Arithmetic Quantum Unique Ergodicity

Manfred Einsiedler ETH Zürich
Arizona Winter School

14. March 2010

First Goal: Theorem (microlocal lift).

Let $\Gamma \leqslant \mathrm{SL}_{2}(\mathbb{R})$ be a lattice, and let $M=\Gamma \backslash \mathbb{H}$. Suppose that $\left(\phi_{i}\right)$ is an L^{2}-normalized sequence of eigenfunctions of Δ in $C^{\infty}(M) \cap L^{2}(M)$, with the corresponding eigenvalues λ_{i} satisfying $\left|\lambda_{i}\right| \rightarrow \infty$ as $i \rightarrow \infty$, and assume that the weak ${ }^{*}$-limit μ of $\left|\phi_{i}\right|^{2} \operatorname{dvol}_{M}$ exists. If $\widetilde{\phi}_{i}$ denotes the sequence of lifted functions defined later, then (possibly after choosing a subsequence to achieve convergence) the weak*-limit $\widetilde{\mu}$ of $\left|\widetilde{\phi}_{i}\right|^{2} \mathrm{~d} m_{X}$ has the following properties:
[L] Projecting $\widetilde{\mu}$ on $X=\Gamma \backslash G$ to $M=\Gamma \backslash G / K$ gives μ.
[I] $\widetilde{\mu}$ is invariant under the right action of A.
The measure $\widetilde{\mu}$ is called a microlocal lift of μ, or a quantum limit of $\left(\phi_{i}\right)$.

Fourier series - the action of K

For $f \in C^{\infty}(X)$

$$
f_{n}(x)=f *_{K} e_{n}(x)=\int_{K} f\left(x k_{\theta}\right) e_{n}\left(-k_{\theta}\right) \mathrm{d} m_{K}\left(k_{\theta}\right),
$$

which is an eigenfunction under K in the sense that

$$
f_{n}\left(x k_{\psi}\right)=f_{n}(x) e_{n}\left(k_{\psi}\right)
$$

Fourier series - the action of K

For $f \in C^{\infty}(X)$

$$
f_{n}(x)=f *_{K} e_{n}(x)=\int_{K} f\left(x k_{\theta}\right) e_{n}\left(-k_{\theta}\right) \mathrm{d} m_{K}\left(k_{\theta}\right),
$$

which is an eigenfunction under K in the sense that

$$
f_{n}\left(x k_{\psi}\right)=f_{n}(x) e_{n}\left(k_{\psi}\right)
$$

We have $f=\sum_{n} f_{n}$.

K-finite functions

$$
\mathcal{A}_{n}=\left\{f \mid f\left(x k_{\theta}\right)=e_{n}\left(k_{\theta}\right) f(x)\right\}
$$

K-finite functions

$$
\mathcal{A}_{n}=\left\{f \mid f\left(x k_{\theta}\right)=e_{n}\left(k_{\theta}\right) f(x)\right\}=\{f: W * f=\inf \}
$$

f is K-finite if $f \in \sum_{n=-N}^{N} \mathcal{A}_{n}$ for some n.

Proposition.

For $m, w \in \mathfrak{s l}_{2}(\mathbb{R})$ we have

$$
m \circ w-w \circ m=[m, w]
$$

where $[m, w]=m w-w m$ is the Lie bracket, defined by the difference of the matrix products. More concretely, this means that

$$
m *(w * f)-w *(m * f)=([m, w]) * f
$$

for any $f \in C^{\infty}(X)$.

Proposition.

Let

$$
\mathcal{H}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right), \mathcal{U}^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \mathcal{U}^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

and

$$
\mathcal{W}=\mathcal{U}^{+}-\mathcal{U}^{-}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Then the degree-2 element - called the Casimir element (or Casimir operator) - defined by

$$
\begin{aligned}
\Omega_{c} & =\mathcal{H} \circ \mathcal{H}+\frac{1}{2}\left(\mathcal{U}^{+} \circ \mathcal{U}^{-}+\mathcal{U}^{-} \circ \mathcal{U}^{+}\right) \\
& =\mathcal{H} \circ \mathcal{H}+\frac{1}{4}\left(\mathcal{U}^{+}+\mathcal{U}^{-}\right) \circ\left(\mathcal{U}^{+}+\mathcal{U}^{-}\right)-\frac{1}{4} \mathcal{W} \circ \mathcal{W}
\end{aligned}
$$

is fixed under the action of $\mathrm{SL}_{2}(\mathbb{R})$ (equivalently, under the derived action of $\mathfrak{s l}_{2}(\mathbb{R})$).

For $f \in C^{\infty}(\Gamma \backslash \mathbb{H}) \subseteq C^{\infty}\left(\Gamma \backslash \mathrm{SL}_{2}(\mathbb{R})\right)$, we have

$$
\begin{equation*}
\Omega_{c} * f=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f=\Delta f . \tag{1}
\end{equation*}
$$

The raising operator is the element of $\mathfrak{s l}_{2}(\mathbb{C})$ given by

$$
\mathcal{E}^{+}=\frac{1}{2}\left(\begin{array}{cc}
1 & i \tag{2}\\
i & -1
\end{array}\right)=\mathcal{H}+\frac{i}{2}\left(\mathcal{U}^{+}+\mathcal{U}^{-}\right)
$$

and the lowering operator is the element of $\mathfrak{s l}_{2}(\mathbb{C})$ given by

$$
\mathcal{E}^{-}=\frac{1}{2}\left(\begin{array}{cc}
1 & -i \tag{3}\\
-i & -1
\end{array}\right)=\mathcal{H}-\frac{i}{2}\left(\mathcal{U}^{+}+\mathcal{U}^{-}\right) .
$$

The operators \mathcal{E}^{+}and \mathcal{E}^{-}raise and lower in the sense that

$$
\begin{aligned}
& \mathcal{E}^{+}: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n+2}, \\
& \mathcal{E}^{-}: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n-2}
\end{aligned}
$$

for all $n \in \mathbb{Z}$.

The operators \mathcal{E}^{+}and \mathcal{E}^{-}raise and lower in the sense that

$$
\begin{aligned}
& \mathcal{E}^{+}: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n+2}, \\
& \mathcal{E}^{-}: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n-2}
\end{aligned}
$$

for all $n \in \mathbb{Z}$.
We have $\overline{\mathcal{E}^{+}}=\mathcal{E}^{-}, \mathcal{E}^{+}+\mathcal{E}^{-}=4 \mathcal{H}$, and

$$
\Omega_{c}=\mathcal{E}^{-} \circ \mathcal{E}^{+}-\frac{1}{4} \mathcal{W} \circ \mathcal{W}-\frac{i}{2} \mathcal{W}=\mathcal{E}^{+} \circ \mathcal{E}^{-}-\frac{1}{4} \mathcal{W} \circ \mathcal{W}+\frac{i}{2} \mathcal{W} .
$$

Adjoints of elements of $\mathfrak{s l}_{2}(\mathbb{C})$

Let $m \in \mathfrak{s l}_{2}(\mathbb{C})$, and consider $m *$ as an unbounded operator on $L^{2}\left(\mathrm{SL}_{2}(\mathbb{R})\right)$ with domain $C_{c}^{\infty}\left(\mathrm{SL}_{2}(\mathbb{R})\right)$. Then

$$
(m *)^{*} f=-\bar{m} * f
$$

for $f \in C_{c}^{\infty}\left(\mathrm{SL}_{2}(\mathbb{R})\right)$.
By definition, this means that for $f_{1}, f_{2} \in C_{c}^{\infty}\left(\mathrm{SL}_{2}(\mathbb{R})\right)$ we have

$$
\left\langle m * f_{1}, f_{2}\right\rangle=-\left\langle f_{1}, \bar{m} * f_{2}\right\rangle .
$$

If $f \in \mathcal{C}$, then

$$
\begin{aligned}
\left(\Omega_{c} *\right)^{*} f & =\Omega_{c} * f, \text { and } \\
\left(\mathcal{E}^{ \pm} *\right)^{*} f & =-\mathcal{E}^{\mp} * f .
\end{aligned}
$$

If $f \in \mathcal{C}$, then

$$
\begin{aligned}
& \left(\Omega_{c} *\right)^{*} f=\Omega_{c} * f, \text { and } \\
& \left(\mathcal{E}^{ \pm} *\right)^{*} f=-\mathcal{E}^{\mp} * f .
\end{aligned}
$$

If $f \in \mathcal{C} \cap \mathcal{A}_{n}$ satisfies $\Omega_{c} \cdot f=\lambda f$ with $\lambda=-\left(\frac{1}{4}+r^{2}\right)$ then

$$
\begin{aligned}
\left\|\mathcal{E}^{+} * f\right\|_{2} & =\mid \text { ir } \left.+\frac{1}{2}+\frac{1}{2} n \right\rvert\,\|f\|_{2}, \text { and } \\
\left\|\mathcal{E}^{-} * f\right\|_{2} & =\mid \text { ir } \left.+\frac{1}{2}-\frac{1}{2} n \right\rvert\,\|f\|_{2} .
\end{aligned}
$$

From now on ϕ has weight 0 and Δ-eigenvalue

$$
\lambda=-\left(\frac{1}{4}+r^{2}\right)
$$

Inductively define functions by

$$
\phi_{0}(x)=\phi(x K) \in \mathcal{A}_{0}
$$

and

$$
\begin{align*}
\phi_{2 n+2} & =\frac{1}{i r+\frac{1}{2}+n} \mathcal{E}^{+} * \phi_{2 n} \in \mathcal{A}_{2 n+2} \text { for } n \geqslant 0 \tag{4}\\
\phi_{2 n-2} & =\frac{1}{i r+\frac{1}{2}-n} \mathcal{E}^{-} * \phi_{2 n} \in \mathcal{A}_{2 n-2} \text { for } n \leqslant 0 \tag{5}
\end{align*}
$$

From now on ϕ has weight 0 and Δ-eigenvalue

$$
\lambda=-\left(\frac{1}{4}+r^{2}\right)
$$

Inductively define functions by

$$
\phi_{0}(x)=\phi(x K) \in \mathcal{A}_{0}
$$

and

$$
\begin{align*}
\phi_{2 n+2} & =\frac{1}{i r+\frac{1}{2}+n} \mathcal{E}^{+} * \phi_{2 n} \in \mathcal{A}_{2 n+2} \text { for } n \geqslant 0 \tag{4}\\
\phi_{2 n-2} & =\frac{1}{i r+\frac{1}{2}-n} \mathcal{E}^{-} * \phi_{2 n} \in \mathcal{A}_{2 n-2} \text { for } n \leqslant 0 \tag{5}
\end{align*}
$$

These formulas hold for all n and $\left\|\phi_{2 n}\right\|=1$.

The lift

Define, for $N=N(\lambda)$ to be chosen later,

$$
\widetilde{\phi}=\frac{1}{\sqrt{2 N+1}} \sum_{n=-N}^{N} \phi_{2 n},
$$

Theorem

Let $\phi \in L^{2}(M)$ be an eigenfunction of Δ with corresponding eigenvalue $\lambda=-\left(\frac{1}{2}+r^{2}\right)$. If $f \in C_{C}^{\infty}(M)$, then

$$
\begin{aligned}
\int f|\widetilde{\phi}|^{2} \mathrm{~d} m_{X} & =\langle f \phi, \phi\rangle_{L^{2}(M)}+\mathrm{O}\left(N r^{-1}\right) \\
& =\int f|\phi|^{2} \operatorname{dvol}_{M}+\mathrm{O}\left(N r^{-1}\right)
\end{aligned}
$$

More generally, if f is a K-finite function in $C_{c}^{\infty}(M)$, then

$$
\int f|\widetilde{\phi}|^{2} \mathrm{~d} m_{X}=\left\langle f \sum_{n=-N}^{N} \phi_{2 n}, \phi\right\rangle_{L^{2}(X)}+\mathrm{O}_{f}\left(\max \left\{N^{-1}, N r^{-1}\right\}\right)
$$

Corollary

Suppose that $N=N(\lambda)$ is a function of λ chosen so that $N r^{-1}=\mathrm{O}\left(N|\lambda|^{-1 / 2}\right) \rightarrow 0$ as $|\lambda| \rightarrow \infty$. Assume also that $\left(\phi_{i}\right)$ is a sequence of Maass cusp forms, with corresponding eigenvalues $\left|\lambda_{i}\right| \rightarrow \infty$ as $i \rightarrow \infty$, and that $\left|\phi_{i}\right|^{2} \mathrm{dvol}_{M}$ converges weak*. Then any weak*-limit of $\left|\widetilde{\phi}_{i}\right|^{2} \mathrm{~d} m_{X}$ projects to the weak*-limit of $\left|\phi_{i}\right|^{2} \mathrm{dvol}_{M}$.

Theorem (Zelditch)

If $f \in C_{c}^{\infty}(X)$ is a K-finite function, and N is sufficiently large (the lower bound depends on f), then

$$
\left\langle[(r \mathcal{H}+\mathcal{V}) * f] \sum_{n=-N}^{N} \phi_{2 n}, \phi_{0}\right\rangle=0
$$

for some fixed degree-two differential operator \mathcal{V}. In particular,

$$
\left\langle(\mathcal{H} * f) \sum_{n=-N}^{N} \phi_{2 n}, \phi_{0}\right\rangle=\mathrm{O}_{f}\left(r^{-1}\right) .
$$

Corollary

Suppose that N is defined as a function of λ so as to ensure that $N r^{-1} \rightarrow 0$ and $N^{-1} \rightarrow 0$ as $|\lambda| \rightarrow \infty$. Assume that $\left(\phi_{i}\right)$ is a sequence of Maass cusp forms with corresponding eigenvalues $\left|\lambda_{i}\right| \rightarrow \infty$ as $i \rightarrow \infty$, and that $\left|\phi_{i}\right|^{2} \operatorname{dvol}_{M}$ converges weak*. Then any weak*-limit of $\left|\widetilde{\phi}_{i}\right|^{2} \mathrm{~d} m_{X}$ is invariant under the geodesic flow.

Classical definition of Hecke operators

Let $M=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$, let p be a prime, and let f be a function on M. Then the action of the Hecke operator T_{p} on f is defined by

$$
\left(T_{p}(f)\right)(z)=\frac{1}{p+1}\left[f(p z)+\sum_{j=0}^{p-1} f\left(\frac{z+j}{p}\right)\right]
$$

Second Defintion, using $P G L_{2}$

Let $X=\mathrm{PGL}_{2}(\mathbb{Z}) \backslash \mathrm{PGL}_{2}(\mathbb{R})$, let p be a prime, and let f be a function on X. Then the Hecke operator T_{p} is defined by sending f to the normalized sum

$$
\left(T_{p}(f)\right)([\Lambda])=\frac{1}{p+1} \sum_{\substack{\left.\Lambda^{\prime} \subseteq \Lambda^{\prime},\left[\Lambda \Lambda^{\prime}\right]\right]=p}} f\left(\left[\Lambda^{\prime}\right]\right)
$$

of the values of f on all the sublattices Λ^{\prime} of Λ with index p.

Proposition

If $\Lambda \subseteq \mathbb{R}^{2}$ is a lattice, then there are $p+1$ subgroups $\Lambda^{\prime} \subseteq \Lambda$ with index p. The definition of $T_{p}(f)$ defines a function on the homothety classes $[\Lambda] \in \mathrm{PGL}_{2}(\mathbb{Z}) \backslash \mathrm{PGL}_{2}(\mathbb{R})$ of lattices $\Lambda \subseteq \mathbb{R}^{2}$.

Finally, for any $g \in \operatorname{PGL}_{2}(\mathbb{R})$, we have $g \cdot T_{p}(f)=T_{p}(g \cdot f)$.

Corollary

For any p the p-Hecke operator T_{p} commutes with any differential operator $m \in \mathfrak{s l}_{2}(\mathbb{C})$ (or even any element of the enveloping algebra of $\mathfrak{s l}_{2}(\mathbb{C})$).
In particular, if ϕ is a Maas cusp form that is an eigenfunction of
T_{p}, then $\widetilde{\phi}$ is also an eigenfunction of T_{p}.

p-adic extension

Embed $\mathrm{PGL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ as a subset of $\mathrm{PGL}_{2}(\mathbb{R}) \times \mathrm{PGL}_{2}\left(\mathbb{Q}_{p}\right)$ diagonally, by sending γ to (γ, γ). Then $\operatorname{PGL}_{2}\left(\mathbb{Z}\left[\frac{1}{\rho}\right]\right)$ is a lattice in

$$
\mathrm{PGL}_{2}(\mathbb{R}) \times \mathrm{PGL}_{2}\left(\mathbb{Q}_{p}\right),
$$

and the double quotient

$$
\mathrm{PGL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \backslash \mathrm{PGL}_{2}(\mathbb{R}) \times \mathrm{PGL}_{2}\left(\mathbb{Q}_{p}\right) / \mathrm{PGL}_{2}\left(\mathbb{Z}_{p}\right)
$$

is naturally isomorphic to

$$
\mathrm{PGL}_{2}(\mathbb{Z}) \backslash \mathrm{PGL}_{2}(\mathbb{R}) .
$$

Lemma

$$
K_{p}\left(\begin{array}{ll}
p & \\
& 1
\end{array}\right) K_{p}=K_{p}\left(\begin{array}{ll}
p & \\
& 1
\end{array}\right) \sqcup \bigsqcup_{j=0}^{p-1} K_{p}\left(\begin{array}{ll}
1 & j \\
& p
\end{array}\right)=K_{p}\left(\begin{array}{ll}
1 & \\
& p
\end{array}\right) K_{p} .
$$

Lemma

$$
K_{p}\left(\begin{array}{ll}
p & \\
& 1
\end{array}\right) K_{p}=K_{p}\left(\begin{array}{ll}
p & \\
& 1
\end{array}\right) \sqcup \bigsqcup_{j=0}^{p-1} K_{p}\left(\begin{array}{ll}
1 & j \\
& p
\end{array}\right)=K_{p}\left(\begin{array}{ll}
1 & \\
& p
\end{array}\right) K_{p} .
$$

Choose a Haar measure on $\mathrm{PGL}_{2}\left(\mathbb{Q}_{p}\right)$ with $m\left(K_{p}\right)=1$.

3-rd definition of T_{p}

For a function f on $\mathrm{PGL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \backslash \mathrm{PGL}_{2}(\mathbb{R}) \times \mathrm{PGL}_{2}\left(\mathbb{Q}_{p}\right)$, we may obtain the p-Hecke operator by the convolution

$$
T_{p}(f)=\frac{1}{p+1} f * \mathbf{K}_{p}\left(\begin{array}{ll}
p & \\
& 1
\end{array}\right) K_{p}
$$

For a function f on $\mathrm{PGL}_{2}(\mathbb{Z}) \backslash \mathrm{PGL}_{2}(\mathbb{R})$, this agrees with T_{p} as defined before.

Corollary

T_{p} is a self-adjoint operator on $L^{2}\left(\mathrm{PGL}_{2}(\mathbb{Z}) \backslash \mathrm{PGL}_{2}(\mathbb{R})\right.$) (and on $\left.L^{2}\left(\mathrm{PGL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \backslash \mathrm{PGL}_{2}(\mathbb{R}) \times \mathrm{PGL}_{2}\left(\mathbb{Q}_{p}\right)\right)\right)$.

