Non-archimedean Dynamics in Dimension One: Lecture 2

Robert L. Benedetto Amherst College

Arizona Winter School

Sunday, March 14, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\mathbb{P}^1(\mathbb{C}_K)$ is not compact, or even locally compact.

- $\mathbb{P}^1(\mathbb{C}_K)$ is not compact, or even locally compact.
- $\mathbb{P}^1(\mathbb{C}_K)$ is totally disconnected.

That makes it hard to study "components" of the Fatou set in a meaningful way.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- $\mathbb{P}^1(\mathbb{C}_K)$ is not compact, or even locally compact.
- $\mathbb{P}^1(\mathbb{C}_K)$ is totally disconnected.

That makes it hard to study "components" of the Fatou set in a meaningful way.

There are ways to get around that (see Section 5 of the lecture notes), but there is a better way.

- $\mathbb{P}^1(\mathbb{C}_K)$ is not compact, or even locally compact.
- $\mathbb{P}^1(\mathbb{C}_K)$ is totally disconnected.

That makes it hard to study "components" of the Fatou set in a meaningful way.

There are ways to get around that (see Section 5 of the lecture notes), but there is a better way.

There is a nicer space $\mathbb{P}^1_{\mathsf{Ber}}$ that:

• contains $\mathbb{P}^1(\mathbb{C}_K)$ as a subspace,

- $\mathbb{P}^1(\mathbb{C}_K)$ is not compact, or even locally compact.
- $\mathbb{P}^1(\mathbb{C}_K)$ is totally disconnected.

That makes it hard to study "components" of the Fatou set in a meaningful way.

There are ways to get around that (see Section 5 of the lecture notes), but there is a better way.

There is a nicer space $\mathbb{P}^1_{\mathsf{Ber}}$ that:

- contains $\mathbb{P}^1(\mathbb{C}_K)$ as a subspace,
- is compact,

- $\mathbb{P}^1(\mathbb{C}_K)$ is not compact, or even locally compact.
- $\mathbb{P}^1(\mathbb{C}_K)$ is totally disconnected.

That makes it hard to study "components" of the Fatou set in a meaningful way.

There are ways to get around that (see Section 5 of the lecture notes), but there is a better way.

There is a nicer space $\mathbb{P}^1_{\mathsf{Ber}}$ that:

- contains $\mathbb{P}^1(\mathbb{C}_K)$ as a subspace,
- is compact,
- is (still) Hausdorff, and

- $\mathbb{P}^1(\mathbb{C}_K)$ is not compact, or even locally compact.
- $\mathbb{P}^1(\mathbb{C}_K)$ is totally disconnected.

That makes it hard to study "components" of the Fatou set in a meaningful way.

There are ways to get around that (see Section 5 of the lecture notes), but there is a better way.

There is a nicer space $\mathbb{P}^1_{\mathsf{Ber}}$ that:

- contains $\mathbb{P}^1(\mathbb{C}_K)$ as a subspace,
- is compact,
- is (still) Hausdorff, and
- is path-connected.

The Gauss Norm

 $\overline{\mathcal{A}}(0,1) = \mathbb{C}_{\mathcal{K}}\langle\langle z \rangle
angle$ is the ring of all power series

$$f(z) = \sum_{n=0}^{\infty} c_n z^n \in \mathbb{C}_{\mathcal{K}}[[z]]$$
 such that $\lim_{n \to \infty} c_n = 0$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

i.e., the ring of power series converging on $\overline{D}(0,1)$.

The Gauss Norm

 $\overline{\mathcal{A}}(0,1) = \mathbb{C}_{\mathcal{K}}\langle\langle z \rangle
angle$ is the ring of all power series

$$f(z) = \sum_{n=0}^{\infty} c_n z^n \in \mathbb{C}_{\mathcal{K}}[[z]]$$
 such that $\lim_{n \to \infty} c_n = 0$,

i.e., the ring of power series converging on $\overline{D}(0,1)$.

The Gauss norm on $\overline{\mathcal{A}}(0,1)$ is $\|\cdot\|_{\zeta(0,1)}:\overline{\mathcal{A}}(0,1)\to[0,\infty)$, by

$$\left\|\sum_{n=0}^{\infty}c_nz^n\right\|_{\zeta(0,1)}:=\max\{|c_n|:n\geq 0\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The Gauss Norm

 $\overline{\mathcal{A}}(0,1) = \mathbb{C}_{\mathcal{K}}\langle\langle z \rangle
angle$ is the ring of all power series

$$f(z) = \sum_{n=0}^{\infty} c_n z^n \in \mathbb{C}_{\mathcal{K}}[[z]]$$
 such that $\lim_{n \to \infty} c_n = 0$,

i.e., the ring of power series converging on $\overline{D}(0,1)$.

The Gauss norm on $\overline{\mathcal{A}}(0,1)$ is $\|\cdot\|_{\zeta(0,1)}:\overline{\mathcal{A}}(0,1)\to[0,\infty)$, by

$$\left\|\sum_{n=0}^{\infty}c_nz^n\right\|_{\zeta(0,1)}:=\max\{|c_n|:n\geq 0\}.$$

Equivalently, for all $f \in \overline{\mathcal{A}}(0,1)$,

$$\|f\|_{\zeta(0,1)} := \sup\{|f(x)| : x \in \overline{D}(0,1)\}$$

= max{ $|f(x)| : x \in \overline{D}(0,1)$ }

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Definition A bounded multiplicative seminorm on $\overline{\mathcal{A}}(0,1)$ is a function $\zeta = \|\cdot\|_{\zeta} : \overline{\mathcal{A}}(0,1) \to [0,\infty)$ such that

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国 ● ● ●

Definition

A bounded multiplicative seminorm on $\overline{\mathcal{A}}(0,1)$ is a function

 $\zeta = \|\cdot\|_{\zeta}: \overline{\mathcal{A}}(0,1)
ightarrow [0,\infty)$ such that

•
$$\|0\|_{\zeta} = 0$$
 and $\|1\|_{\zeta} = 1$,

•
$$\|fg\|_{\zeta} = \|f\|_{\zeta} \cdot \|g\|_{\zeta}$$
 for all $f, g \in \overline{\mathcal{A}}(0, 1)$,

 $\blacktriangleright \ \|f+g\|_{\zeta} \leq \|f\|_{\zeta} + \|g\|_{\zeta} \text{ for all } f,g \in \overline{\mathcal{A}}(0,1) \text{, and}$

• $\|f\|_{\zeta} \leq \|f\|_{\zeta(0,1)}$ for all $f \in \overline{\mathcal{A}}(0,1)$.

Definition

A bounded multiplicative seminorm on $\overline{\mathcal{A}}(0,1)$ is a function

$$\zeta = \|\cdot\|_{\zeta}: \overline{\mathcal{A}}(0,1)
ightarrow [0,\infty)$$
 such that

•
$$\|0\|_{\zeta} = 0$$
 and $\|1\|_{\zeta} = 1$,

•
$$\|fg\|_{\zeta} = \|f\|_{\zeta} \cdot \|g\|_{\zeta}$$
 for all $f, g \in \overline{\mathcal{A}}(0, 1)$,

•
$$\|f+g\|_{\zeta} \leq \|f\|_{\zeta} + \|g\|_{\zeta}$$
 for all $f,g \in \overline{\mathcal{A}}(0,1)$, and

•
$$\|f\|_{\zeta} \leq \|f\|_{\zeta(0,1)}$$
 for all $f \in \overline{\mathcal{A}}(0,1)$.

Note: We do **not** require that $||f||_{\zeta} = 0$ implies f = 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

A bounded multiplicative seminorm on $\overline{\mathcal{A}}(0,1)$ is a function

$$\zeta = \|\cdot\|_\zeta: \overline{\mathcal{A}}(0,1) o [0,\infty)$$
 such that

•
$$\|0\|_{\zeta}=0$$
 and $\|1\|_{\zeta}=1$,

•
$$\|fg\|_{\zeta} = \|f\|_{\zeta} \cdot \|g\|_{\zeta}$$
 for all $f, g \in \overline{\mathcal{A}}(0, 1)$,

•
$$\|f+g\|_{\zeta} \leq \|f\|_{\zeta} + \|g\|_{\zeta}$$
 for all $f,g \in \overline{\mathcal{A}}(0,1)$, and

•
$$||f||_{\zeta} \leq ||f||_{\zeta(0,1)}$$
 for all $f \in \overline{\mathcal{A}}(0,1)$.

Note: We do **not** require that $||f||_{\zeta} = 0$ implies f = 0.

By the way: we get $\|f + g\|_{\zeta} \leq \max\{\|f\|_{\zeta}, \|g\|_{\zeta}\}$ for free.

1. For any $x \in \overline{D}(0,1)$, define $\|\cdot\|_x$ by $\|f\|_x := |f(x)|$.

1. For any $x \in \overline{D}(0,1)$, define $\|\cdot\|_x$ by $\|f\|_x := |f(x)|$.

2. For any disk $D \subseteq \overline{D}(0,1)$, define $\|\cdot\|_D$ by

 $||f||_D := \sup\{|f(x)| : x \in D\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. For any $x \in \overline{D}(0,1)$, define $\|\cdot\|_x$ by $\|f\|_x := |f(x)|$.

2. For any disk $D \subseteq \overline{D}(0,1)$, define $\|\cdot\|_D$ by

 $||f||_D := \sup\{|f(x)| : x \in D\}.$

If $D = \overline{D}(a, r)$ or D = D(a, r), and $f(z) = \sum c_n(z - a)^n$, then $\|f\|_D = \max\{|c_n|r^n : n \ge 0\}.$

If D is rational closed, then $||f||_D = \max\{|f(x)| : x \in D\}$.

1. For any $x \in \overline{D}(0,1)$, define $\|\cdot\|_x$ by $\|f\|_x := |f(x)|$.

2. For any disk $D \subseteq \overline{D}(0,1)$, define $\|\cdot\|_D$ by

 $||f||_D := \sup\{|f(x)| : x \in D\}.$

If $D = \overline{D}(a, r)$ or D = D(a, r), and $f(z) = \sum c_n(z - a)^n$, then $\|f\|_D = \max\{|c_n|r^n : n \ge 0\}.$

If D is rational closed, then $||f||_D = \max\{|f(x)| : x \in D\}$.

Since $\|\cdot\|_{\overline{D}(a,r)} = \|\cdot\|_{D(a,r)}$, we can denote both by $\|\cdot\|_{\zeta(a,r)}$.

The Berkovich Disk

Definition

The **Berkovich unit disk** $\overline{D}_{Ber}(0,1)$ is the set of all bounded multiplicative seminorms on $\overline{\mathcal{A}}(0,1)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Berkovich Disk

Definition

The **Berkovich unit disk** $\overline{D}_{Ber}(0,1)$ is the set of all bounded multiplicative seminorms on $\overline{\mathcal{A}}(0,1)$.

As a topological space, $\overline{D}_{Ber}(0,1)$ is equipped with the **Gel'fand topology**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Berkovich Disk

Definition

The **Berkovich unit disk** $\overline{D}_{Ber}(0,1)$ is the set of all bounded multiplicative seminorms on $\overline{\mathcal{A}}(0,1)$.

As a topological space, $\overline{D}_{Ber}(0,1)$ is equipped with the Gel'fand topology.

This is the weakest topology such that for every $f \in \overline{\mathcal{A}}(0,1)$, the map $\overline{D}_{\mathsf{Ber}}(0,1) \to \mathbb{R}$ given by

 $\zeta \mapsto \|f\|_{\zeta}$

is continuous.

There are four kinds of points in $\overline{D}_{Ber}(0, 1)$.

1. Type I: seminorms $\|\cdot\|_x$ corresponding to (classical) points $x \in \overline{D}(0, 1)$.

There are four kinds of points in $\overline{D}_{Ber}(0,1)$.

- 1. Type I: seminorms $\|\cdot\|_x$ corresponding to (classical) points $x \in \overline{D}(0, 1)$.
- 2. Type II: norms $\|\cdot\|_{\zeta(a,r)}$ corresponding to **rational** closed disks $\overline{D}(a,r) \subseteq \overline{D}(0,1)$.

There are four kinds of points in $\overline{D}_{Ber}(0,1)$.

- 1. Type I: seminorms $\|\cdot\|_x$ corresponding to (classical) points $x \in \overline{D}(0,1)$.
- 2. Type II: norms $\|\cdot\|_{\zeta(a,r)}$ corresponding to **rational** closed disks $\overline{D}(a,r) \subseteq \overline{D}(0,1)$.
- 3. Type III: norms $\|\cdot\|_{\zeta(a,r)}$ corresponding to **irrational** disks $\overline{D}(a,r) \subset \overline{D}(0,1)$.

There are four kinds of points in $\overline{D}_{Ber}(0,1)$.

- 1. Type I: seminorms $\|\cdot\|_x$ corresponding to (classical) points $x \in \overline{D}(0, 1)$.
- 2. Type II: norms $\|\cdot\|_{\zeta(a,r)}$ corresponding to **rational** closed disks $\overline{D}(a,r) \subseteq \overline{D}(0,1)$.
- 3. Type III: norms $\|\cdot\|_{\zeta(a,r)}$ corresponding to **irrational** disks $\overline{D}(a,r) \subset \overline{D}(0,1)$.
- 4. Type IV: norms $\|\cdot\|_{\zeta}$ corresponding to (equivalence classes of) decreasing chains $D_1 \supseteq D_2 \supseteq \cdots$ of disks with **empty** intersection.

Chains of disks as in Type IV must have radius **bounded below**.

Path-connectedness, intuitively

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

$\overline{D}_{\mathsf{Ber}}(0,1)$ as an \mathbb{R} -tree

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙

The Berkovich Projective Line \mathbb{P}^1_{Ber}

Glue two copies of $\overline{D}_{Ber}(0,1)$ along |z| = 1 via $z \mapsto 1/z$.

Definition

Let $a \in \mathbb{C}_K$ and r > 0.

The closed Berkovich disk D
{Ber}(a, r) is the set of all ζ ∈ P¹{Ber} corresponding to a point/disk/chain of disks contained in D
(a, r).

Definition

Let $a \in \mathbb{C}_K$ and r > 0.

- The closed Berkovich disk D
 {Ber}(a, r) is the set of all ζ ∈ P¹{Ber} corresponding to a point/disk/chain of disks contained in D
 (a, r).
- The open Berkovich disk D_{Ber}(a, r) is the set of all ζ ∈ P¹_{Ber} corresponding to a point/disk/chain of disks contained in D(a, r), except ζ(a, r) itself.

Definition

Let $a \in \mathbb{C}_K$ and r > 0.

- The closed Berkovich disk D
 {Ber}(a, r) is the set of all ζ ∈ P¹{Ber} corresponding to a point/disk/chain of disks contained in D
 (a, r).
- The open Berkovich disk D_{Ber}(a, r) is the set of all ζ ∈ P¹_{Ber} corresponding to a point/disk/chain of disks contained in D(a, r), except ζ(a, r) itself.

Fact:

 $D_{\text{Ber}}(a, r)$ is open, and $\overline{D}_{\text{Ber}}(a, r)$ is closed.

Definition

Let $a \in \mathbb{C}_K$ and r > 0.

- The closed Berkovich disk D
 {Ber}(a, r) is the set of all ζ ∈ P¹{Ber} corresponding to a point/disk/chain of disks contained in D
 (a, r).
- The open Berkovich disk D_{Ber}(a, r) is the set of all ζ ∈ P¹_{Ber} corresponding to a point/disk/chain of disks contained in D(a, r), except ζ(a, r) itself.

Fact:

$$D_{\text{Ber}}(a, r)$$
 is open, and $\overline{D}_{\text{Ber}}(a, r)$ is closed.

Moreover:

The open Berkovich disks and the complements of closed Berkovich disks together form a **subbasis** for the Gel'fand topology.

More on the Gel'fand Topology

Definition

An **(open) connected Berkovich affinoid** is the intersection of finitely many (open) Berkovich disks and complements of (closed) Berkovich disks.

More on the Gel'fand Topology

Definition

An **(open) connected Berkovich affinoid** is the intersection of finitely many (open) Berkovich disks and complements of (closed) Berkovich disks.

Theorem

 The open connected Berkovich affinoids form a basis for the Gel'fand topology.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

More on the Gel'fand Topology

Definition

An **(open) connected Berkovich affinoid** is the intersection of finitely many (open) Berkovich disks and complements of (closed) Berkovich disks.

Theorem

 The open connected Berkovich affinoids form a basis for the Gel'fand topology.

 $\triangleright \mathbb{P}^1_{Ber}$ is uniquely path-connected.

More on the Gel'fand Topology

Definition

An **(open) connected Berkovich affinoid** is the intersection of finitely many (open) Berkovich disks and complements of (closed) Berkovich disks.

Theorem

 The open connected Berkovich affinoids form a basis for the Gel'fand topology.

 \triangleright \mathbb{P}^1_{Ber} is uniquely path-connected.

For any $\zeta \in \mathbb{P}^1_{\mathsf{Ber}}$, the complement $\mathbb{P}^1_{\mathsf{Ber}} \smallsetminus \{\zeta\}$ consists of

- 1. one component if $\boldsymbol{\zeta}$ is type I or type IV,
- 2. infinitely many components if ζ is type II,
- 3. two components if ζ is type III.

More on the Gel'fand Topology

Definition

An **(open) connected Berkovich affinoid** is the intersection of finitely many (open) Berkovich disks and complements of (closed) Berkovich disks.

Theorem

 The open connected Berkovich affinoids form a basis for the Gel'fand topology.

For any $\zeta \in \mathbb{P}^1_{\mathsf{Ber}}$, the complement $\mathbb{P}^1_{\mathsf{Ber}} \smallsetminus \{\zeta\}$ consists of

- 1. one component if ζ is type I or type IV,
- 2. infinitely many components if ζ is type II,
- 3. two components if ζ is type III.

The components of $\mathbb{P}^1_{\mathsf{Ber}} \smallsetminus \{\zeta\}$ are called the **directions** at ζ .

Recall: The Berkovich Projective Line \mathbb{P}^1_{Ber}

Rational Functions Acting on $\mathbb{P}^1_{\mathsf{Ber}}$

Let $\phi(z) \in \mathbb{C}_{\mathcal{K}}(z)$. Then for each point $\zeta \in \mathbb{P}^{1}_{Ber}$, there is a unique point $\phi(\zeta) \in \mathbb{P}^{1}_{Ber}$ such that

$$\|h\|_{\phi(\zeta)} = \|\phi \circ h\|_{\zeta}$$

for all $h \in \mathbb{C}_{\mathcal{K}}(z)$.

Rational Functions Acting on $\mathbb{P}^1_{\mathsf{Ber}}$

Let $\phi(z) \in \mathbb{C}_{\mathcal{K}}(z)$. Then for each point $\zeta \in \mathbb{P}^{1}_{Ber}$, there is a unique point $\phi(\zeta) \in \mathbb{P}^{1}_{Ber}$ such that

$$\|h\|_{\phi(\zeta)} = \|\phi \circ h\|_{\zeta}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all $h \in \mathbb{C}_{\mathcal{K}}(z)$.

If ζ is type I, then $\phi(\zeta)$ is what you think.

Rational Functions Acting on \mathbb{P}^1_{Ber}

Let $\phi(z) \in \mathbb{C}_{\mathcal{K}}(z)$. Then for each point $\zeta \in \mathbb{P}^{1}_{\text{Ber}}$, there is a unique point $\phi(\zeta) \in \mathbb{P}^{1}_{\text{Ber}}$ such that

$$\|h\|_{\phi(\zeta)} = \|\phi \circ h\|_{\zeta}$$

for all $h \in \mathbb{C}_{\mathcal{K}}(z)$.

If ζ is type I, then $\phi(\zeta)$ is what you think.

Then $\phi : \mathbb{P}^1_{\mathsf{Ber}} \to \mathbb{P}^1_{\mathsf{Ber}}$ is the unique continuous extension of $\phi : \mathbb{P}^1(\mathbb{C}_K) \to \mathbb{P}^1(\mathbb{C}_K).$

• $\phi(z) = cz$ maps $\zeta(a, r)$ to $\zeta(ca, |c|r)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- $\phi(z) = cz$ maps $\zeta(a, r)$ to $\zeta(ca, |c|r)$.
- $\phi(z) = z + b$ maps $\zeta(a, r)$ to $\zeta(a + b, r)$.

・ロト・日本・モート モー うへぐ

(ロ)、(型)、(E)、(E)、 E) の(の)

► So for any $\phi \in PGL(2, \mathbb{C}_{\mathcal{K}})$, i.e., $\phi(z) = \frac{az+b}{cz+d}$ with $ad - bc \neq 0$, you can figure out what $\phi(\zeta)$ is for any $\zeta \in \mathbb{P}^{1}_{Ber}$.

• Given
$$\phi \in PGL(2, \mathbb{C}_K)$$
, then

 $\phi(\zeta(0,1)) = \zeta(0,1)$ if and only if $\phi \in PGL(2,\mathcal{O})$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

i.e.,
$$\phi(z) = \frac{az + b}{cz + d}$$
 with $|a|, |b|, |c|, |d| \le 1$ and $|ad - bc| = 1$.

(ロ)、(型)、(E)、(E)、 E) の(の)

For more general $\phi \in \mathbb{C}_{\mathcal{K}}(z)$, when does $\phi(\zeta(0,1)) = \zeta(0,1)$?

For more general $\phi \in \mathbb{C}_{\mathcal{K}}(z)$, when does $\phi(\zeta(0,1)) = \zeta(0,1)$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Write
$$\phi(z) = \frac{a_d z^d + \dots + a_1 z + a_0}{b_d z^d + \dots + b_1 z + b_0}$$
,
with $a_i, b_i \in \mathcal{O}$ and some $|a_i| = 1$ and/or some $|b_j| = 1$.

For more general $\phi \in \mathbb{C}_{\mathcal{K}}(z)$, when does $\phi(\zeta(0,1)) = \zeta(0,1)$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Write
$$\phi(z) = \frac{a_d z^d + \cdots + a_1 z + a_0}{b_d z^d + \cdots + b_1 z + b_0}$$
,
with $a_i, b_i \in \mathcal{O}$ and some $|a_i| = 1$ and/or some $|b_j| = 1$.

Then
$$\overline{\phi}(z) := \frac{\overline{a}_d z^d + \cdots + \overline{a}_1 z + \overline{a}_0}{\overline{b}_d z^d + \cdots + \overline{b}_1 z + \overline{b}_0} \in \overline{k}(z).$$

For more general $\phi \in \mathbb{C}_{\mathcal{K}}(z)$, when does $\phi(\zeta(0,1)) = \zeta(0,1)$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Write
$$\phi(z) = \frac{a_d z^d + \dots + a_1 z + a_0}{b_d z^d + \dots + b_1 z + b_0}$$
,
with $a_i, b_i \in \mathcal{O}$ and some $|a_i| = 1$ and/or some $|b_j| = 1$.

Then
$$\overline{\phi}(z) := \frac{\overline{a}_d z^d + \cdots + \overline{a}_1 z + \overline{a}_0}{\overline{b}_d z^d + \cdots + \overline{b}_1 z + \overline{b}_0} \in \overline{k}(z).$$

But we might have cancellation in $\overline{\phi}$.

For more general $\phi \in \mathbb{C}_{\mathcal{K}}(z)$, when does $\phi(\zeta(0,1)) = \zeta(0,1)$?

Write
$$\phi(z) = \frac{a_d z^d + \dots + a_1 z + a_0}{b_d z^d + \dots + b_1 z + b_0}$$
,
with $a_i, b_i \in \mathcal{O}$ and some $|a_i| = 1$ and/or some $|b_j| = 1$

Then
$$\overline{\phi}(z) := \frac{\overline{a}_d z^d + \cdots + \overline{a}_1 z + \overline{a}_0}{\overline{b}_d z^d + \cdots + \overline{b}_1 z + \overline{b}_0} \in \overline{k}(z).$$

But we might have cancellation in $\overline{\phi}$.

If deg $\overline{\phi} = \text{deg } \phi$, we say ϕ has good reduction. If deg $\overline{\phi} \ge 1$, we say ϕ has nonconstant reduction.

For more general $\phi \in \mathbb{C}_{\mathcal{K}}(z)$, when does $\phi(\zeta(0,1)) = \zeta(0,1)$?

Write
$$\phi(z) = \frac{a_d z^d + \dots + a_1 z + a_0}{b_d z^d + \dots + b_1 z + b_0}$$
,
with $a_i, b_i \in \mathcal{O}$ and some $|a_i| = 1$ and/or some $|b_j| = 1$.

Then
$$\overline{\phi}(z) := \frac{\overline{a}_d z^d + \cdots + \overline{a}_1 z + \overline{a}_0}{\overline{b}_d z^d + \cdots + \overline{b}_1 z + \overline{b}_0} \in \overline{k}(z).$$

But we might have cancellation in $\overline{\phi}$.

If deg $\overline{\phi} = \deg \phi$, we say ϕ has good reduction. If deg $\overline{\phi} \ge 1$, we say ϕ has nonconstant reduction.

Fact: $\phi(\zeta(0,1)) = \zeta(0,1)$ if and only if ϕ has nonconstant reduction.

For any type II point $\zeta \in \mathbb{P}^1_{\mathsf{Ber}}$, there is some $\eta \in \mathrm{PGL}(2, \mathbb{C}_K)$ such that $\eta(\zeta) = \zeta(0, 1)$.

- For any type II point $\zeta \in \mathbb{P}^1_{\mathsf{Ber}}$, there is some $\eta \in \mathrm{PGL}(2, \mathbb{C}_K)$ such that $\eta(\zeta) = \zeta(0, 1)$.
- ▶ Given $\phi \in \mathbb{C}_{\mathcal{K}}(z)$ nonconstant and $\zeta \in \mathbb{P}^{1}_{\mathsf{Ber}}$ of type II, choose $\eta \in \mathrm{PGL}(2, \mathbb{C}_{\mathcal{K}})$ for ζ as above.

- For any type II point $\zeta \in \mathbb{P}^1_{\mathsf{Ber}}$, there is some $\eta \in \mathrm{PGL}(2, \mathbb{C}_K)$ such that $\eta(\zeta) = \zeta(0, 1)$.
- Given $\phi \in \mathbb{C}_{\mathcal{K}}(z)$ nonconstant and $\zeta \in \mathbb{P}^{1}_{\mathsf{Ber}}$ of type II, choose $\eta \in \mathrm{PGL}(2, \mathbb{C}_{\mathcal{K}})$ for ζ as above. Then there is some $\theta \in \mathrm{PGL}(2, \mathbb{C}_{\mathcal{K}})$ such that the rational function

$$\theta \circ \phi \circ \eta^{-1}(z) \in \mathbb{C}_{\mathcal{K}}(z)$$

has nonconstant reduction.

- For any type II point $\zeta \in \mathbb{P}^1_{\mathsf{Ber}}$, there is some $\eta \in \mathrm{PGL}(2, \mathbb{C}_K)$ such that $\eta(\zeta) = \zeta(0, 1)$.
- Given $\phi \in \mathbb{C}_{\mathcal{K}}(z)$ nonconstant and $\zeta \in \mathbb{P}^{1}_{\mathsf{Ber}}$ of type II, choose $\eta \in \mathrm{PGL}(2, \mathbb{C}_{\mathcal{K}})$ for ζ as above. Then there is some $\theta \in \mathrm{PGL}(2, \mathbb{C}_{\mathcal{K}})$ such that the rational function

$$heta \circ \phi \circ \eta^{-1}(z) \in \mathbb{C}_{\mathcal{K}}(z)$$

has nonconstant reduction.

• Then
$$\phi(\zeta) = \theta^{-1}(\zeta(0,1)).$$

- For any type II point $\zeta \in \mathbb{P}^1_{\mathsf{Ber}}$, there is some $\eta \in \mathrm{PGL}(2, \mathbb{C}_K)$ such that $\eta(\zeta) = \zeta(0, 1)$.
- Given $\phi \in \mathbb{C}_{\mathcal{K}}(z)$ nonconstant and $\zeta \in \mathbb{P}^{1}_{\mathsf{Ber}}$ of type II, choose $\eta \in \mathrm{PGL}(2, \mathbb{C}_{\mathcal{K}})$ for ζ as above. Then there is some $\theta \in \mathrm{PGL}(2, \mathbb{C}_{\mathcal{K}})$ such that the rational function

$$\theta \circ \phi \circ \eta^{-1}(z) \in \mathbb{C}_{\mathcal{K}}(z)$$

has nonconstant reduction.

• Then
$$\phi(\zeta) = \theta^{-1}(\zeta(0,1)).$$

η, θ ∈ PGL(2, C_K) are not unique,
 but the cosets PGL(2, O)η and PGL(2, O)θ are unique.

$$\mathbb{C}_{\mathcal{K}} = \mathbb{C}_{p}, \, \zeta = \zeta(0, |p|_{p}), \text{ and } \phi(z) = \frac{z^{3} - z^{2} + z + p^{2}}{z}.$$
What is $\phi(\zeta)$?

<□ > < @ > < E > < E > E のQ @

$$\mathbb{C}_{\mathcal{K}} = \mathbb{C}_{p}, \ \zeta = \zeta(0, |p|_{p}), \text{ and } \phi(z) = \frac{z^{3} - z^{2} + z + p^{2}}{z}.$$

What is $\phi(\zeta)$?
 $\eta(z) = z/p \text{ maps } \zeta \text{ to } \zeta(0, 1), \text{ and}$
 $\phi \circ \eta^{-1}(z) = \phi(pz) = \frac{p^{2}z^{3} - pz^{2} + z + p}{z}.$

<□ > < @ > < E > < E > E のQ @

Note $\overline{\phi \circ \eta^{-1}} = z/z = 1$ is constant.

$$\mathbb{C}_{\mathcal{K}} = \mathbb{C}_{p}, \ \zeta = \zeta(0, |p|_{p}), \text{ and } \phi(z) = \frac{z^{3} - z^{2} + z + p^{2}}{z}.$$
What is $\phi(\zeta)$?
$$\eta(z) = z/p \text{ maps } \zeta \text{ to } \zeta(0, 1), \text{ and}$$

$$\phi \circ \eta^{-1}(z) = \phi(pz) = \frac{p^{2}z^{3} - pz^{2} + z + p}{z}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note $\overline{\phi \circ \eta^{-1}} = z/z = 1$ is constant. So let $\theta(z) = (z - 1)/p$.

$$\mathbb{C}_{\mathcal{K}} = \mathbb{C}_{p}, \ \zeta = \zeta(0, |p|_{p}), \text{ and } \phi(z) = \frac{z^{3} - z^{2} + z + p^{2}}{z}.$$

What is $\phi(\zeta)$?
 $\eta(z) = z/p \text{ maps } \zeta \text{ to } \zeta(0, 1), \text{ and}$
 $\phi \circ \eta^{-1}(z) = \phi(pz) = \frac{p^{2}z^{3} - pz^{2} + z + p}{z}.$

Note $\overline{\phi \circ \eta^{-1}} = z/z = 1$ is constant. So let $\theta(z) = (z - 1)/p$. Then $\theta \circ \phi \circ \eta^{-1}(z) = \frac{pz^3 - z^2 + 1}{z}$, and so $\overline{\theta \circ \phi \circ \eta^{-1}(z)} = (1 - z^2)/z$ is nonconstant.

$$\mathbb{C}_{\mathcal{K}} = \mathbb{C}_{p}, \ \zeta = \zeta(0, |p|_{p}), \text{ and } \phi(z) = \frac{z^{3} - z^{2} + z + p^{2}}{z}.$$
What is $\phi(\zeta)$?
$$\eta(z) = z/p \text{ maps } \zeta \text{ to } \zeta(0, 1), \text{ and}$$

$$\phi \circ \eta^{-1}(z) = \phi(pz) = \frac{p^{2}z^{3} - pz^{2} + z + p}{z}.$$

Note $\phi \circ \eta^{-1} = z/z = 1$ is constant. So let $\theta(z) = (z - 1)/p$. Then $\theta \circ \phi \circ \eta^{-1}(z) = \frac{pz^3 - z^2 + 1}{z}$, and so $\overline{\theta \circ \phi \circ \eta^{-1}(z)} = (1 - z^2)/z$ is nonconstant. So $\phi(\zeta) = \theta^{-1}(\zeta(0, 1)) = \zeta(1, |p|_p)$.

Definition

If ζ and ξ are type II points and $\phi(\zeta) = \xi$, then the **local degree** or **multiplicity** of ϕ at ζ is

$$\deg_{\zeta}\phi:=\deg\overline{\theta\circ\phi\circ\eta^{-1}},$$

where $\eta(\zeta) = \zeta(0,1)$ and $\theta(\xi) = \zeta(0,1)$.

Definition

If ζ and ξ are type II points and $\phi(\zeta) = \xi$, then the **local degree** or **multiplicity** of ϕ at ζ is

$$\deg_{\zeta}\phi:=\deg\overline{\theta\circ\phi\circ\eta^{-1}},$$

where $\eta(\zeta) = \zeta(0,1)$ and $\theta(\xi) = \zeta(0,1)$.

If ζ is type II and periodic of exact period *n*, we say ζ is

- indifferent (or neutral) if $\deg_{\zeta} \phi^n = 1$.
- repelling if $\deg_{\zeta} \phi^n \ge 2$.

Definition

If ζ and ξ are type II points and $\phi(\zeta) = \xi$, then the **local degree** or **multiplicity** of ϕ at ζ is

$$\deg_{\zeta}\phi:=\deg\overline{\theta\circ\phi\circ\eta^{-1}},$$

where $\eta(\zeta) = \zeta(0,1)$ and $\theta(\xi) = \zeta(0,1)$.

If ζ is type II and periodic of exact period *n*, we say ζ is

- indifferent (or neutral) if $\deg_{\zeta} \phi^n = 1$.
- repelling if $\deg_{\zeta} \phi^n \ge 2$.

Warning: Repelling type II points (usually) do not actually repel in most directions.

Definition

If ζ and ξ are type II points and $\phi(\zeta) = \xi$, then the **local degree** or **multiplicity** of ϕ at ζ is

$$\deg_{\zeta}\phi:=\deg\overline{\theta\circ\phi\circ\eta^{-1}},$$

where $\eta(\zeta) = \zeta(0,1)$ and $\theta(\xi) = \zeta(0,1)$.

If ζ is type II and periodic of exact period *n*, we say ζ is

- indifferent (or neutral) if $\deg_{\zeta} \phi^n = 1$.
- repelling if $\deg_{\zeta} \phi^n \ge 2$.

Warning: Repelling type II points (usually) do not actually repel in most directions.

Note: Periodic type III and IV points are always indifferent.

Berkovich Fatou and Julia Sets

Definition

An open set $U \subseteq \mathbb{P}^1_{Ber}$ is **dynamically stable** under $\phi \in \mathbb{C}_{\mathcal{K}}(z)$ if $\bigcup_{n \geq 0} \phi^n(U)$ omits infinitely many points of \mathbb{P}^1_{Ber} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Berkovich Fatou and Julia Sets

Definition

An open set $U \subseteq \mathbb{P}^1_{\mathsf{Ber}}$ is **dynamically stable** under $\phi \in \mathbb{C}_{\mathcal{K}}(z)$ if $\bigcup_{n \geq 0} \phi^n(U)$ omits infinitely many points of $\mathbb{P}^1_{\mathsf{Ber}}$.

The (Berkovich) Fatou set of ϕ is the set $\mathcal{F}_{\mathsf{Ber}} = \mathcal{F}_{\phi,\mathsf{Ber}}$ given by

 $\mathcal{F}_{\mathsf{Ber}} := \{ x \in \mathbb{P}^1_{\mathsf{Ber}} : x \text{ has a dynamically stable neighborhood} \}.$

Berkovich Fatou and Julia Sets

Definition

An open set $U \subseteq \mathbb{P}^1_{\mathsf{Ber}}$ is **dynamically stable** under $\phi \in \mathbb{C}_{\mathcal{K}}(z)$ if $\bigcup_{n \geq 0} \phi^n(U)$ omits infinitely many points of $\mathbb{P}^1_{\mathsf{Ber}}$.

The (Berkovich) Fatou set of ϕ is the set $\mathcal{F}_{\mathsf{Ber}} = \mathcal{F}_{\phi,\mathsf{Ber}}$ given by

 $\mathcal{F}_{\mathsf{Ber}} := \{ x \in \mathbb{P}^1_{\mathsf{Ber}} : x \text{ has a dynamically stable neighborhood} \}.$

The (Berkovich) Julia set of ϕ is the set

$$\mathcal{J}_{\mathsf{Ber}} = \mathcal{J}_{\phi,\mathsf{Ber}} := \mathbb{P}^1_{\mathsf{Ber}} \smallsetminus \mathcal{F}_{\phi,\mathsf{Ber}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• \mathcal{F}_{Ber} is open, and \mathcal{J}_{Ber} is closed.

• \mathcal{F}_{Ber} is open, and \mathcal{J}_{Ber} is closed.

 $\blacktriangleright \ \mathcal{F}_{\phi^n,\mathsf{Ber}}=\mathcal{F}_{\phi,\mathsf{Ber}}, \text{ and } \mathcal{J}_{\phi^n,\mathsf{Ber}}=\mathcal{J}_{\phi,\mathsf{Ber}}$

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 - のへで

•
$$\mathcal{F}_{\phi^n,\mathsf{Ber}} = \mathcal{F}_{\phi,\mathsf{Ber}}$$
, and $\mathcal{J}_{\phi^n,\mathsf{Ber}} = \mathcal{J}_{\phi,\mathsf{Ber}}$

►
$$\phi(\mathcal{F}_{\mathsf{Ber}}) = \mathcal{F}_{\mathsf{Ber}} = \phi^{-1}(\mathcal{F}_{\mathsf{Ber}})$$
, and
 $\phi(\mathcal{J}_{\mathsf{Ber}}) = \mathcal{J}_{\mathsf{Ber}} = \phi^{-1}(\mathcal{J}_{\mathsf{Ber}})$.

•
$$\mathcal{F}_{\phi^n,\mathsf{Ber}}=\mathcal{F}_{\phi,\mathsf{Ber}}$$
, and $\mathcal{J}_{\phi^n,\mathsf{Ber}}=\mathcal{J}_{\phi,\mathsf{Ber}}$

▶
$$\phi(\mathcal{F}_{\mathsf{Ber}}) = \mathcal{F}_{\mathsf{Ber}} = \phi^{-1}(\mathcal{F}_{\mathsf{Ber}})$$
, and
 $\phi(\mathcal{J}_{\mathsf{Ber}}) = \mathcal{J}_{\mathsf{Ber}} = \phi^{-1}(\mathcal{J}_{\mathsf{Ber}})$.

▶
$$\mathcal{F} = \mathcal{F}_{\mathsf{Ber}} \cap \mathbb{P}^1(\mathbb{C}_K)$$
, and $\mathcal{J} = \mathcal{J}_{\mathsf{Ber}} \cap \mathbb{P}^1(\mathbb{C}_K)$.

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 - のへで

•
$$\mathcal{F}_{Ber}$$
 is open, and \mathcal{J}_{Ber} is closed.

•
$$\mathcal{F}_{\phi^n,\mathsf{Ber}}=\mathcal{F}_{\phi,\mathsf{Ber}}, ext{ and } \mathcal{J}_{\phi^n,\mathsf{Ber}}=\mathcal{J}_{\phi,\mathsf{Ber}}$$

►
$$\phi(\mathcal{F}_{\mathsf{Ber}}) = \mathcal{F}_{\mathsf{Ber}} = \phi^{-1}(\mathcal{F}_{\mathsf{Ber}})$$
, and
 $\phi(\mathcal{J}_{\mathsf{Ber}}) = \mathcal{J}_{\mathsf{Ber}} = \phi^{-1}(\mathcal{J}_{\mathsf{Ber}})$.

$$\blacktriangleright \ \mathcal{F} = \mathcal{F}_{\mathsf{Ber}} \cap \mathbb{P}^1(\mathbb{C}_{\mathcal{K}}), \text{ and } \mathcal{J} = \mathcal{J}_{\mathsf{Ber}} \cap \mathbb{P}^1(\mathbb{C}_{\mathcal{K}}).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- All attracting periodic points are Fatou.
- All repelling periodic points are Julia.

•
$$\mathcal{F}_{Ber}$$
 is open, and \mathcal{J}_{Ber} is closed.

•
$$\mathcal{F}_{\phi^n,\mathsf{Ber}}=\mathcal{F}_{\phi,\mathsf{Ber}}, ext{ and } \mathcal{J}_{\phi^n,\mathsf{Ber}}=\mathcal{J}_{\phi,\mathsf{Ber}}$$

►
$$\phi(\mathcal{F}_{\mathsf{Ber}}) = \mathcal{F}_{\mathsf{Ber}} = \phi^{-1}(\mathcal{F}_{\mathsf{Ber}})$$
, and
 $\phi(\mathcal{J}_{\mathsf{Ber}}) = \mathcal{J}_{\mathsf{Ber}} = \phi^{-1}(\mathcal{J}_{\mathsf{Ber}})$.

$$\blacktriangleright \ \mathcal{F} = \mathcal{F}_{\mathsf{Ber}} \cap \mathbb{P}^1(\mathbb{C}_{\mathcal{K}}), \text{ and } \mathcal{J} = \mathcal{J}_{\mathsf{Ber}} \cap \mathbb{P}^1(\mathbb{C}_{\mathcal{K}}).$$

- All attracting periodic points are Fatou.
- All repelling periodic points are Julia.
- Indifferent periodic type II points are Fatou if the residue field is algebraic over a finite field,

< ロ > < 同 > < E > < E > < E > < 0 < 0</p>

•
$$\mathcal{F}_{Ber}$$
 is open, and \mathcal{J}_{Ber} is closed.

•
$$\mathcal{F}_{\phi^n,\mathsf{Ber}}=\mathcal{F}_{\phi,\mathsf{Ber}}, ext{ and } \mathcal{J}_{\phi^n,\mathsf{Ber}}=\mathcal{J}_{\phi,\mathsf{Ber}}$$

►
$$\phi(\mathcal{F}_{\mathsf{Ber}}) = \mathcal{F}_{\mathsf{Ber}} = \phi^{-1}(\mathcal{F}_{\mathsf{Ber}})$$
, and
 $\phi(\mathcal{J}_{\mathsf{Ber}}) = \mathcal{J}_{\mathsf{Ber}} = \phi^{-1}(\mathcal{J}_{\mathsf{Ber}})$.

$$\blacktriangleright \ \mathcal{F} = \mathcal{F}_{\mathsf{Ber}} \cap \mathbb{P}^1(\mathbb{C}_{\mathcal{K}}), \text{ and } \mathcal{J} = \mathcal{J}_{\mathsf{Ber}} \cap \mathbb{P}^1(\mathbb{C}_{\mathcal{K}}).$$

- All attracting periodic points are Fatou.
- All repelling periodic points are Julia.
- Indifferent periodic type II points are Fatou if the residue field is algebraic over a finite field, but they can be Julia otherwise.

In general, if
$$\zeta(0,1)$$
 is fixed by ϕ ,
and if $\overline{\phi}^m(z) = z$ for some $m \ge 1$,
then $\zeta(0,1)$ is Fatou.

$\mathbb{P}^1(\mathbb{C})$	$\mathbb{P}^1(\mathbb{C}_K)$	\mathbb{P}^1_{Ber}
Some indifferent	All indifferent	Most indifferent
points are Fatou,	points are Fatou	points are Fatou.
and some are Julia		

くしゃ (中)・(中)・(中)・(日)

$\mathbb{P}^1(\mathbb{C})$	$\mathbb{P}^1(\mathbb{C}_K)$	\mathbb{P}^1_{Ber}
Some indifferent	All indifferent	Most indifferent
points are Fatou,	points are Fatou	points are Fatou.
and some are Julia		
${\mathcal J}$ is compact	${\mathcal J}$ may not	\mathcal{J}_{Ber} is compact
	be compact	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

$\mathbb{P}^1(\mathbb{C})$	$\mathbb{P}^1(\mathbb{C}_K)$	\mathbb{P}^1_{Ber}
Some indifferent	All indifferent	Most indifferent
points are Fatou,	points are Fatou	points are Fatou.
and some are Julia		
${\mathcal J}$ is compact	${\mathcal J}$ may not	\mathcal{J}_{Ber} is compact
	be compact	
${\mathcal J}$ is nonempty	${\mathcal J}$ may be empty	\mathcal{J}_{Ber} is nonempty

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

$\mathbb{P}^1(\mathbb{C})$	$\mathbb{P}^1(\mathbb{C}_K)$	\mathbb{P}^1_{Ber}
Some indifferent	All indifferent	Most indifferent
points are Fatou,	points are Fatou	points are Fatou.
and some are Julia		
${\mathcal J}$ is compact	${\mathcal J}$ may not	\mathcal{J}_{Ber} is compact
	be compact	
${\mathcal J}$ is nonempty	${\mathcal J}$ may be empty	\mathcal{J}_{Ber} is nonempty
${\mathcal F}$ may be empty	${\mathcal F}$ is nonempty	\mathcal{F}_{Ber} is nonempty

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

$\mathbb{P}^1(\mathbb{C})$	$\mathbb{P}^1(\mathbb{C}_K)$	\mathbb{P}^1_{Ber}
Some indifferent	All indifferent	Most indifferent
points are Fatou,	points are Fatou	points are Fatou.
and some are Julia		
${\mathcal J}$ is compact	${\mathcal J}$ may not	\mathcal{J}_{Ber} is compact
	be compact	
${\mathcal J}$ is nonempty	${\mathcal J}$ may be empty	\mathcal{J}_{Ber} is nonempty
${\mathcal F}$ may be empty	${\mathcal F}$ is nonempty	\mathcal{F}_{Ber} is nonempty
${\mathcal J}$ is the closure		\mathcal{J}_{Ber} is the closure
of the set of	???	of the set of
repelling periodic	(see Project #1)	repelling periodic
points		(Type I & II) points