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Non-archimedean Fields
Let K be a field with a non-archimedean absolute value
| · | : K → R.

That is, for all x , y ∈ K ,

◮ |x | ≥ 0, with equality iff x = 0,
◮ |xy | = |x | · |y |,
◮ |x + y | ≤ max{|x |, |y |}.

We assume | · | is nontrivial; that is, |K | ) {0, 1}.

We usually assume K is complete w.r.t. | · |.
(All Cauchy sequences converge).

Fun Fact: Let K be a complete non-archimedean field, and let
{an}n≥0 be a sequence in K . Then

∑

n≥0

an converges if and only if lim
n→∞

an = 0.
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Let K be a non-archimedean field.
The ring of integers and (unique) maximal ideal of K are

OK = {x ∈ K : |x | ≤ 1} and MK = {x ∈ K : |x | < 1}.

The residue field of K is

k := OK/MK .

The value group of K is

|K×| ⊆ (0,∞).
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Extension Fields

Let K be a complete non-archimedean field, and let L/K be an
algebraic extension.

Then | · | extends uniquely to L.

The new residue field ℓ is an algebraic extension of k .

The new value group |L×| contains |K×| as a subgroup.

The algebraic closure K of K may not be complete.

But its completion CK is both complete and algebraically closed.
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Qp :=
{

∑

n≥n0

anp
n : n0 ∈ Z, an ∈ {0, 1, . . . , p − 1}

}

is the completion of Q w.r.t. | · |p, with ring of integers

Zp := OQp
=

{

∑

n≥0

anp
n : an ∈ {0, 1, . . . , p − 1}

}

,

maximal ideal MQp
:= pZp, value group |Q×

p |p = pZ, and residue
field Zp/pZp

∼= Z/pZ = Fp.
The completion Cp of an algebraic closure Qp has residue field Fp

and value group |C×
p | = pQ.
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Example: Laurent and Puiseux Series
Fix F a field. The field of formal Laurent series

F((t)) :=
{

∑

n≥n0

ant
n : n0 ∈ Z, an ∈ F

}

has a non-archimedean absolute value

|f | := εordt=0f ,

where 0 < ε < 1 is any (fixed) thing you want.
The ring of integers is the ring F[[t]] of power series, with maximal
ideal tF[[t]], residue field

k = F[[t]]/tF[[t]] ∼= F,

and value group |F((t))×| = εZ.
The completion L of an algebraic closure F((t)) is the field of
formal Puiseux series over F, with residue field F and value group
|L×| = εQ.
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Disks
Given a ∈ CK and r > 0,

D(a, r) := {x ∈ CK : |x − a| < r} and

D(a, r) := {x ∈ CK : |x − a| ≤ r}

are the associated open disk and closed disk.

◮ if r 6∈ |C×
K |, then D(a, r) = D(a, r) is an irrational disk

◮ if r ∈ |C×
K |, then then D(a, r) ( D(a, r).

◮ D(a, r) is a rational open disk

◮ D(a, r) is a rational closed disk

Note:

◮ All disks are (topologically) both open and closed

◮ Any disk is exactly one of: rational open, rational closed, or
irrational (as a disk).
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More about Disks

◮ Any point of a disk is a center:
D(a, r) = D(b, r) (resp., D(a, r) = D(b, r))
for all b ∈ D(a, r) (resp., b ∈ D(a, r))

◮ Since our disks lie in CK , and |C×
K | is dense in (0,∞),

the radius of a disk D ⊆ CK is well-defined,
and equal to the diameter sup{|x − y | : x , y ∈ D}.

◮ Two disks intersect if and only if one contains the other.

◮ All non-archimedean fields are totally disconnected.
(I.e., the only connected nonempty subsets are singletons.)

◮ Qp and Fq((t)) are locally compact,
but CK is not locally compact.
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(Power Series and) Polynomials on Disks

Theorem
Let a ∈ CK and r > 0.
Let g(z) = c0 + c1(z − a) + · · · + cM(z − a)M ∈ CK [z ] be a
polynomial. (Or more generally, g(z) ∈ CK [[z − a]] is a power
series satisfying certain mild convergence conditions)
Let s := max

n≥1
{|cn|r

n}, and

i := minimum n ≥ 1 for which |cn|r
n = s,

j := maximum n ≥ 1 for which |cn|r
n = s.

Then g maps

D(a, r) i -to-1 onto D(c0, s), and

D(a, r) j -to-1 onto D(c0, s),

counting multiplicity.



Example

CK = Cp, and g(z) = p4z5 + p2z3 + z2 + pz + p3.



Example

CK = Cp, and g(z) = p4z5 + p2z3 + z2 + pz + p3.
Then for any r > 0, g

(

D(0, r)
)

= D(p3, s),



Example

CK = Cp, and g(z) = p4z5 + p2z3 + z2 + pz + p3.
Then for any r > 0, g

(

D(0, r)
)

= D(p3, s), where

s =























|p|pr = p−1r if 0 < r ≤ |p|p =
1

p
,

r2 if
1

p
= |p|p < r ≤ |p|

−4/3
p = p4/3,

|p4|pr
5 = p−4r5 if r ≥ |p|

−4/3
p = p4/3.



Example

CK = Cp, and g(z) = p4z5 + p2z3 + z2 + pz + p3.
Then for any r > 0, g

(

D(0, r)
)

= D(p3, s), where

s =























|p|pr = p−1r if 0 < r ≤ |p|p =
1

p
,

r2 if
1

p
= |p|p < r ≤ |p|

−4/3
p = p4/3,

|p4|pr
5 = p−4r5 if r ≥ |p|

−4/3
p = p4/3.

[Note: D(p3, s) = D(0, s) for s ≥ |p|3p = p−3.]



Example

CK = Cp, and g(z) = p4z5 + p2z3 + z2 + pz + p3.
Then for any r > 0, g

(

D(0, r)
)

= D(p3, s), where
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|p|pr = p−1r if 0 < r ≤ |p|p =
1

p
,

r2 if
1

p
= |p|p < r ≤ |p|

−4/3
p = p4/3,

|p4|pr
5 = p−4r5 if r ≥ |p|

−4/3
p = p4/3.

[Note: D(p3, s) = D(0, s) for s ≥ |p|3p = p−3.]

The mapping is 1-1 for r < |p|p,

2-1 for |p|p ≤ r < |p|
−4/3
p ,

5-1 for r ≥ |p|
−4/3
p .



P1(CK )-Disks

Recall P1(CK ) = CK ∪ {∞}.

Definition
A P1(CK )-disk is either

◮ a disk D ⊆ CK , or

◮ the complement P1(CK ) r D of a disk D ⊆ CK .

We can attach the adjectives rational open, rational closed, or
irrational in the obvious way.



P1(CK )-Disks
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Definition
A P1(CK )-disk is either

◮ a disk D ⊆ CK , or

◮ the complement P1(CK ) r D of a disk D ⊆ CK .

We can attach the adjectives rational open, rational closed, or
irrational in the obvious way.

Theorem
Let g(z) ∈ CK (z) be a non-constant rational function,
and let D ⊆ P1(CK ) be a P1(CK )-disk.
Then g(D) is either

◮ all of P1(CK ), or

◮ a P1(CK )-disk of the same type as D.
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Connected Affinoids

Definition
A connected affinoid in P1(CK ) is a nonempty intersection of
finitely many P1(CK )-disks. Equivalently, a connected affinoid is
P1(CK ) with finitely many P1(CK )-disks removed.

We can attach the adjectives rational open, rational closed, or
irrational in the obvious way.

Theorem
Let g(z) ∈ CK (z) be a rational function of degree d ≥ 1,
and let U ⊆ P1(CK ) be a connected affinoid. Then

◮ g(U) is either P1(CK ) or a connected affinoid of the same
type as U.

◮ g−1(U) is a union of 1 ≤ ℓ ≤ d connected affinoids
V1, . . . ,Vℓ of the same type, and g : Vi → U is di -to-1, where

1 ≤ di ≤ d, and
ℓ

∑

i=1

di = d.
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A Polynomial Example

CK = Cp, and g(z) = pz3 − z2 + z . Then

◮ Let U be the rational closed annulus D(0, 1) r D(0, 1).
Then g(U) = D(0, 1).

[Note: some points map 1-to-1, but others map 2-to-1.]

◮ g−1(D(0, 1)) = D(0, 1) ∪ D(1/p, |p|p), with
◮ g : D(0, 1) → D(0, 1) mapping 2-to-1, and
◮ g : D(1/p, |p|p) → D(0, 1) mapping 1-to-1.

◮ g−1(D(0, |p|−3
p )) = D(0, |p|

−4/3
p ), mapping 3-to-1.
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A Rational Example

CK is any complete, algebraically closed non-archimedean field,

and h(z) = z −
1

z
=

z2 − 1

z
.

◮ h−1(D(0, 1)) = D(1, 1) ∪ D(−1, 1), with

◮ each of D(±1, 1) mapping 1-1 onto D(0, 1) if the residue
characteristic is not 2, or

◮ D(−1, 1) = D(1, 1) mapping 2-1 onto D(0, 1) if the residue
characteristic is 2.

◮ h−1(D(0, 1)) is the annulus D(0, 1) r D(0, 1),
which maps 2-to-1 onto D(0, 1).
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If x ∈ P1(CK ) is periodic of exact period n, then
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Fix a rational function φ(z) ∈ CK (z) of degree d ≥ 2.

If x ∈ P1(CK ) is periodic of exact period n, then
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Fix a rational function φ(z) ∈ CK (z) of degree d ≥ 2.

If x ∈ P1(CK ) is periodic of exact period n, then
λ := (φn)′(x) is the multiplier of x . We say x is

◮ attracting if |λ| < 1.

◮ repelling if |λ| > 1.

◮ indifferent (or neutral) if |λ| = 1.

Note:

◮ The multiplier is the the same for all points in the periodic
cycle of x .

◮ The multiplier is coordinate-independent.
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The Spherical Metric on P1(CK )

There is a spherical metric on P1(CK ) analogous to that on P1(C):

∆(z1, z2) :=
|z1 − z2|

max{1, |z1|}max{1, |z2|}

More precisely, to allow the point at ∞,
in homogeneous coordinates we write:

∆([x1, y1], [x2, y2]) :=
|x1y2 − x2y1|

max{|x1|, |y1|}max{|x2|, |y2|}
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Fatou and Julia Sets

Definition
Let φ ∈ CK (z) be a rational function of degree d ≥ 2.

The (classical) Fatou set F = Fφ of φ is

F =
{

x ∈ P1 :{φn}n≥0 is equicontinuous on a neighborhood of x
}

=
{

x ∈ P1 : for all n ≥ 1 and y ∈ P1(CK ) s.t. ∆(x , y) is small,

∆(φn(x), φn(y)) is also small.
}

The (classical) Julia set J = Jφ is φ is J = P1(CK ) r F .

Idea:

◮ In the Fatou set, small errors stay small under iteration.

◮ In the Julia set, small errors may become large.
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Basic Properties of Fatou and Julia Sets

For both C and CK :

◮ F is open, and J is closed.

◮ Fφn = Fφ, and Jφn = Jφ.

◮ φ(F) = F = φ−1(F), and φ(J ) = J = φ−1(J ).

◮ All attracting periodic points are Fatou.

◮ All repelling periodic points are Julia.

An equivalent definition for CK :

Theorem
Let φ ∈ CK (z), and let x ∈ P1(CK ). Then x ∈ Fφ if and only if
there is a P1(CK )-disk D ∋ x such that

#P1(CK ) r
[

⋃

n≥0

φn(D)
]

≥ 2.
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A Quadratic Example

φ(z) = z2 + az ∈ CK [z ].

◮ If |a| ≤ 1, then φ(D(0, 1)) ⊆ D(0, 1),
and φ(P1(CK ) r D(0, 1)) ⊆ P1(CK ) r D(0, 1).

So Fφ = P1(CK ), and Jφ = ∅.

◮ If |a| = R > 1, set U0 = D(0, R).
Then φ(P1(CK )rU0) ⊆ P1(CK )rU0, so P1(CK )rU0 ⊆ Fφ.

For all n ≥ 1, set Un := φ−n(U0).
Then Un is a disjoint union of 2n closed disks of radius R1−n.

Jφ =
⋂

n≥0
Un is a Cantor set, and all points of

Fφ = P1(CK ) r Jφ are attracted to ∞ under iteration.

Similarly: Over Cp, Smart and Woodcock showed
φ(z) = (zp − z)/p has Jφ = Zp.
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A Cubic Example (due to Hsia)

Assume the residue characteristic is not 2, and set

φ(z) = az3 + z2 + bz + c , where 0 < |a| < 1, and |b|, |c | ≤ 1.

Then φ(D(0, 1)) ⊆ D(0, 1), so D(0, 1) ⊆ Fφ.

But φ has a repelling fixed point α with |α| = |a|−1 > 1.

For all n ≥ 1, there is a point βn ∈ φ−n(α) s.t. |βn| = |a|−1/2n

.

Since βn ∈ Jφ, the set Jφ is not compact!!!

Note: if we set U0 = D(0, |a|−1), then

φ(P1(CK ) r U0) ⊆ P1(CK ) r U0

as before, and Un := φ−n(U0) is a disjoint union of many disks.

In fact, Fφ is the union of P1(CK ) r
⋂

n≥1
Un and all preimages of

D(0, 1).
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Contrasts with C

C CK

Some indifferent points are All indifferent points are Fatou
Fatou, and some are Julia.

J is compact J may not be compact

J is nonempty J may be empty

F may be empty F is nonempty

J is the closure of the set ???
of repelling periodic points (see Project # 1)
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A Quick Technical Note

The field CK is complete, but it is usually not spherically
complete.

That is, it is possible to have a decreasing chain of disks

D1 ⊇ D2 ⊇ D3 ⊇ · · ·

in a (not spherically complete field) CK such that

⋂

n≥1

Dn = ∅.

In this case, the disks Dn must have radius bounded below by some
R > 0.

For example, Cp and the Puiseux series field L are not spherically
complete.


