Non-archimedean Dynamics in Dimension One: Lecture 2

Robert L. Benedetto
Amherst College

Arizona Winter School
Sunday, March 14, 2010

Problems with $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$

- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is not compact, or even locally compact.

Problems with $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$

- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is not compact, or even locally compact.
- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is totally disconnected.

That makes it hard to study "components" of the Fatou set in a meaningful way.

Problems with $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$

- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is not compact, or even locally compact.
- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is totally disconnected.

That makes it hard to study "components" of the Fatou set in a meaningful way.
There are ways to get around that (see Section 5 of the lecture notes), but there is a better way.

Problems with $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$

- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is not compact, or even locally compact.
- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is totally disconnected.

That makes it hard to study "components" of the Fatou set in a meaningful way.
There are ways to get around that (see Section 5 of the lecture notes), but there is a better way.

There is a nicer space $\mathbb{P}_{\text {Ber }}^{1}$ that:

- contains $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ as a subspace,

Problems with $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$

- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is not compact, or even locally compact.
- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is totally disconnected.

That makes it hard to study "components" of the Fatou set in a meaningful way.
There are ways to get around that (see Section 5 of the lecture notes), but there is a better way.

There is a nicer space $\mathbb{P}_{\text {Ber }}^{1}$ that:

- contains $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ as a subspace,
- is compact,

Problems with $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$

- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is not compact, or even locally compact.
- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is totally disconnected.

That makes it hard to study "components" of the Fatou set in a meaningful way.
There are ways to get around that (see Section 5 of the lecture notes), but there is a better way.

There is a nicer space $\mathbb{P}_{\text {Ber }}^{1}$ that:

- contains $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ as a subspace,
- is compact,
- is (still) Hausdorff, and

Problems with $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$

- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is not compact, or even locally compact.
- $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ is totally disconnected. That makes it hard to study "components" of the Fatou set in a meaningful way.
There are ways to get around that (see Section 5 of the lecture notes), but there is a better way.

There is a nicer space $\mathbb{P}_{\text {Ber }}^{1}$ that:

- contains $\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$ as a subspace,
- is compact,
- is (still) Hausdorff, and
- is path-connected.

The Gauss Norm

$\overline{\mathcal{A}}(0,1)=\mathbb{C}_{K}\langle\langle z\rangle\rangle$ is the ring of all power series

$$
f(z)=\sum_{n=0}^{\infty} c_{n} z^{n} \in \mathbb{C}_{K}[[z]] \quad \text { such that } \lim _{n \rightarrow \infty} c_{n}=0
$$

i.e., the ring of power series converging on $\bar{D}(0,1)$.

The Gauss Norm

$\overline{\mathcal{A}}(0,1)=\mathbb{C}_{K}\langle\langle z\rangle\rangle$ is the ring of all power series

$$
f(z)=\sum_{n=0}^{\infty} c_{n} z^{n} \in \mathbb{C}_{K}[[z]] \quad \text { such that } \lim _{n \rightarrow \infty} c_{n}=0
$$

i.e., the ring of power series converging on $\bar{D}(0,1)$.

The Gauss norm on $\overline{\mathcal{A}}(0,1)$ is $\|\cdot\|_{\zeta(0,1)}: \overline{\mathcal{A}}(0,1) \rightarrow[0, \infty)$, by

$$
\left\|\sum_{n=0}^{\infty} c_{n} z^{n}\right\|_{\zeta(0,1)}:=\max \left\{\left|c_{n}\right|: n \geq 0\right\}
$$

The Gauss Norm

$\overline{\mathcal{A}}(0,1)=\mathbb{C}_{K}\langle\langle z\rangle\rangle$ is the ring of all power series

$$
f(z)=\sum_{n=0}^{\infty} c_{n} z^{n} \in \mathbb{C}_{K}[[z]] \quad \text { such that } \lim _{n \rightarrow \infty} c_{n}=0,
$$

i.e., the ring of power series converging on $\bar{D}(0,1)$.

The Gauss norm on $\overline{\mathcal{A}}(0,1)$ is $\|\cdot\|_{\zeta(0,1)}: \overline{\mathcal{A}}(0,1) \rightarrow[0, \infty)$, by

$$
\left\|\sum_{n=0}^{\infty} c_{n} z^{n}\right\|_{\zeta(0,1)}:=\max \left\{\left|c_{n}\right|: n \geq 0\right\} .
$$

Equivalently, for all $f \in \overline{\mathcal{A}}(0,1)$,

$$
\begin{aligned}
\|f\|_{\zeta(0,1)} & :=\sup \{|f(x)|: x \in \bar{D}(0,1)\} \\
& =\max \{|f(x)|: x \in \bar{D}(0,1)\}
\end{aligned}
$$

Bounded Multiplicative Seminorms

Definition

A bounded multiplicative seminorm on $\overline{\mathcal{A}}(0,1)$ is a function $\zeta=\|\cdot\|_{\zeta}: \overline{\mathcal{A}}(0,1) \rightarrow[0, \infty)$ such that

Bounded Multiplicative Seminorms

Definition

A bounded multiplicative seminorm on $\overline{\mathcal{A}}(0,1)$ is a function $\zeta=\|\cdot\|_{\zeta}: \overline{\mathcal{A}}(0,1) \rightarrow[0, \infty)$ such that

- $\|0\|_{\zeta}=0$ and $\|1\|_{\zeta}=1$,
- $\|f g\|_{\zeta}=\|f\|_{\zeta} \cdot\|g\|_{\zeta}$ for all $f, g \in \overline{\mathcal{A}}(0,1)$,
- $\|f+g\|_{\zeta} \leq\|f\|_{\zeta}+\|g\|_{\zeta}$ for all $f, g \in \overline{\mathcal{A}}(0,1)$, and
- $\|f\|_{\zeta} \leq\|f\|_{\zeta(0,1)}$ for all $f \in \overline{\mathcal{A}}(0,1)$.

Bounded Multiplicative Seminorms

Definition

A bounded multiplicative seminorm on $\overline{\mathcal{A}}(0,1)$ is a function
$\zeta=\|\cdot\|_{\zeta}: \overline{\mathcal{A}}(0,1) \rightarrow[0, \infty)$ such that

- $\|0\|_{\zeta}=0$ and $\|1\|_{\zeta}=1$,
- $\|f g\|_{\zeta}=\|f\|_{\zeta} \cdot\|g\|_{\zeta}$ for all $f, g \in \overline{\mathcal{A}}(0,1)$,
- $\|f+g\|_{\zeta} \leq\|f\|_{\zeta}+\|g\|_{\zeta}$ for all $f, g \in \overline{\mathcal{A}}(0,1)$, and
- $\|f\|_{\zeta} \leq\|f\|_{\zeta(0,1)}$ for all $f \in \overline{\mathcal{A}}(0,1)$.

Note: We do not require that $\|f\|_{\zeta}=0$ implies $f=0$.

Bounded Multiplicative Seminorms

Definition

A bounded multiplicative seminorm on $\overline{\mathcal{A}}(0,1)$ is a function
$\zeta=\|\cdot\|_{\zeta}: \overline{\mathcal{A}}(0,1) \rightarrow[0, \infty)$ such that

- $\|0\|_{\zeta}=0$ and $\|1\|_{\zeta}=1$,
- $\|f g\|_{\zeta}=\|f\|_{\zeta} \cdot\|g\|_{\zeta}$ for all $f, g \in \overline{\mathcal{A}}(0,1)$,
- $\|f+g\|_{\zeta} \leq\|f\|_{\zeta}+\|g\|_{\zeta}$ for all $f, g \in \overline{\mathcal{A}}(0,1)$, and
- $\|f\|_{\zeta} \leq\|f\|_{\zeta(0,1)}$ for all $f \in \overline{\mathcal{A}}(0,1)$.

Note: We do not require that $\|f\|_{\zeta}=0$ implies $f=0$.
By the way: we get $\|f+g\|_{\zeta} \leq \max \left\{\|f\|_{\zeta},\|g\|_{\zeta}\right\}$ for free.

Examples of Bounded Multiplicative Seminorms

1. For any $x \in \bar{D}(0,1)$, define $\|\cdot\|_{x}$ by $\|f\|_{x}:=|f(x)|$.

Examples of Bounded Multiplicative Seminorms

1. For any $x \in \bar{D}(0,1)$, define $\|\cdot\|_{x}$ by $\|f\|_{x}:=|f(x)|$.
2. For any disk $D \subseteq \bar{D}(0,1)$, define $\|\cdot\|_{D}$ by

$$
\|f\|_{D}:=\sup \{|f(x)|: x \in D\}
$$

Examples of Bounded Multiplicative Seminorms

1. For any $x \in \bar{D}(0,1)$, define $\|\cdot\|_{x}$ by $\|f\|_{x}:=|f(x)|$.
2. For any disk $D \subseteq \bar{D}(0,1)$, define $\|\cdot\|_{D}$ by

$$
\|f\|_{D}:=\sup \{|f(x)|: x \in D\}
$$

If $D=\bar{D}(a, r)$ or $D=D(a, r)$, and $f(z)=\sum c_{n}(z-a)^{n}$, then

$$
\|f\|_{D}=\max \left\{\left|c_{n}\right| r^{n}: n \geq 0\right\}
$$

If D is rational closed, then $\|f\|_{D}=\max \{|f(x)|: x \in D\}$.

Examples of Bounded Multiplicative Seminorms

1. For any $x \in \bar{D}(0,1)$, define $\|\cdot\|_{x}$ by $\|f\|_{x}:=|f(x)|$.
2. For any disk $D \subseteq \bar{D}(0,1)$, define $\|\cdot\|_{D}$ by

$$
\|f\|_{D}:=\sup \{|f(x)|: x \in D\}
$$

If $D=\bar{D}(a, r)$ or $D=D(a, r)$, and $f(z)=\sum c_{n}(z-a)^{n}$, then

$$
\|f\|_{D}=\max \left\{\left|c_{n}\right| r^{n}: n \geq 0\right\}
$$

If D is rational closed, then $\|f\|_{D}=\max \{|f(x)|: x \in D\}$.
Since $\|\cdot\|_{\bar{D}(a, r)}=\|\cdot\|_{D(a, r)}$, we can denote both by $\|\cdot\|_{\zeta(a, r)}$.

The Berkovich Disk

Definition

The Berkovich unit disk $\bar{D}_{\operatorname{Ber}}(0,1)$ is the set of all bounded multiplicative seminorms on $\overline{\mathcal{A}}(0,1)$.

The Berkovich Disk

Definition

The Berkovich unit disk $\bar{D}_{\text {Ber }}(0,1)$ is the set of all bounded multiplicative seminorms on $\overline{\mathcal{A}}(0,1)$.

As a topological space, $\bar{D}_{\text {Ber }}(0,1)$ is equipped with the Gel'fand topology.

The Berkovich Disk

Definition

The Berkovich unit disk $\bar{D}_{\operatorname{Ber}}(0,1)$ is the set of all bounded multiplicative seminorms on $\overline{\mathcal{A}}(0,1)$.

As a topological space, $\bar{D}_{\operatorname{Ber}}(0,1)$ is equipped with the Gel'fand topology.

This is the weakest topology such that for every $f \in \overline{\mathcal{A}}(0,1)$, the map $\bar{D}_{\text {Ber }}(0,1) \rightarrow \mathbb{R}$ given by

$$
\zeta \mapsto\|f\|_{\zeta}
$$

is continuous.

Berkovich's Classification of Points

There are four kinds of points in $\bar{D}_{\text {Ber }}(0,1)$.

1. Type I: seminorms $\|\cdot\|_{x}$ corresponding to (classical) points $x \in \bar{D}(0,1)$.

Berkovich's Classification of Points

There are four kinds of points in $\bar{D}_{\text {Ber }}(0,1)$.

1. Type I: seminorms $\|\cdot\|_{x}$ corresponding to (classical) points $x \in \bar{D}(0,1)$.
2. Type II: norms $\|\cdot\|_{\zeta(a, r)}$ corresponding to rational closed disks $\bar{D}(a, r) \subseteq \bar{D}(0,1)$.

Berkovich's Classification of Points

There are four kinds of points in $\bar{D}_{\text {Ber }}(0,1)$.

1. Type I: seminorms $\|\cdot\|_{x}$ corresponding to (classical) points $x \in \bar{D}(0,1)$.
2. Type II: norms $\|\cdot\|_{\zeta(a, r)}$ corresponding to rational closed disks $\bar{D}(a, r) \subseteq \bar{D}(0,1)$.
3. Type III: norms $\|\cdot\|_{\zeta(a, r)}$ corresponding to irrational disks $\bar{D}(a, r) \subset \bar{D}(0,1)$.

Berkovich's Classification of Points

There are four kinds of points in $\bar{D}_{\text {Ber }}(0,1)$.

1. Type I: seminorms $\|\cdot\|_{x}$ corresponding to (classical) points $x \in \bar{D}(0,1)$.
2. Type II: norms $\|\cdot\|_{\zeta(a, r)}$ corresponding to rational closed disks $\bar{D}(a, r) \subseteq \bar{D}(0,1)$.
3. Type III: norms $\|\cdot\|_{\zeta(a, r)}$ corresponding to irrational disks $\bar{D}(a, r) \subset \bar{D}(0,1)$.
4. Type IV: norms $\|\cdot\|_{\zeta}$ corresponding to (equivalence classes of) decreasing chains $D_{1} \supseteq D_{2} \supseteq \cdots$ of disks with empty intersection.

Chains of disks as in Type IV must have radius bounded below.

Path-connectedness, intuitively

$\bar{D}_{\text {Ber }}(0,1)$ as an \mathbb{R}-tree

The Berkovich Projective Line $\mathbb{P}_{\text {Ber }}^{1}$

Glue two copies of $\bar{D}_{\operatorname{Ber}}(0,1)$ along $|z|=1$ via $z \mapsto 1 / z$.

Berkovich Disks

Definition
Let $a \in \mathbb{C}_{K}$ and $r>0$.

- The closed Berkovich disk $\bar{D}_{\text {Ber }}(a, r)$ is the set of all $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$ corresponding to a point/disk/chain of disks contained in $\bar{D}(a, r)$.

Berkovich Disks

Definition

Let $a \in \mathbb{C}_{K}$ and $r>0$.

- The closed Berkovich disk $\bar{D}_{\text {Ber }}(a, r)$ is the set of all $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$ corresponding to a point/disk/chain of disks contained in $\bar{D}(a, r)$.
- The open Berkovich disk $D_{\mathrm{Ber}}(a, r)$ is the set of all $\zeta \in \mathbb{P}_{\mathrm{Ber}}^{1}$ corresponding to a point/disk/chain of disks contained in $D(a, r)$, except $\zeta(a, r)$ itself.

Berkovich Disks

Definition

Let $a \in \mathbb{C}_{K}$ and $r>0$.

- The closed Berkovich disk $\bar{D}_{\mathrm{Ber}}(a, r)$ is the set of all $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$ corresponding to a point/disk/chain of disks contained in $\bar{D}(a, r)$.
- The open Berkovich disk $D_{\mathrm{Ber}}(a, r)$ is the set of all $\zeta \in \mathbb{P}_{\mathrm{Ber}}^{1}$ corresponding to a point/disk/chain of disks contained in $D(a, r)$, except $\zeta(a, r)$ itself.

Fact:
$D_{\mathrm{Ber}}(a, r)$ is open, and $\bar{D}_{\mathrm{Ber}}(a, r)$ is closed.

Berkovich Disks

Definition

Let $a \in \mathbb{C}_{K}$ and $r>0$.

- The closed Berkovich disk $\bar{D}_{\text {Ber }}(a, r)$ is the set of all $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$ corresponding to a point/disk/chain of disks contained in $\bar{D}(a, r)$.
- The open Berkovich disk $D_{\mathrm{Ber}}(a, r)$ is the set of all $\zeta \in \mathbb{P}_{\mathrm{Ber}}^{1}$ corresponding to a point/disk/chain of disks contained in $D(a, r)$, except $\zeta(a, r)$ itself.

Fact:

$$
D_{\mathrm{Ber}}(a, r) \text { is open, and } \bar{D}_{\mathrm{Ber}}(a, r) \text { is closed. }
$$

Moreover:

The open Berkovich disks and the complements of closed
Berkovich disks together form a subbasis for the Gel'fand topology.

More on the Gel'fand Topology

Definition

An (open) connected Berkovich affinoid is the intersection of finitely many (open) Berkovich disks and complements of (closed) Berkovich disks.

More on the Gel'fand Topology

Definition

An (open) connected Berkovich affinoid is the intersection of finitely many (open) Berkovich disks and complements of (closed) Berkovich disks.

Theorem

- The open connected Berkovich affinoids form a basis for the Gel'fand topology.

More on the Gel'fand Topology

Definition

An (open) connected Berkovich affinoid is the intersection of finitely many (open) Berkovich disks and complements of (closed) Berkovich disks.

Theorem

- The open connected Berkovich affinoids form a basis for the Gel'fand topology.
- $\mathbb{P}_{\text {Ber }}^{1}$ is uniquely path-connected.

More on the Gel'fand Topology

Definition

An (open) connected Berkovich affinoid is the intersection of finitely many (open) Berkovich disks and complements of (closed) Berkovich disks.

Theorem

- The open connected Berkovich affinoids form a basis for the Gel'fand topology.
- $\mathbb{P}_{\text {Ber }}^{1}$ is uniquely path-connected.

For any $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$, the complement $\mathbb{P}_{\text {Ber }}^{1} \backslash\{\zeta\}$ consists of

1. one component if ζ is type I or type IV,
2. infinitely many components if ζ is type II,
3. two components if ζ is type III.

More on the Gel'fand Topology

Definition

An (open) connected Berkovich affinoid is the intersection of finitely many (open) Berkovich disks and complements of (closed) Berkovich disks.

Theorem

- The open connected Berkovich affinoids form a basis for the Gel'fand topology.
- $\mathbb{P}_{\text {Ber }}^{1}$ is uniquely path-connected.

For any $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$, the complement $\mathbb{P}_{\text {Ber }}^{1} \backslash\{\zeta\}$ consists of

1. one component if ζ is type I or type IV,
2. infinitely many components if ζ is type II,
3. two components if ζ is type III.

The components of $\mathbb{P}_{\text {Ber }}^{1} \backslash\{\zeta\}$ are called the directions at ζ.

Recall: The Berkovich Projective Line $\mathbb{P}_{\text {Ber }}^{1}$

Rational Functions Acting on $\mathbb{P}_{\text {Ber }}^{1}$

Let $\phi(z) \in \mathbb{C}_{K}(z)$. Then for each point $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$, there is a unique point $\phi(\zeta) \in \mathbb{P}_{\text {Ber }}^{1}$ such that

$$
\|h\|_{\phi(\zeta)}=\|\phi \circ h\|_{\zeta}
$$

for all $h \in \mathbb{C}_{K}(z)$.

Rational Functions Acting on $\mathbb{P}_{\text {Ber }}^{1}$

Let $\phi(z) \in \mathbb{C}_{K}(z)$. Then for each point $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$, there is a unique point $\phi(\zeta) \in \mathbb{P}_{\text {Ber }}^{1}$ such that

$$
\|h\|_{\phi(\zeta)}=\|\phi \circ h\|_{\zeta}
$$

for all $h \in \mathbb{C}_{K}(z)$.
If ζ is type I , then $\phi(\zeta)$ is what you think.

Rational Functions Acting on $\mathbb{P}_{\text {Ber }}^{1}$

Let $\phi(z) \in \mathbb{C}_{K}(z)$. Then for each point $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$, there is a unique point $\phi(\zeta) \in \mathbb{P}_{\text {Ber }}^{1}$ such that

$$
\|h\|_{\phi(\zeta)}=\|\phi \circ h\|_{\zeta}
$$

for all $h \in \mathbb{C}_{K}(z)$.
If ζ is type I , then $\phi(\zeta)$ is what you think.
Then $\phi: \mathbb{P}_{\text {Ber }}^{1} \rightarrow \mathbb{P}_{\text {Ber }}^{1}$ is the unique continuous extension of $\phi: \mathbb{P}^{1}\left(\mathbb{C}_{K}\right) \rightarrow \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$.

Understanding degree one maps on $\mathbb{P}_{\text {Ber }}^{1}$

- $\phi(z)=c z \operatorname{maps} \zeta(a, r)$ to $\zeta(c a,|c| r)$.

Understanding degree one maps on $\mathbb{P}_{\text {Ber }}^{1}$

- $\phi(z)=c z \operatorname{maps} \zeta(a, r)$ to $\zeta(c a,|c| r)$.
- $\phi(z)=z+b \operatorname{maps} \zeta(a, r)$ to $\zeta(a+b, r)$.

Understanding degree one maps on $\mathbb{P}_{\text {Ber }}^{1}$

- $\phi(z)=c z \operatorname{maps} \zeta(a, r)$ to $\zeta(c a,|c| r)$.
- $\phi(z)=z+b \operatorname{maps} \zeta(a, r)$ to $\zeta(a+b, r)$.
- $\phi(z)=1 / z \operatorname{maps} \zeta(a, r)$ to $\begin{cases}\zeta(0,1 / r) & \text { if } 0 \in \bar{D}(a, r), \\ \zeta\left(1 / a, r /|a|^{2}\right) & \text { if } 0 \notin \bar{D}(a, r) .\end{cases}$

Understanding degree one maps on $\mathbb{P}_{\text {Ber }}^{1}$

- $\phi(z)=c z \operatorname{maps} \zeta(a, r)$ to $\zeta(c a,|c| r)$.
- $\phi(z)=z+b$ maps $\zeta(a, r)$ to $\zeta(a+b, r)$.
- $\phi(z)=1 / z$ maps $\zeta(a, r)$ to $\begin{cases}\zeta(0,1 / r) & \text { if } 0 \in \bar{D}(a, r), \\ \zeta\left(1 / a, r /|a|^{2}\right) & \text { if } 0 \notin \bar{D}(a, r) .\end{cases}$
- So for any $\phi \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$, i.e., $\phi(z)=\frac{a z+b}{c z+d}$ with $a d-b c \neq 0$, you can figure out what $\phi(\zeta)$ is for any $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$.

Understanding degree one maps on $\mathbb{P}_{\text {Ber }}^{1}$

- $\phi(z)=c z \operatorname{maps} \zeta(a, r)$ to $\zeta(c a,|c| r)$.
- $\phi(z)=z+b \operatorname{maps} \zeta(a, r)$ to $\zeta(a+b, r)$.
- $\phi(z)=1 / z \operatorname{maps} \zeta(a, r)$ to $\begin{cases}\zeta(0,1 / r) & \text { if } 0 \in \bar{D}(a, r), \\ \zeta\left(1 / a, r /|a|^{2}\right) & \text { if } 0 \notin \bar{D}(a, r) .\end{cases}$
- So for any $\phi \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$, i.e., $\phi(z)=\frac{a z+b}{c z+d}$ with $a d-b c \neq 0$, you can figure out what $\phi(\zeta)$ is for any $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$.
- Given $\phi \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$, then

$$
\phi(\zeta(0,1))=\zeta(0,1) \quad \text { if and only if } \quad \phi \in \operatorname{PGL}(2, \mathcal{O})
$$

Understanding degree one maps on $\mathbb{P}_{\text {Ber }}^{1}$

- $\phi(z)=c z \operatorname{maps} \zeta(a, r)$ to $\zeta(c a,|c| r)$.
- $\phi(z)=z+b \operatorname{maps} \zeta(a, r)$ to $\zeta(a+b, r)$.
- $\phi(z)=1 / z \operatorname{maps} \zeta(a, r)$ to $\begin{cases}\zeta(0,1 / r) & \text { if } 0 \in \bar{D}(a, r), \\ \zeta\left(1 / a, r /|a|^{2}\right) & \text { if } 0 \notin \bar{D}(a, r) .\end{cases}$
- So for any $\phi \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$, i.e., $\phi(z)=\frac{a z+b}{c z+d}$ with $a d-b c \neq 0$, you can figure out what $\phi(\zeta)$ is for any $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$.
- Given $\phi \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$, then

$$
\begin{gathered}
\phi(\zeta(0,1))=\zeta(0,1) \quad \text { if and only if } \quad \phi \in \operatorname{PGL}(2, \mathcal{O}) \\
\text { i.e., } \phi(z)=\frac{a z+b}{c z+d} \text { with }|a|,|b|,|c|,|d| \leq 1 \text { and }|a d-b c|=1
\end{gathered}
$$

Reduction of $\phi \in \mathbb{C}_{K}(z)$

For more general $\phi \in \mathbb{C}_{K}(z)$, when does $\phi(\zeta(0,1))=\zeta(0,1)$?

Reduction of $\phi \in \mathbb{C}_{K}(z)$

For more general $\phi \in \mathbb{C}_{K}(z)$, when does $\phi(\zeta(0,1))=\zeta(0,1)$?
Write $\phi(z)=\frac{a_{d} z^{d}+\cdots+a_{1} z+a_{0}}{b_{d} z^{d}+\cdots+b_{1} z+b_{0}}$,
with $a_{i}, b_{i} \in \mathcal{O}$ and some $\left|a_{i}\right|=1$ and/or some $\left|b_{j}\right|=1$.

Reduction of $\phi \in \mathbb{C}_{K}(z)$

For more general $\phi \in \mathbb{C}_{K}(z)$, when does $\phi(\zeta(0,1))=\zeta(0,1)$?
Write $\phi(z)=\frac{a_{d} z^{d}+\cdots+a_{1} z+a_{0}}{b_{d} z^{d}+\cdots+b_{1} z+b_{0}}$,
with $a_{i}, b_{i} \in \mathcal{O}$ and some $\left|a_{i}\right|=1$ and/or some $\left|b_{j}\right|=1$.
Then $\bar{\phi}(z):=\frac{\bar{a}_{d} z^{d}+\cdots+\bar{a}_{1} z+\bar{a}_{0}}{\bar{b}_{d} z^{d}+\cdots+\bar{b}_{1} z+\bar{b}_{0}} \in \bar{k}(z)$.

Reduction of $\phi \in \mathbb{C}_{K}(z)$

For more general $\phi \in \mathbb{C}_{K}(z)$, when does $\phi(\zeta(0,1))=\zeta(0,1)$?
Write $\phi(z)=\frac{a_{d} z^{d}+\cdots+a_{1} z+a_{0}}{b_{d} z^{d}+\cdots+b_{1} z+b_{0}}$,
with $a_{i}, b_{i} \in \mathcal{O}$ and some $\left|a_{i}\right|=1$ and/or some $\left|b_{j}\right|=1$.
Then $\bar{\phi}(z):=\frac{\bar{a}_{d} z^{d}+\cdots+\bar{a}_{1} z+\bar{a}_{0}}{\bar{b}_{d} z^{d}+\cdots+\bar{b}_{1} z+\bar{b}_{0}} \in \bar{k}(z)$.
But we might have cancellation in $\bar{\phi}$.

Reduction of $\phi \in \mathbb{C}_{K}(z)$

For more general $\phi \in \mathbb{C}_{K}(z)$, when does $\phi(\zeta(0,1))=\zeta(0,1)$?
Write $\phi(z)=\frac{a_{d} z^{d}+\cdots+a_{1} z+a_{0}}{b_{d} z^{d}+\cdots+b_{1} z+b_{0}}$,
with $a_{i}, b_{i} \in \mathcal{O}$ and some $\left|a_{i}\right|=1$ and/or some $\left|b_{j}\right|=1$.
Then $\bar{\phi}(z):=\frac{\bar{a}_{d} z^{d}+\cdots+\bar{a}_{1} z+\bar{a}_{0}}{\bar{b}_{d} z^{d}+\cdots+\bar{b}_{1} z+\bar{b}_{0}} \in \bar{k}(z)$.
But we might have cancellation in $\bar{\phi}$.
If $\operatorname{deg} \bar{\phi}=\operatorname{deg} \phi$, we say ϕ has good reduction. If $\operatorname{deg} \bar{\phi} \geq 1$, we say ϕ has nonconstant reduction.

Reduction of $\phi \in \mathbb{C}_{K}(z)$

For more general $\phi \in \mathbb{C}_{K}(z)$, when does $\phi(\zeta(0,1))=\zeta(0,1)$?
Write $\phi(z)=\frac{a_{d} z^{d}+\cdots+a_{1} z+a_{0}}{b_{d} z^{d}+\cdots+b_{1} z+b_{0}}$,
with $a_{i}, b_{i} \in \mathcal{O}$ and some $\left|a_{i}\right|=1$ and/or some $\left|b_{j}\right|=1$.
Then $\bar{\phi}(z):=\frac{\bar{a}_{d} z^{d}+\cdots+\bar{a}_{1} z+\bar{a}_{0}}{\bar{b}_{d} z^{d}+\cdots+\bar{b}_{1} z+\bar{b}_{0}} \in \bar{k}(z)$.
But we might have cancellation in $\bar{\phi}$.
If $\operatorname{deg} \bar{\phi}=\operatorname{deg} \phi$, we say ϕ has good reduction. If $\operatorname{deg} \bar{\phi} \geq 1$, we say ϕ has nonconstant reduction.

Fact: $\phi(\zeta(0,1))=\zeta(0,1)$ if and only if ϕ has nonconstant reduction.

Understanding $\phi \in \mathbb{C}_{K}(z)$ at type II points

- For any type II point $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$, there is some $\eta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ such that $\eta(\zeta)=\zeta(0,1)$.

Understanding $\phi \in \mathbb{C}_{K}(z)$ at type II points

- For any type II point $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$, there is some $\eta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ such that $\eta(\zeta)=\zeta(0,1)$.
- Given $\phi \in \mathbb{C}_{K}(z)$ nonconstant and $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$ of type II, choose $\eta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ for ζ as above.

Understanding $\phi \in \mathbb{C}_{K}(z)$ at type II points

- For any type II point $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$, there is some $\eta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ such that $\eta(\zeta)=\zeta(0,1)$.
- Given $\phi \in \mathbb{C}_{K}(z)$ nonconstant and $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$ of type II, choose $\eta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ for ζ as above. Then there is some $\theta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ such that the rational function

$$
\theta \circ \phi \circ \eta^{-1}(z) \in \mathbb{C}_{K}(z)
$$

has nonconstant reduction.

Understanding $\phi \in \mathbb{C}_{K}(z)$ at type II points

- For any type II point $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$, there is some $\eta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ such that $\eta(\zeta)=\zeta(0,1)$.
- Given $\phi \in \mathbb{C}_{K}(z)$ nonconstant and $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$ of type II, choose $\eta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ for ζ as above. Then there is some $\theta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ such that the rational function

$$
\theta \circ \phi \circ \eta^{-1}(z) \in \mathbb{C}_{K}(z)
$$

has nonconstant reduction.

- Then $\phi(\zeta)=\theta^{-1}(\zeta(0,1))$.

Understanding $\phi \in \mathbb{C}_{K}(z)$ at type II points

- For any type II point $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$, there is some $\eta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ such that $\eta(\zeta)=\zeta(0,1)$.
- Given $\phi \in \mathbb{C}_{K}(z)$ nonconstant and $\zeta \in \mathbb{P}_{\text {Ber }}^{1}$ of type II, choose $\eta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ for ζ as above. Then there is some $\theta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ such that the rational function

$$
\theta \circ \phi \circ \eta^{-1}(z) \in \mathbb{C}_{K}(z)
$$

has nonconstant reduction.

- Then $\phi(\zeta)=\theta^{-1}(\zeta(0,1))$.
- $\eta, \theta \in \operatorname{PGL}\left(2, \mathbb{C}_{K}\right)$ are not unique, but the cosets $\operatorname{PGL}(2, \mathcal{O}) \eta$ and $\operatorname{PGL}(2, \mathcal{O}) \theta$ are unique.

Example

$$
\mathbb{C}_{K}=\mathbb{C}_{p}, \zeta=\zeta\left(0,|p|_{p}\right), \text { and } \phi(z)=\frac{z^{3}-z^{2}+z+p^{2}}{z}
$$

What is $\phi(\zeta)$?

Example

$$
\mathbb{C}_{K}=\mathbb{C}_{p}, \zeta=\zeta\left(0,|p|_{p}\right), \text { and } \phi(z)=\frac{z^{3}-z^{2}+z+p^{2}}{z}
$$

What is $\phi(\zeta)$?
$\eta(z)=z / p$ maps ζ to $\zeta(0,1)$, and

$$
\phi \circ \eta^{-1}(z)=\phi(p z)=\frac{p^{2} z^{3}-p z^{2}+z+p}{z} .
$$

Note $\overline{\phi \circ \eta^{-1}}=z / z=1$ is constant.

Example

$$
\mathbb{C}_{K}=\mathbb{C}_{p}, \zeta=\zeta\left(0,|p|_{p}\right), \text { and } \phi(z)=\frac{z^{3}-z^{2}+z+p^{2}}{z}
$$

What is $\phi(\zeta)$?
$\eta(z)=z / p$ maps ζ to $\zeta(0,1)$, and

$$
\phi \circ \eta^{-1}(z)=\phi(p z)=\frac{p^{2} z^{3}-p z^{2}+z+p}{z} .
$$

Note $\overline{\phi \circ \eta^{-1}}=z / z=1$ is constant.
So let $\theta(z)=(z-1) / p$.

Example

$$
\mathbb{C}_{K}=\mathbb{C}_{p}, \zeta=\zeta\left(0,|p|_{p}\right), \text { and } \phi(z)=\frac{z^{3}-z^{2}+z+p^{2}}{z}
$$

What is $\phi(\zeta)$?
$\eta(z)=z / p \operatorname{maps} \zeta$ to $\zeta(0,1)$, and

$$
\phi \circ \eta^{-1}(z)=\phi(p z)=\frac{p^{2} z^{3}-p z^{2}+z+p}{z} .
$$

Note $\overline{\phi \circ \eta^{-1}}=z / z=1$ is constant.
So let $\theta(z)=(z-1) / p$.
Then $\theta \circ \phi \circ \eta^{-1}(z)=\frac{p z^{3}-z^{2}+1}{z}$, and so
$\overline{\theta \circ \phi \circ \eta^{-1}}(z)=\left(1-z^{2}\right) / z$ is nonconstant.

Example

$\mathbb{C}_{K}=\mathbb{C}_{p}, \zeta=\zeta\left(0,|p|_{p}\right)$, and $\phi(z)=\frac{z^{3}-z^{2}+z+p^{2}}{z}$.
What is $\phi(\zeta)$?
$\eta(z)=z / p$ maps ζ to $\zeta(0,1)$, and

$$
\phi \circ \eta^{-1}(z)=\phi(p z)=\frac{p^{2} z^{3}-p z^{2}+z+p}{z} .
$$

Note $\overline{\phi \circ \eta^{-1}}=z / z=1$ is constant.
So let $\theta(z)=(z-1) / p$.
Then $\theta \circ \phi \circ \eta^{-1}(z)=\frac{p z^{3}-z^{2}+1}{z}$, and so
$\overline{\theta \circ \phi \circ \eta^{-1}}(z)=\left(1-z^{2}\right) / z$ is nonconstant.
So $\phi(\zeta)=\theta^{-1}(\zeta(0,1))=\zeta\left(1,|p|_{p}\right)$.

Dynamics on $\mathbb{P}_{\text {Ber }}^{1}$: Classifying Periodic Points

Definition

If ζ and ξ are type II points and $\phi(\zeta)=\xi$, then the local degree or multiplicity of ϕ at ζ is

$$
\operatorname{deg}_{\zeta} \phi:=\operatorname{deg} \overline{\theta \circ \phi \circ \eta^{-1}}
$$

where $\eta(\zeta)=\zeta(0,1)$ and $\theta(\xi)=\zeta(0,1)$.

Dynamics on $\mathbb{P}_{\text {Ber }}^{1}$: Classifying Periodic Points

Definition

If ζ and ξ are type II points and $\phi(\zeta)=\xi$, then the local degree or multiplicity of ϕ at ζ is

$$
\operatorname{deg}_{\zeta} \phi:=\operatorname{deg} \overline{\theta \circ \phi \circ \eta^{-1}}
$$

where $\eta(\zeta)=\zeta(0,1)$ and $\theta(\xi)=\zeta(0,1)$.
If ζ is type II and periodic of exact period n, we say ζ is

- indifferent (or neutral) if $\operatorname{deg}_{\zeta} \phi^{n}=1$.
- repelling if $\operatorname{deg}_{\zeta} \phi^{n} \geq 2$.

Dynamics on $\mathbb{P}_{\text {Ber }}^{1}$: Classifying Periodic Points

Definition

If ζ and ξ are type II points and $\phi(\zeta)=\xi$, then the local degree or multiplicity of ϕ at ζ is

$$
\operatorname{deg}_{\zeta} \phi:=\operatorname{deg} \overline{\theta \circ \phi \circ \eta^{-1}}
$$

where $\eta(\zeta)=\zeta(0,1)$ and $\theta(\xi)=\zeta(0,1)$.
If ζ is type II and periodic of exact period n, we say ζ is

- indifferent (or neutral) if $\operatorname{deg}_{\zeta} \phi^{n}=1$.
- repelling if $\operatorname{deg}_{\zeta} \phi^{n} \geq 2$.

Warning: Repelling type II points (usually) do not actually repel in most directions.

Dynamics on $\mathbb{P}_{\text {Ber }}^{1}$: Classifying Periodic Points

Definition

If ζ and ξ are type II points and $\phi(\zeta)=\xi$, then the local degree or multiplicity of ϕ at ζ is

$$
\operatorname{deg}_{\zeta} \phi:=\operatorname{deg} \overline{\theta \circ \phi \circ \eta^{-1}}
$$

where $\eta(\zeta)=\zeta(0,1)$ and $\theta(\xi)=\zeta(0,1)$.
If ζ is type II and periodic of exact period n, we say ζ is

- indifferent (or neutral) if $\operatorname{deg}_{\zeta} \phi^{n}=1$.
- repelling if $\operatorname{deg}_{\zeta} \phi^{n} \geq 2$.

Warning: Repelling type II points (usually) do not actually repel in most directions.

Note: Periodic type III and IV points are always indifferent.

Berkovich Fatou and Julia Sets

Definition

An open set $U \subseteq \mathbb{P}_{\text {Ber }}^{1}$ is dynamically stable under $\phi \in \mathbb{C}_{K}(z)$ if $\bigcup \phi^{n}(U)$ omits infinitely many points of $\mathbb{P}_{\text {Ber }}^{1}$. $n \geq 0$

Berkovich Fatou and Julia Sets

Definition

An open set $U \subseteq \mathbb{P}_{\text {Ber }}^{1}$ is dynamically stable under $\phi \in \mathbb{C}_{K}(z)$ if $\bigcup_{n \geq 0} \phi^{n}(U)$ omits infinitely many points of $\mathbb{P}_{\text {Ber }}^{1}$.

The (Berkovich) Fatou set of ϕ is the set $\mathcal{F}_{\text {Ber }}=\mathcal{F}_{\phi, \text { Ber }}$ given by

$$
\mathcal{F}_{\text {Ber }}:=\left\{x \in \mathbb{P}_{\text {Ber }}^{1}: x \text { has a dynamically stable neighborhood }\right\} .
$$

Berkovich Fatou and Julia Sets

Definition

An open set $U \subseteq \mathbb{P}_{\text {Ber }}^{1}$ is dynamically stable under $\phi \in \mathbb{C}_{K}(z)$ if $\bigcup_{n>0} \phi^{n}(U)$ omits infinitely many points of $\mathbb{P}_{\text {Ber }}^{1}$.

The (Berkovich) Fatou set of ϕ is the set $\mathcal{F}_{\text {Ber }}=\mathcal{F}_{\phi, \text { Ber }}$ given by

$$
\mathcal{F}_{\text {Ber }}:=\left\{x \in \mathbb{P}_{\text {Ber }}^{1}: x \text { has a dynamically stable neighborhood }\right\} .
$$

The (Berkovich) Julia set of ϕ is the set

$$
\mathcal{J}_{\text {Ber }}=\mathcal{J}_{\phi, \text { Ber }}:=\mathbb{P}_{\text {Ber }}^{1} \backslash \mathcal{F}_{\phi, \text { Ber }}
$$

Basic Properties of Berkovich Fatou and Julia Sets

- $\mathcal{F}_{\text {Ber }}$ is open, and $\mathcal{J}_{\text {Ber }}$ is closed.

Basic Properties of Berkovich Fatou and Julia Sets

- $\mathcal{F}_{\text {Ber }}$ is open, and $\mathcal{J}_{\text {Ber }}$ is closed.
- $\mathcal{F}_{\phi^{n}, \text { Ber }}=\mathcal{F}_{\phi, \text { Ber }}$, and $\mathcal{J}_{\phi^{n}, \text { Ber }}=\mathcal{J}_{\phi, \text { Ber }}$

Basic Properties of Berkovich Fatou and Julia Sets

- $\mathcal{F}_{\text {Ber }}$ is open, and $\mathcal{J}_{\text {Ber }}$ is closed.
- $\mathcal{F}_{\phi^{n}, \text { Ber }}=\mathcal{F}_{\phi, \text { Ber }}$, and $\mathcal{J}_{\phi^{n}, \text { Ber }}=\mathcal{J}_{\phi, \text { Ber }}$
- $\phi\left(\mathcal{F}_{\text {Ber }}\right)=\mathcal{F}_{\text {Ber }}=\phi^{-1}\left(\mathcal{F}_{\text {Ber }}\right)$, and $\phi\left(\mathcal{J}_{\text {Ber }}\right)=\mathcal{J}_{\text {Ber }}=\phi^{-1}\left(\mathcal{J}_{\text {Ber }}\right)$.

Basic Properties of Berkovich Fatou and Julia Sets

- $\mathcal{F}_{\text {Ber }}$ is open, and $\mathcal{J}_{\text {Ber }}$ is closed.
- $\mathcal{F}_{\phi^{n}, \text { Ber }}=\mathcal{F}_{\phi, \text { Ber }}$, and $\mathcal{J}_{\phi^{n}, \text { Ber }}=\mathcal{J}_{\phi, \text { Ber }}$
- $\phi\left(\mathcal{F}_{\text {Ber }}\right)=\mathcal{F}_{\text {Ber }}=\phi^{-1}\left(\mathcal{F}_{\text {Ber }}\right)$, and $\phi\left(\mathcal{J}_{\text {Ber }}\right)=\mathcal{J}_{\text {Ber }}=\phi^{-1}\left(\mathcal{J}_{\text {Ber }}\right)$.
- $\mathcal{F}=\mathcal{F}_{\text {Ber }} \cap \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathcal{J}=\mathcal{J}_{\text {Ber }} \cap \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$.

Basic Properties of Berkovich Fatou and Julia Sets

- $\mathcal{F}_{\text {Ber }}$ is open, and $\mathcal{J}_{\text {Ber }}$ is closed.
- $\mathcal{F}_{\phi^{n}, \text { Ber }}=\mathcal{F}_{\phi, \text { Ber }}$, and $\mathcal{J}_{\phi^{n}, \text { Ber }}=\mathcal{J}_{\phi, \text { Ber }}$
- $\phi\left(\mathcal{F}_{\text {Ber }}\right)=\mathcal{F}_{\text {Ber }}=\phi^{-1}\left(\mathcal{F}_{\text {Ber }}\right)$, and $\phi\left(\mathcal{J}_{\text {Ber }}\right)=\mathcal{J}_{\text {Ber }}=\phi^{-1}\left(\mathcal{J}_{\text {Ber }}\right)$.
- $\mathcal{F}=\mathcal{F}_{\text {Ber }} \cap \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathcal{J}=\mathcal{J}_{\text {Ber }} \cap \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$.
- All attracting periodic points are Fatou.
- All repelling periodic points are Julia.

Basic Properties of Berkovich Fatou and Julia Sets

- $\mathcal{F}_{\text {Ber }}$ is open, and $\mathcal{J}_{\text {Ber }}$ is closed.
- $\mathcal{F}_{\phi^{n}, \text { Ber }}=\mathcal{F}_{\phi, \text { Ber }}$, and $\mathcal{J}_{\phi^{n}, \text { Ber }}=\mathcal{J}_{\phi, \text { Ber }}$
- $\phi\left(\mathcal{F}_{\text {Ber }}\right)=\mathcal{F}_{\text {Ber }}=\phi^{-1}\left(\mathcal{F}_{\text {Ber }}\right)$, and $\phi\left(\mathcal{J}_{\text {Ber }}\right)=\mathcal{J}_{\text {Ber }}=\phi^{-1}\left(\mathcal{J}_{\text {Ber }}\right)$.
- $\mathcal{F}=\mathcal{F}_{\text {Ber }} \cap \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathcal{J}=\mathcal{J}_{\text {Ber }} \cap \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$.
- All attracting periodic points are Fatou.
- All repelling periodic points are Julia.
- Indifferent periodic type II points are Fatou if the residue field is algebraic over a finite field,

Basic Properties of Berkovich Fatou and Julia Sets

- $\mathcal{F}_{\text {Ber }}$ is open, and $\mathcal{J}_{\text {Ber }}$ is closed.
- $\mathcal{F}_{\phi^{n}, \text { Ber }}=\mathcal{F}_{\phi, \text { Ber }}$, and $\mathcal{J}_{\phi^{n}, \text { Ber }}=\mathcal{J}_{\phi, \text { Ber }}$
- $\phi\left(\mathcal{F}_{\text {Ber }}\right)=\mathcal{F}_{\text {Ber }}=\phi^{-1}\left(\mathcal{F}_{\text {Ber }}\right)$, and $\phi\left(\mathcal{J}_{\text {Ber }}\right)=\mathcal{J}_{\text {Ber }}=\phi^{-1}\left(\mathcal{J}_{\text {Ber }}\right)$.
- $\mathcal{F}=\mathcal{F}_{\text {Ber }} \cap \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathcal{J}=\mathcal{J}_{\text {Ber }} \cap \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$.
- All attracting periodic points are Fatou.
- All repelling periodic points are Julia.
- Indifferent periodic type II points are Fatou if the residue field is algebraic over a finite field, but they can be Julia otherwise.

In general, if $\zeta(0,1)$ is fixed by ϕ, and if $\bar{\phi}^{m}(z)=z$ for some $m \geq 1$, then $\zeta(0,1)$ is Fatou.
$\mathbb{P}^{1}(\mathbb{C}), \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathbb{P}_{\text {Ber }}^{1}$

$\mathbb{P}^{1}(\mathbb{C})$	$\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$	$\mathbb{P}_{\text {Ber }}^{1}$
Some indifferent points are Fatou, and some are Julia	All indifferent points are Fatou	Most indifferent points are Fatou.

$\mathbb{P}^{1}(\mathbb{C}), \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathbb{P}_{\text {Ber }}^{1}$

$\mathbb{P}^{1}(\mathbb{C})$	$\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$	$\mathbb{P}_{\text {Ber }}^{1}$
Some indifferent points are Fatou, and some are Julia	All indifferent points are Fatou	Most indifferent points are Fatou.
\mathcal{J} is compact	\mathcal{J} may not be compact	$\mathcal{J}_{\text {Ber }}$ is compact

$\mathbb{P}^{1}(\mathbb{C}), \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathbb{P}_{\text {Ber }}^{1}$

$\mathbb{P}^{1}(\mathbb{C})$	$\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$	$\mathbb{P}_{\text {Ber }}^{1}$
Some indifferent points are Fatou, and some are Julia	All indifferent points are Fatou	Most indifferent points are Fatou.
\mathcal{J} is compact	\mathcal{J} may not be compact	$\mathcal{J}_{\text {Ber }}$ is compact
\mathcal{J} is nonempty	\mathcal{J} may be empty	$\mathcal{J}_{\text {Ber }}$ is nonempty

$\mathbb{P}^{1}(\mathbb{C}), \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathbb{P}_{\text {Ber }}^{1}$

$\mathbb{P}^{1}(\mathbb{C})$	$\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$	$\mathbb{P}_{\text {Ber }}^{1}$
Some indifferent points are Fatou, and some are Julia	All indifferent points are Fatou	Most indifferent points are Fatou.
\mathcal{J} is compact	\mathcal{J} may not be compact	$\mathcal{J}_{\text {Ber }}$ is compact
\mathcal{J} is nonempty	\mathcal{J} may be empty	$\mathcal{J}_{\text {Ber }}$ is nonempty
\mathcal{F} may be empty	\mathcal{F} is nonempty	$\mathcal{F}_{\text {Ber }}$ is nonempty

$\mathbb{P}^{1}(\mathbb{C}), \mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$, and $\mathbb{P}_{\text {Ber }}^{1}$

$\mathbb{P}^{1}(\mathbb{C})$	$\mathbb{P}^{1}\left(\mathbb{C}_{K}\right)$	$\mathbb{P}_{\text {Ber }}^{1}$
Some indifferent points are Fatou, and some are Julia	All indifferent points are Fatou	Most indifferent points are Fatou.
\mathcal{J} is compact	\mathcal{J} may not be compact	$\mathcal{J}_{\text {Ber }}$ is compact
\mathcal{J} is nonempty	\mathcal{J} may be empty	$\mathcal{J}_{\text {Ber }}$ is nonempty
\mathcal{F} may be empty	\mathcal{F} is nonempty	$\mathcal{F}_{\text {Ber }}$ is nonempty
\mathcal{J} is the closure of the set of repelling periodic points	(see Project \#1)	$\mathcal{J}_{\text {Ber }}$ is the closure of the set of repelling periodic (Type I \& II) points

