Arithmetic Quantum Unique Ergodicity

Manfred Einsiedler ETH Zürich Arizona Winter School

12. März 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Figure 1E

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Figure: Eigenfunctions on an ellipse, picture from "Recent progress on QUE" by P. Sarnak N. ANANTHARAMAN AND S. NONNENMACHER

FIGURE 1.1. Left: one orbit of the circular billiard. Center and right: two eigenmodes of that billiard, with their respective frequencies.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Figure: Eigenfunctions on a circle, picture from "Chaotic vibrations and strong scars" by Anantharaman and Nonnenmacher

Figure 1S

(日)

Figure: Eigenfunctions on the stadium, picture from "Recent progress on QUE" by P. Sarnak

FIGURE 1.2. Top left: one typical "ergodic" orbit of the "stadium": it equidistribues across the whole billiard. The three other plots feature eigenmodes of frequencies $k_n \approx 39$. Bottom left: a "scar" on the (unstable) horizontal periodic orbit. Bottom right: a "bouncing ball" mode.

Figure: Eigenfunctions on the stadium, picture from "Chaotic vibrations and strong scars" by Anantharaman and Nonnenmacher

Figure 1B

Figure: Eigenfunctions on a dispersing Sinai billard, picture from "Recent progress on QUE" by P. Sarnak

(日)

ъ

Figure 4a

イロト イ理ト イヨト イヨト

Figure: Eigenfunctions on the modular surface, picture from "Recent progress on QUE" by P. Sarnak

Figure 4b

A B > A B >

Figure: Eigenfunctions on the modular surface, picture from "Recent progress on QUE" by P. Sarnak

Conjecture 1.1 (Quantum Unique Ergodicity; Rudnick–Sarnak). Let Γ be a discrete subgroup of $\mathrm{SL}_2(\mathbb{R})$ such that $M = \Gamma \setminus \mathbb{H}$ is compact. If $\{\phi_i \mid i \in \mathbb{N}\}$ are normalized eigenfunctions for Δ in $C^{\infty}(M)$ with corresponding eigenvalues $\{\lambda_i \mid i \in \mathbb{N}\}$ such that $\lambda_i \to \infty$ as $i \to \infty$, then

$$|\phi_i|^2 \operatorname{dvol}_M \xrightarrow[\text{weak}^*]{} \operatorname{dvol}_M \tag{1.1}$$

as $i \to \infty$.

Conjecture 1.1 (Quantum Unique Ergodicity; Rudnick–Sarnak). Let Γ be a discrete subgroup of $\mathrm{SL}_2(\mathbb{R})$ such that $M = \Gamma \setminus \mathbb{H}$ is compact. If $\{\phi_i \mid i \in \mathbb{N}\}$ are normalized eigenfunctions for Δ in $C^{\infty}(M)$ with corresponding eigenvalues $\{\lambda_i \mid i \in \mathbb{N}\}$ such that $\lambda_i \to \infty$ as $i \to \infty$, then

$$\phi_i|^2 \operatorname{dvol}_M \xrightarrow[\text{weak}^*]{} \operatorname{dvol}_M$$
 (1.1)

▲□▶▲□▶▲□▶▲□▶ □ のQで

as $i \to \infty$.

The same should hold for $M = SL_2(\mathbb{Z}) \setminus \mathbb{H}$.

Theorem 1.2. Let $M = \Gamma \setminus \mathbb{H}$, with Γ a congruence lattice over \mathbb{Q} . Then $|\phi_i|^2 \operatorname{dvol}_M \xrightarrow[weak^*]{} \operatorname{dvol}_M$

as $i \to \infty$ for any sequence of Hecke–Maass cusp forms for which the Maass eigenvalues $\lambda_i \to -\infty$ as $i \to \infty$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem 1.2. Let $M = \Gamma \setminus \mathbb{H}$, with Γ a congruence lattice over \mathbb{Q} . Then $|\phi_i|^2 \operatorname{dvol}_M \xrightarrow[weak^*]{} \operatorname{dvol}_M$

as $i \to \infty$ for any sequence of Hecke–Maass cusp forms for which the Maass eigenvalues $\lambda_i \to -\infty$ as $i \to \infty$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remarks: (1) This theorem also holds if *M* is a compact arithmetic surface, [Lindenstraus 2006]

Theorem 1.2. Let $M = \Gamma \setminus \mathbb{H}$, with Γ a congruence lattice over \mathbb{Q} . Then

$$\phi_i|^2 \operatorname{dvol}_M \xrightarrow[weak^*]{} \operatorname{dvol}_M$$

as $i \to \infty$ for any sequence of Hecke–Maass cusp forms for which the Maass eigenvalues $\lambda_i \to -\infty$ as $i \to \infty$.

Remarks: (1) This theorem also holds if *M* is a compact arithmetic surface, [Lindenstraus 2006] (2) In [Lindenstrauss, 2006] it is shown that any limit measure is of the form $c \operatorname{dvol}_M$ for some $c \in [0, 1]$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Theorem 1.2. Let $M = \Gamma \setminus \mathbb{H}$, with Γ a congruence lattice over \mathbb{Q} . Then

$$\phi_i|^2 \operatorname{dvol}_M \xrightarrow[weak^*]{} \operatorname{dvol}_M$$

as $i \to \infty$ for any sequence of Hecke–Maass cusp forms for which the Maass eigenvalues $\lambda_i \to -\infty$ as $i \to \infty$.

Remarks: (1) This theorem also holds if *M* is a compact arithmetic surface, [Lindenstraus 2006] (2) In [Lindenstrauss, 2006] it is shown that any limit measure is of the form $c \operatorname{dvol}_{M}$ for some $c \in [0, 1]$. (3) In [Soundararajan, 2010] it is shown that c = 1, i.e. that there is no escpace of mass.

A D F A 同 F A E F A E F A Q A

Theorem 1.2. Let $M = \Gamma \setminus \mathbb{H}$, with Γ a congruence lattice over \mathbb{Q} . Then

$$\phi_i|^2 \operatorname{dvol}_M \xrightarrow[weak^*]{} \operatorname{dvol}_M$$

as $i \to \infty$ for any sequence of Hecke–Maass cusp forms for which the Maass eigenvalues $\lambda_i \to -\infty$ as $i \to \infty$.

Remarks: (1) This theorem also holds if *M* is a compact arithmetic surface, [Lindenstraus 2006]

(2) In [Lindenstrauss, 2006] it is shown that any limit measure is of the form $c \operatorname{dvol}_M$ for some $c \in [0, 1]$.

(3) In [Soundararajan, 2010] it is shown that c = 1, i.e. that there is no escpace of mass.

(4) Watson has shown before the work of Lindenstrauss that GRH implies the above theorem (with an optimal rate of convergence).

Theorem (Lindenstrauss)

Let Γ be a congruence lattice over \mathbb{Q} , let $X = \Gamma \setminus SL_2(\mathbb{R})$ and let μ be a probability measure satisfying the following properties:

- [I] μ is *invariant* under the geodesic flow,
- $[\mathsf{R}]_p$ μ is *Hecke p-recurrent* for a prime *p*, and
 - [E] the *entropy* of every ergodic component of μ is positive for the geodesic flow.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Then $\mu = m_X$ is the Haar measure on *X*.

Theorem (microlocal lift).

Let $\Gamma \leq SL_2(\mathbb{R})$ be a lattice, and let $M = \Gamma \setminus \mathbb{H}$. Suppose that (ϕ_i) is an L^2 -normalized sequence of eigenfunctions of Δ in $C^{\infty}(M) \cap L^2(M)$, with the corresponding eigenvalues λ_i satisfying $|\lambda_i| \to \infty$ as $i \to \infty$, and assume that the weak*-limit μ of $|\phi_i|^2 \operatorname{dvol}_M$ exists. If $\widetilde{\phi_i}$ denotes the sequence of lifted functions defined later, then (possibly after choosing a subsequence to achieve convergence) the weak*-limit $\widetilde{\mu}$ of $|\widetilde{\phi_i}|^2 \operatorname{d} m_X$ has the following properties:

[L] Projecting $\widetilde{\mu}$ on $X = \Gamma \setminus G$ to $M = \Gamma \setminus G/K$ gives μ .

[I] $\tilde{\mu}$ is invariant under the right action of *A*.

The measure $\tilde{\mu}$ is called a *microlocal lift* of μ , or a *quantum limit* of (ϕ_i) .

Proposition.

For $m, w \in \mathfrak{sl}_2(\mathbb{R})$ we have

$$m \circ w - w \circ m = [m, w]$$

where [m, w] = mw - wm is the Lie bracket, defined by the difference of the matrix products. More concretely, this means that

$$m * (w * f) - w * (m * f) = ([m, w]) * f$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for any $f \in C^{\infty}(X)$.