid. Then

- $g(U)$ is either $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ or a connected affinoid of the same type as U.
- $g^{-1}(U)$ is a union of $1 \leq \ell \leq d$ connected affinoids V_{1}, \ldots, V_{ℓ} of the same type,

Connected Affinoids

Definition

A connected affinoid in $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is a nonempty intersection of finitely many $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disks. Equivalently, a connected affinoid is $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ with finitely many $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disks removed.
We can attach the adjectives rational open, rational closed, or irrational in the obvious way.

Theorem

Let $g(z) \in \mathbb{C}_{K}(z)$ be a rational function of degree $d \geq 1$, and let $U \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ be a connected affinoid. Then

- $g(U)$ is either $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ or a connected affinoid of the same type as U.
- $g^{-1}(U)$ is a union of $1 \leq \ell \leq d$ connected affinoids V_{1}, \ldots, V_{ℓ} of the same type, and $g: V_{i} \rightarrow U$ is d_{i}-to- 1 , where

$$
1 \leq d_{i} \leq d, \text { and } \sum_{i=1}^{\ell} d_{i}=d
$$

A Polynomial Example

$\mathbb{C}_{K}=\mathbb{C}_{p}$, and $g(z)=p z^{3}-z^{2}+z$. Then

- Let U be the rational closed annulus $\bar{D}(0,1) \backslash D(0,1)$. Then $g(U)=\bar{D}(0,1)$.

A Polynomial Example

$\mathbb{C}_{K}=\mathbb{C}_{p}$, and $g(z)=p z^{3}-z^{2}+z$. Then

- Let U be the rational closed annulus $\bar{D}(0,1) \backslash D(0,1)$. Then $g(U)=\bar{D}(0,1)$.
[Note: some points map 1-to-1, but others map 2-to-1.]

A Polynomial Example

$$
\mathbb{C}_{K}=\mathbb{C}_{p} \text {, and } g(z)=p z^{3}-z^{2}+z \text {. Then }
$$

- Let U be the rational closed annulus $\bar{D}(0,1) \backslash D(0,1)$. Then $g(U)=\bar{D}(0,1)$.
[Note: some points map 1-to-1, but others map 2-to-1.]
- $g^{-1}(\bar{D}(0,1))=\bar{D}(0,1) \cup \bar{D}\left(1 / p,|p|_{p}\right)$,

A Polynomial Example

$\mathbb{C}_{K}=\mathbb{C}_{p}$, and $g(z)=p z^{3}-z^{2}+z$. Then

- Let U be the rational closed annulus $\bar{D}(0,1) \backslash D(0,1)$. Then $g(U)=\bar{D}(0,1)$.
[Note: some points map 1-to-1, but others map 2-to-1.]
- $g^{-1}(\bar{D}(0,1))=\bar{D}(0,1) \cup \bar{D}\left(1 / p,|p|_{p}\right)$, with
- $g: \bar{D}(0,1) \rightarrow \bar{D}(0,1)$ mapping 2 -to- 1 , and
- $g: \bar{D}\left(1 / p,|p|_{p}\right) \rightarrow \bar{D}(0,1)$ mapping 1-to-1.

A Polynomial Example

$\mathbb{C}_{K}=\mathbb{C}_{p}$, and $g(z)=p z^{3}-z^{2}+z$. Then

- Let U be the rational closed annulus $\bar{D}(0,1) \backslash D(0,1)$. Then $g(U)=\bar{D}(0,1)$.
[Note: some points map 1-to-1, but others map 2-to-1.]
- $g^{-1}(\bar{D}(0,1))=\bar{D}(0,1) \cup \bar{D}\left(1 / p,|p|_{p}\right)$, with
- $g: \bar{D}(0,1) \rightarrow \bar{D}(0,1)$ mapping 2 -to-1, and
- $g: \bar{D}\left(1 / p,|p|_{\rho}\right) \rightarrow \bar{D}(0,1)$ mapping 1-to-1.
- $g^{-1}\left(\bar{D}\left(0,|p|_{p}^{-3}\right)\right)=\bar{D}\left(0,|p|_{\rho}^{-4 / 3}\right)$, mapping 3-to-1.

A Rational Example

\mathbb{C}_{K} is any complete, algebraically closed non-archimedean field, and $h(z)=z-\frac{1}{z}=\frac{z^{2}-1}{z}$.

A Rational Example

\mathbb{C}_{K} is any complete, algebraically closed non-archimedean field, and $h(z)=z-\frac{1}{z}=\frac{z^{2}-1}{z}$.

- $h^{-1}(D(0,1))=D(1,1) \cup D(-1,1)$, with
- each of $D(\pm 1,1)$ mapping 1-1 onto $D(0,1)$ if the residue characteristic is not 2 , or

A Rational Example

\mathbb{C}_{K} is any complete, algebraically closed non-archimedean field, and $h(z)=z-\frac{1}{z}=\frac{z^{2}-1}{z}$.

- $h^{-1}(D(0,1))=D(1,1) \cup D(-1,1)$, with
- each of $D(\pm 1,1)$ mapping 1-1 onto $D(0,1)$ if the residue characteristic is not 2 , or
- $D(-1,1)=D(1,1)$ mapping 2-1 onto $D(0,1)$ if the residue characteristic is 2 .

A Rational Example

\mathbb{C}_{K} is any complete, algebraically closed non-archimedean field, and $h(z)=z-\frac{1}{z}=\frac{z^{2}-1}{z}$.

- $h^{-1}(D(0,1))=D(1,1) \cup D(-1,1)$, with
- each of $D(\pm 1,1)$ mapping 1-1 onto $D(0,1)$ if the residue characteristic is not 2 , or
- $D(-1,1)=D(1,1)$ mapping 2-1 onto $D(0,1)$ if the residue characteristic is 2 .
- $h^{-1}(\bar{D}(0,1))$ is the annulus $\bar{D}(0,1) \backslash D(0,1)$, which maps 2-to-1 onto $\bar{D}(0,1)$.

Dynamics on $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$: Classifying Periodic Points

Fix a rational function $\phi(z) \in \mathbb{C}_{K}(z)$ of degree $d \geq 2$.
If $x \in \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is periodic of exact period n, then
$\lambda:=\left(\phi^{n}\right)^{\prime}(x)$ is the multiplier of x.

Dynamics on $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$: Classifying Periodic Points

Fix a rational function $\phi(z) \in \mathbb{C}_{K}(z)$ of degree $d \geq 2$.
If $x \in \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is periodic of exact period n, then $\lambda:=\left(\phi^{n}\right)^{\prime}(x)$ is the multiplier of x. We say x is

- attracting if $|\lambda|<1$.
- repelling if $|\lambda|>1$.
- indifferent (or neutral) if $|\lambda|=1$.

Dynamics on $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$: Classifying Periodic Points

Fix a rational function $\phi(z) \in \mathbb{C}_{K}(z)$ of degree $d \geq 2$.
If $x \in \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is periodic of exact period n, then
$\lambda:=\left(\phi^{n}\right)^{\prime}(x)$ is the multiplier of x. We say x is

- attracting if $|\lambda|<1$.
- repelling if $|\lambda|>1$.
- indifferent (or neutral) if $|\lambda|=1$.

Note:

- The multiplier is the the same for all points in the periodic cycle of x.
- The multiplier is coordinate-independent.

The Spherical Metric on $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$

There is a spherical metric on $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ analogous to that on $\mathbb{P}^{1}(\mathbb{C})$:

$$
\Delta\left(z_{1}, z_{2}\right):=\frac{\left|z_{1}-z_{2}\right|}{\max \left\{1,\left|z_{1}\right|\right\} \max \left\{1,\left|z_{2}\right|\right\}}
$$

The Spherical Metric on $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$

There is a spherical metric on $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ analogous to that on $\mathbb{P}^{1}(\mathbb{C})$:

$$
\Delta\left(z_{1}, z_{2}\right):=\frac{\left|z_{1}-z_{2}\right|}{\max \left\{1,\left|z_{1}\right|\right\} \max \left\{1,\left|z_{2}\right|\right\}}
$$

More precisely, to allow the point at ∞, in homogeneous coordinates we write:

$$
\Delta\left(\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right]\right):=\frac{\left|x_{1} y_{2}-x_{2} y_{1}\right|}{\max \left\{\left|x_{1}\right|,\left|y_{1}\right|\right\} \max \left\{\left|x_{2}\right|,\left|y_{2}\right|\right\}}
$$

Fatou and Julia Sets

Definition

Let $\phi \in \mathbb{C}_{K}(z)$ be a rational function of degree $d \geq 2$.
The (classical) Fatou set $\mathcal{F}=\mathcal{F}_{\phi}$ of ϕ is
$\mathcal{F}=\left\{x \in \mathbb{P}^{1}:\left\{\phi^{n}\right\}_{n \geq 0}\right.$ is equicontinuous on a neighborhood of $\left.x\right\}$
$=\left\{x \in \mathbb{P}^{1}:\right.$ for all $n \geq 1$ and $y \in \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ s.t. $\Delta(x, y)$ is small, $\Delta\left(\phi^{n}(x), \phi^{n}(y)\right)$ is also small. $\}$

Fatou and Julia Sets

Definition

Let $\phi \in \mathbb{C}_{K}(z)$ be a rational function of degree $d \geq 2$.
The (classical) Fatou set $\mathcal{F}=\mathcal{F}_{\phi}$ of ϕ is
$\mathcal{F}=\left\{x \in \mathbb{P}^{1}:\left\{\phi^{n}\right\}_{n \geq 0}\right.$ is equicontinuous on a neighborhood of $\left.x\right\}$

$$
=\left\{x \in \mathbb{P}^{1}: \text { for all } n \geq 1 \text { and } y \in \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \text { s.t. } \Delta(x, y)\right. \text { is small, }
$$ $\Delta\left(\phi^{n}(x), \phi^{n}(y)\right)$ is also small. $\}$

The (classical) Julia set $\mathcal{J}=\mathcal{J}_{\phi}$ is ϕ is $\mathcal{J}=\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \mathcal{F}$.

Fatou and Julia Sets

Definition

Let $\phi \in \mathbb{C}_{K}(z)$ be a rational function of degree $d \geq 2$.
The (classical) Fatou set $\mathcal{F}=\mathcal{F}_{\phi}$ of ϕ is
$\mathcal{F}=\left\{x \in \mathbb{P}^{1}:\left\{\phi^{n}\right\}_{n \geq 0}\right.$ is equicontinuous on a neighborhood of $\left.x\right\}$

$$
=\left\{x \in \mathbb{P}^{1}: \text { for all } n \geq 1 \text { and } y \in \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \text { s.t. } \Delta(x, y)\right. \text { is small, }
$$

$$
\left.\Delta\left(\phi^{n}(x), \phi^{n}(y)\right) \text { is also small. }\right\}
$$

The (classical) Julia set $\mathcal{J}=\mathcal{J}_{\phi}$ is ϕ is $\mathcal{J}=\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \mathcal{F}$.

Idea:

- In the Fatou set, small errors stay small under iteration.
- In the Julia set, small errors may become large.

Basic Properties of Fatou and Julia Sets

For both \mathbb{C} and \mathbb{C}_{K} :

- \mathcal{F} is open, and \mathcal{J} is closed.

Basic Properties of Fatou and Julia Sets

For both \mathbb{C} and \mathbb{C}_{K} :

- \mathcal{F} is open, and \mathcal{J} is closed.
- $\mathcal{F}_{\phi^{n}}=\mathcal{F}_{\phi}$, and $\mathcal{J}_{\phi^{n}}=\mathcal{J}_{\phi}$.

Basic Properties of Fatou and Julia Sets

For both \mathbb{C} and \mathbb{C}_{K} :

- \mathcal{F} is open, and \mathcal{J} is closed.
- $\mathcal{F}_{\phi^{n}}=\mathcal{F}_{\phi}$, and $\mathcal{J}_{\phi^{n}}=\mathcal{J}_{\phi}$.
- $\phi(\mathcal{F})=\mathcal{F}=\phi^{-1}(\mathcal{F})$, and $\phi(\mathcal{J})=\mathcal{J}=\phi^{-1}(\mathcal{J})$.

Basic Properties of Fatou and Julia Sets

For both \mathbb{C} and \mathbb{C}_{K} :

- \mathcal{F} is open, and \mathcal{J} is closed.
- $\mathcal{F}_{\phi^{n}}=\mathcal{F}_{\phi}$, and $\mathcal{J}_{\phi^{n}}=\mathcal{J}_{\phi}$.
- $\phi(\mathcal{F})=\mathcal{F}=\phi^{-1}(\mathcal{F})$, and $\phi(\mathcal{J})=\mathcal{J}=\phi^{-1}(\mathcal{J})$.
- All attracting periodic points are Fatou.
- All repelling periodic points are Julia.

Basic Properties of Fatou and Julia Sets

For both \mathbb{C} and \mathbb{C}_{K} :

- \mathcal{F} is open, and \mathcal{J} is closed.
- $\mathcal{F}_{\phi^{n}}=\mathcal{F}_{\phi}$, and $\mathcal{J}_{\phi^{n}}=\mathcal{J}_{\phi}$.
- $\phi(\mathcal{F})=\mathcal{F}=\phi^{-1}(\mathcal{F})$, and $\phi(\mathcal{J})=\mathcal{J}=\phi^{-1}(\mathcal{J})$.
- All attracting periodic points are Fatou.
- All repelling periodic points are Julia.

An equivalent definition for \mathbb{C}_{K} :
Theorem
Let $\phi \in \mathbb{C}_{K}(z)$, and let $x \in \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$. Then $x \in \mathcal{F}_{\phi}$ if and only if there is a $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$-disk $D \ni x$ such that

$$
\# \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash\left[\bigcup_{n \geq 0} \phi^{n}(D)\right] \geq 2
$$

A Quadratic Example

$$
\phi(z)=z^{2}+a z \in \mathbb{C}_{K}[z] .
$$

- If $|a| \leq 1$, then $\phi(\bar{D}(0,1)) \subseteq \bar{D}(0,1)$, and $\phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1)\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1)$.
So $\mathcal{F}_{\phi}=\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathcal{J}_{\phi}=\varnothing$.

A Quadratic Example

$$
\begin{aligned}
& \phi(z)=z^{2}+a z \in \mathbb{C}_{K}[z] . \\
& \quad \text { If }|a| \leq 1, \text { then } \phi(\bar{D}(0,1)) \subseteq \bar{D}(0,1), \\
& \quad \text { and } \phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1)\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1) .
\end{aligned}
$$

So $\mathcal{F}_{\phi}=\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathcal{J}_{\phi}=\varnothing$.

- If $|a|=R>1$, set $U_{0}=\bar{D}(0, R)$.

Then $\phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}$,

A Quadratic Example

$$
\begin{aligned}
& \phi(z)=z^{2}+a z \in \mathbb{C}_{K}[z] . \\
& \quad \text { If }|a| \leq 1, \text { then } \phi(\bar{D}(0,1)) \subseteq \bar{D}(0,1), \\
& \quad \text { and } \phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1)\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1) .
\end{aligned}
$$

So $\mathcal{F}_{\phi}=\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathcal{J}_{\phi}=\varnothing$.

- If $|a|=R>1$, set $U_{0}=\bar{D}(0, R)$.

Then $\phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}$, so $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0} \subseteq \mathcal{F}_{\phi}$.

A Quadratic Example

$$
\begin{aligned}
& \phi(z)=z^{2}+a z \in \mathbb{C}_{K}[z] . \\
& \quad \text { If }|a| \leq 1, \text { then } \phi(\bar{D}(0,1)) \subseteq \bar{D}(0,1), \\
& \quad \text { and } \phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1)\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1) .
\end{aligned}
$$

So $\mathcal{F}_{\phi}=\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathcal{J}_{\phi}=\varnothing$.

- If $|a|=R>1$, set $U_{0}=\bar{D}(0, R)$.

Then $\phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}$, so $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0} \subseteq \mathcal{F}_{\phi}$.
For all $n \geq 1$, set $U_{n}:=\phi^{-n}\left(U_{0}\right)$.
Then U_{n} is a disjoint union of 2^{n} closed disks of radius R^{1-n}.

A Quadratic Example

$$
\begin{aligned}
& \phi(z)=z^{2}+a z \in \mathbb{C}_{K}[z] . \\
& \quad \text { If }|a| \leq 1, \text { then } \phi(\bar{D}(0,1)) \subseteq \bar{D}(0,1), \\
& \quad \text { and } \phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1)\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1) .
\end{aligned}
$$

So $\mathcal{F}_{\phi}=\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathcal{J}_{\phi}=\varnothing$.

- If $|a|=R>1$, set $U_{0}=\bar{D}(0, R)$.

Then $\phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}$, so $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0} \subseteq \mathcal{F}_{\phi}$.
For all $n \geq 1$, set $U_{n}:=\phi^{-n}\left(U_{0}\right)$.
Then U_{n} is a disjoint union of 2^{n} closed disks of radius R^{1-n}.
$\mathcal{J}_{\phi}=\bigcap_{n \geq 0} U_{n}$ is a Cantor set,

A Quadratic Example

$$
\begin{aligned}
& \phi(z)=z^{2}+a z \in \mathbb{C}_{K}[z] . \\
& \quad \text { If }|a| \leq 1, \text { then } \phi(\bar{D}(0,1)) \subseteq \bar{D}(0,1), \\
& \quad \text { and } \phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1)\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1) .
\end{aligned}
$$

So $\mathcal{F}_{\phi}=\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathcal{J}_{\phi}=\varnothing$.

- If $|a|=R>1$, set $U_{0}=\bar{D}(0, R)$.

Then $\phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}$, so $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0} \subseteq \mathcal{F}_{\phi}$.
For all $n \geq 1$, set $U_{n}:=\phi^{-n}\left(U_{0}\right)$.
Then U_{n} is a disjoint union of 2^{n} closed disks of radius R^{1-n}.
$\mathcal{J}_{\phi}=\bigcap_{n>0} U_{n}$ is a Cantor set, and all points of
$\mathcal{F}_{\phi}=\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \mathcal{J}_{\phi}$ are attracted to ∞ under iteration.

A Quadratic Example

$$
\begin{aligned}
\phi(z) & =z^{2}+a z \in \mathbb{C}_{K}[z] . \\
& \text { If }|a| \leq 1, \text { then } \phi(\bar{D}(0,1)) \subseteq \bar{D}(0,1), \\
& \text { and } \phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1)\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bar{D}(0,1) . \\
& \text { So } \mathcal{F}_{\phi}=\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \text {, and } \mathcal{J}_{\phi}=\varnothing
\end{aligned}
$$

- If $|a|=R>1$, set $U_{0}=\bar{D}(0, R)$.

Then $\phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}$, so $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0} \subseteq \mathcal{F}_{\phi}$.
For all $n \geq 1$, set $U_{n}:=\phi^{-n}\left(U_{0}\right)$.
Then U_{n} is a disjoint union of 2^{n} closed disks of radius R^{1-n}.
$\mathcal{J}_{\phi}=\bigcap_{n \geq 0} U_{n}$ is a Cantor set, and all points of
$\mathcal{F}_{\phi}=\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \mathcal{J}_{\phi}$ are attracted to ∞ under iteration.

Similarly: Over \mathbb{C}_{p}, Smart and Woodcock showed $\phi(z)=\left(z^{p}-z\right) / p$ has $\mathcal{J}_{\phi}=\mathbb{Z}_{p}$.

A Cubic Example (due to Hsia)

Assume the residue characteristic is not 2, and set

$$
\phi(z)=a z^{3}+z^{2}+b z+c, \quad \text { where } 0<|a|<1, \text { and }|b|,|c| \leq 1 .
$$

A Cubic Example (due to Hsia)

Assume the residue characteristic is not 2, and set

$$
\phi(z)=a z^{3}+z^{2}+b z+c, \quad \text { where } 0<|a|<1, \text { and }|b|,|c| \leq 1 .
$$

Then $\phi(\bar{D}(0,1)) \subseteq \bar{D}(0,1)$, so $\bar{D}(0,1) \subseteq \mathcal{F}_{\phi}$.

A Cubic Example (due to Hsia)

Assume the residue characteristic is not 2, and set

$$
\phi(z)=a z^{3}+z^{2}+b z+c, \quad \text { where } 0<|a|<1, \text { and }|b|,|c| \leq 1 .
$$

Then $\phi(\bar{D}(0,1)) \subseteq \bar{D}(0,1)$, so $\bar{D}(0,1) \subseteq \mathcal{F}_{\phi}$.
But ϕ has a repelling fixed point α with $|\alpha|=|a|^{-1}>1$.

A Cubic Example (due to Hsia)

Assume the residue characteristic is not 2, and set

$$
\phi(z)=a z^{3}+z^{2}+b z+c, \quad \text { where } 0<|a|<1, \text { and }|b|,|c| \leq 1 .
$$

Then $\phi(\bar{D}(0,1)) \subseteq \bar{D}(0,1)$, so $\bar{D}(0,1) \subseteq \mathcal{F}_{\phi}$.
But ϕ has a repelling fixed point α with $|\alpha|=|a|^{-1}>1$.
For all $n \geq 1$, there is a point $\beta_{n} \in \phi^{-n}(\alpha)$ s.t. $\left|\beta_{n}\right|=|a|^{-1 / 2^{n}}$.
Since $\beta_{n} \in \mathcal{J}_{\phi}$, the set \mathcal{J}_{ϕ} is not compact!!!

A Cubic Example (due to Hsia)

Assume the residue characteristic is not 2, and set

$$
\phi(z)=a z^{3}+z^{2}+b z+c, \quad \text { where } 0<|a|<1, \text { and }|b|,|c| \leq 1 .
$$

Then $\phi(\bar{D}(0,1)) \subseteq \bar{D}(0,1)$, so $\bar{D}(0,1) \subseteq \mathcal{F}_{\phi}$.
But ϕ has a repelling fixed point α with $|\alpha|=|a|^{-1}>1$.
For all $n \geq 1$, there is a point $\beta_{n} \in \phi^{-n}(\alpha)$ s.t. $\left|\beta_{n}\right|=|a|^{-1 / 2^{n}}$.
Since $\beta_{n} \in \mathcal{J}_{\phi}$, the set \mathcal{J}_{ϕ} is not compact!!!
Note: if we set $U_{0}=\bar{D}\left(0,|a|^{-1}\right)$, then

$$
\phi\left(\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}\right) \subseteq \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash U_{0}
$$

as before, and $U_{n}:=\phi^{-n}\left(U_{0}\right)$ is a disjoint union of many disks.
In fact, \mathcal{F}_{ϕ} is the union of $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \backslash \bigcap_{n \geq 1} U_{n}$ and all preimages of $\bar{D}(0,1)$.

Contrasts with \mathbb{C}

\mathbb{C}	\mathbb{C}_{K}
Some indifferent points are Fatou, and some are Julia.	All indifferent points are Fatou

Contrasts with \mathbb{C}

\mathbb{C}	\mathbb{C}_{K}
Some indifferent points are Fatou, and some are Julia.	All indifferent points are Fatou
\mathcal{J} is compact	\mathcal{J} may not be compact

Contrasts with \mathbb{C}

\mathbb{C}	\mathbb{C}_{K}
Some indifferent points are Fatou, and some are Julia.	All indifferent points are Fatou
\mathcal{J} is compact	\mathcal{J} may not be compact
\mathcal{J} is nonempty	\mathcal{J} may be empty

Contrasts with \mathbb{C}

\mathbb{C}	\mathbb{C}_{K}
Some indifferent points are Fatou, and some are Julia.	$\mathcal{A l l}$ indifferent points are Fatou
\mathcal{J} is compact	\mathcal{J} may not be compact
\mathcal{J} is nonempty	\mathcal{J} may be empty
\mathcal{F} may be empty	\mathcal{F} is nonempty

Contrasts with \mathbb{C}

\mathbb{C}	\mathbb{C}_{K}
Some indifferent points are Fatou, and some are Julia.	All indifferent points are Fatou
\mathcal{J} is compact	\mathcal{J} may not be compact
\mathcal{J} is nonempty	\mathcal{J} may be empty
\mathcal{F} may be empty	\mathcal{F} is nonempty
\mathcal{J} is the closure of the set of repelling periodic points	??? (see Project \# 1)

A Quick Technical Note

The field \mathbb{C}_{K} is complete, but it is usually not spherically complete.

A Quick Technical Note

The field \mathbb{C}_{K} is complete, but it is usually not spherically complete.

That is, it is possible to have a decreasing chain of disks

$$
D_{1} \supseteq D_{2} \supseteq D_{3} \supseteq \cdots
$$

in a (not spherically complete field) \mathbb{C}_{K} such that

$$
\bigcap_{n \geq 1} D_{n}=\varnothing \text {. }
$$

A Quick Technical Note

The field \mathbb{C}_{K} is complete, but it is usually not spherically complete.

That is, it is possible to have a decreasing chain of disks

$$
D_{1} \supseteq D_{2} \supseteq D_{3} \supseteq \cdots
$$

in a (not spherically complete field) \mathbb{C}_{K} such that

$$
\bigcap_{n \geq 1} D_{n}=\varnothing \text {. }
$$

In this case, the disks D_{n} must have radius bounded below by some $R>0$.

A Quick Technical Note

The field \mathbb{C}_{K} is complete, but it is usually not spherically complete.

That is, it is possible to have a decreasing chain of disks

$$
D_{1} \supseteq D_{2} \supseteq D_{3} \supseteq \cdots
$$

in a (not spherically complete field) \mathbb{C}_{K} such that

$$
\bigcap_{n \geq 1} D_{n}=\varnothing \text {. }
$$

In this case, the disks D_{n} must have radius bounded below by some $R>0$.

For example, \mathbb{C}_{p} and the Puiseux series field \mathbb{L} are not spherically complete.

