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1

Introduction to (A)QUE

Quantum unique ergodicity – QUE – is concerned with the distributional
properties of high-frequency eigenfunctions of the Laplacian on a domain Ω,
that is of solutions to the equation

∆φj + λjφj = 0

with the Dirichlet boundary conditions φj |∂Ω = 0 and normalization

∫

Ω

φ2
j dxdy = 1,

where∆ is the appropriate Laplacian. There is a connection between the high-
frequency states and the classical Hamiltonian dynamical system obtained
by letting a billiard ball move inside Ω at unit speed, and bouncing off the
boundary (if there is a boundary) of Ω with angle of incidence equal to the
angle of reflection.

If the motion is integrable (for example, if Ω is a circle), then there are
invariant sets with measure strictly between 0 and 1 (for example, if Ω is
a circle, then the set of orbits tangent to a given concentric circle with ra-
dius in a given interval is an invariant set). At first the relationship between
high-frequency eigenfunctions and distributional or ergodic properties may be
surprising, but in the integrable case we can find eigenfunctions of the Lapla-
cian that are highly localized on non-trivial invariant sets (see the survey [1,
Figs. 1 & 2]). Even for the simplest of domains Ω a diversity of possibilities
occurs. A special case to which ergodic methods may be applied comes from
homogeneous dynamics – that is, to actions of subgroups of a Lie group G on
quotients Γ\G of finite volume (see [12], [11] for examples and background).
In this case quite strong conjectures were made by Rudnick and Sarnak [24].
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1.1 (Arithmetic) Quantum Unique Ergodicity

In order to formulate the conjecture, we recall some notation (see [12, Chap. 9]
for a detailed treatment).

• The upper half-plane model for the hyperbolic plane is

H = {z = x+ iy ∈ C | y > 0}.
• The group SL2(R) acts transitively on H via Möbius transformations: the

matrix g =

(
a b
c d

)
acts via

g : z 7−→ g · z =
az + b

cz + d
.

• Any subgroup Γ 6 SL2(R) defines an associated quotient space M = Γ\H

under this action, and the quotient space inherits a measure volM from
the volume measure dvolM = 1

y2 dxdy on H, meaning that
∫

M

f(x+ iy) dvolM =

∫

F

f(x+ iy)
1

y2
dxdy,

where F ⊆ M is a fundamental domain for the action of Γ on H. This
allows us to speak of function spaces like L2(M) = L2

volM
(M).

• A sequence of measures m1,m2, . . . is said to converge weak* to a mea-
sure m, denoted by mi −→

weak*
m as i→ ∞, if

∫
f dmi −→

∫
f dm

as i→ ∞ for any continuous function f with compact support.
• The Laplacian on M is the operator

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
,

and a function φ ∈ C∞(M)∩L2(M) is an eigenfunction for ∆ with eigen-
value λ if ∆φ = λφ. An eigenvalue is normalized if ‖φ‖2 = 1.

Conjecture 1.1 (Quantum Unique Ergodicity; Rudnick–Sarnak). Let Γ be a
discrete subgroup of SL2(R) such that M = Γ\H is compact. If {φi | i ∈ N}
are normalized eigenfunctions for ∆ in C∞(M) with corresponding eigenval-
ues {λi | i ∈ N} such that λi → ∞ as i→ ∞, then

|φi|2 dvolM −→
weak*

dvolM (1.1)

as i→ ∞.

The motivation for this conjecture comes from physical considerations, but
it has wide-ranging mathematical meaning. We address the motivation via a
series of questions.
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1.1.1 Why is ∆ the differential operator studied?

(1) If ∇(f) denotes the total derivative of a function f ∈ C∞
c (M) (that is,

an infinitely differentiable function with compact support), then it can be
shown that ∆(f) is equal to −∇∗∇(f), where ∇∗ is the adjoint operator,
and ∇ is the closed operator defined by ∇. This slightly mysterious ob-
servation suggests that ∆ is a natural operator, and that its eigenvalues
are negative.

(2) The operator ∆ is the restriction of the Casimir operator Ωc, which is
a differential operator of degree two on SL2(R) with unique invariance
properties. In fact, Ωc restricted to the space of functions on

H = SL2(R)/ SO(2)

coincides with ∆ (this will be discussed in more detail in Section 2.2).
Here SO(2) denotes the special orthogonal group of matrices of the

form

(
cos θ sin θ
− sin θ cos θ

)
= kθ.

(3) In Schrödinger’s quantum theory, the motion of a free (spinless, non-
relativistic) quantum particle, moving in the absence of external forces
on M , satisfies the equation

i
∂ψ

∂t
= ∆ψ.

This defines a unitary evolution, meaning that ‖ψ(·, t)‖L2(volM ) is inde-
pendent of t – so without loss of generality we may normalize and assume
that ‖ψ(·, t)‖L2(volM ) = 1. The Born interpretation gives an empirical
meaning to the “wave function” ψ by interpreting |ψ|2 as the distribution
of the position of the particle in the sense of probability. The eigenfunc-
tion equation ∆ψ = λψ corresponds to studying a particle with a given
energy −λ. Thus the QUE conjecture concerns itself with the high-energy
limit (also called the semi-classical limit). In fact the QUE conjecture im-
plies a strengthening of the uncertainty principle: If ψ has a given large
energy, then not only is the position of the particle uncertain, it is in fact
almost equidistributed.

1.1.2 Why are there eigenfunctions?

(1) If M is compact, then the operator (I − ∆)−1 is a compact operator
on L2(M). It follows that L2(M) is spanned by the eigenfunctions of ∆,
and for every λ ∈ R the corresponding eigenspace

{φ | ∆φ = λφ} (1.2)

is finite-dimensional.
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(2) If M is not compact, then (I−∆)−1 is not a compact operator. In this case
there may in general not be any eigenfunctions at all. However, if Γ =
SL2(Z) (or a congruence subgroup, defined below), then one can again
show that ∆ has infinitely many eigenfunctions in C∞(M) ∩L2(M), and
that the eigenspaces (1.2) are once again finite-dimensional. Rudnick and
Sarnak also conjectured that in this case (1.1) should hold.

1.1.3 What other reasons are there to study eigenfunctions of ∆?

Apart from the quantum-mechanical interpretation in Section 1.1.1(3), the
eigenfunctions of the Laplacian arise in many parts of mathematics.

(1) On compact quotients, they give the most canonical orthonormal basis
of L2(M). This is part of the theory of harmonic analysis (the appropriate
generalization of Fourier analysis) on M .

(2) The eigenfunctions, which are also called Maass cusp forms, are intimately
related to L-functions in number theory.

1.1.4 The Result

Conjecture 1.1 is, in full generality, open. However, there are some important
cases for which it is known. In order to describe these, we need to make a few
more definitions. We call Γ a congruence lattice over Q if either

• Γ is a congruence subgroup of SL2(Z), meaning that

Γ ⊇ {γ ∈ SL2(Z) | γ ≡ I2 mod N}
for some N > 1; or

• Γ is a lattice derived from a Eichler order in an R-split quaternion division
algebra over Q.

The first type has the advantage of being quite concrete, and includes familiar
examples like Γ = SL2(Z); the second type has the advantage that in those
cases the lattice is uniform, meaning that the quotient space Γ\H is compact.
In either case, it is possible to define a collection of additional operators {Tn},
called Hecke operators, which commute with ∆ and with each other. These
operators therefore act on the finite-dimensional eigenspaces (1.2), and are
simultaneously diagonalizable. A Hecke–Maass cusp form is a joint eigenfunc-
tion φ ∈ C∞(M) ∩ L2(M) of ∆ and of all the Hecke operators Tn for n > 2.

Lindenstrauss [18] and Soundarajan [28] together have shown the follow-
ing, which we refer to as arithmetic quantum unique ergodicity (AQUE).

Theorem 1.2. Let M = Γ\H, with Γ a congruence lattice over Q. Then

|φi|2 dvolM −→
weak*

dvolM

as i → ∞ for any sequence of Hecke–Maass cusp forms for which the Maass
eigenvalues λi → −∞ as i→ ∞.
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We briefly summarize some of the history leading up to this result. In 2001
Watson [30] showed this under the assumption of the Generalized Riemann
Hypothesis (GRH), also obtaining under this assumption the optimal rate of
convergence. In 2006 Lindenstrauss [18] obtained the result unconditionally,
using ergodic methods, for lattices derived from Eichler orders and (almost) for
congruence subgroups of SL2(Z). For the latter case, Lindenstrauss showed
that any weak*-limit is of the form c dvolM for some c ∈ [0, 1] – in other
words escape of mass to infinity was not ruled out. In 2009 Soundarajan [28]
established, in a short paper of ten pages, that any weak*-limit is a probability
measure – that is, escape of mass is not possible. Combined with [18], this
proved Theorem 1.2.

1.2 Rigidity of Invariant Measures for the Geodesic Flow

Recall that the unit tangent bundle T1H of the hyperbolic plane is isomorphic

to PSL2(R) = SL2(R)/{±I2}, by identifying the matrix g =

(
a b
c d

)
with the

point (
g · i, 1

(cz + d)2
i

)
∈ T1H.

Under this isomorphism, the geodesic flow (which, by definition, follows the
geodesic determined by the arrow (z, v) ∈ T1H with unit speed, as illustrated
in Figure 1.1) corresponds on PSL2(R) to right-multiplication by

at =

(
et/2

e−t/2

)

for t ∈ R (see [12, Chap. 9] for a detailed treatment).

z

v

ℓ

Fig. 1.1. The unique geodesic ℓ defined by a pair (z,v).

This flow (that is, action of R) naturally descends to the quotient

SL2(Z)\SL2(R),

or to any other quotient Γ\ SL2(R). Recall that, by definition, Γ is a lat-
tice if X = Γ\ SL2(Z) supports an SL2(R)-invariant probability measure mX ,
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which we always assume. The measure mX is also called the Haar measure
of X and, if projected to M = X/ SO(2), gives the normalized volume mea-
sure volM .

It is interesting to note that there are dense orbits of the geodesic flow
onX . In fact, for almost every starting point x ∈ X the orbit is equidistributed
with respect to mX , meaning that

1

T

∫ T

0

f (xat) dt −→
∫

X

f dmX

as T → ∞ for any f ∈ Cc(X). This is a consequence of the ergodicity of mX

with respect to the geodesic flow and Birkhoff’s pointwise ergodic theorem.
We mention these important but basic concepts from ergodic theory only
in passing, as they will not be used in these lectures (see [12, Th. 2.30] for
the pointwise ergodic theorem, [12, Sect. 4.4.2] for a discussion of generic
points, [12, Sect. 9.5] for an account of Hopf’s proof of ergodicity for the
geodesic flow, and [12, Sect. 11.3] for an explanation of the ‘Mautner phe-
nomena’ and ergodicity of the geodesic flow).

It is also interesting to note that there are many periodic orbits for the
geodesic flow. For example, the matrix

γ =

(
1 1
1 2

)
∈ SL2(Z)

is diagonalizable by some k ∈ SO(2) and has positive eigenvalues, so that

SL2(Z)kat0/2 = SL2(Z)γk = SL2(Z)k

for some t0 > 0, showing that SL2(Z)k is periodic (as illustrated in Figure 1.2,
where the usual fundamental domain for SL2(Z)\H is used; the details behind
this form of illustration may be found in [12, Ch. 9]).

Clearly the periodic orbit is itself isomorphic to R/t0Z, and the flow on the
orbit corresponds under this isomorphism to translation on R/t0Z. This gives
rise to another type of invariant ergodic probability measure on Γ\ SL2(R),
namely the one-dimensional Lebesgue measure supported on a periodic orbit.

Taking convex combinations of mX and one-dimensional Lebesgue mea-
sures on periodic orbits gives rise to many other invariant measures. However,
these are not ergodic if they are proper convex combinations. One (of several)
definitions of ergodicity for an invariant measure is extremality in the convex
set of invariant probability measures. This implies, by Choquet’s theorem,
that any invariant probability measure on X is a convex combination∗ of in-
variant ergodic probability measures. Hence we would like to know if mX as
above and the periodic one-dimensional Lebesgue measures on periodic orbits
are the only invariant ergodic probability measures for the geodesic flow. This

∗ This convex combination is really an integral over an entire probability space of
ergodic measures; see Chapter 4, and [12, Ch. 6] for a detailed treatment.
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Fig. 1.2. A periodic orbit for the geodesic flow on SL2(Z)\SL2(R).

turns out to be very far from the truth; indeed for every d ∈ [1, 3] there are
many invariant ergodic probability measures for which the support∗ of the
measure has Hausdorff dimension d.

We speak of rigidity of invariant measures for some group action if it is
possible to give a complete classification of the invariant probability mea-
sures, and if the ergodic measures show a rich algebraic structure. This is,
by the discussion, manifestly not the case for the geodesic flow. However, as
the following theorem due to Lindenstrauss [18] shows, it is possible to give
some (mild, and often checkable) additional conditions that characterize the
Haar measure mX . This theorem is related to earlier work of Rudolph [25],
Host [14] and others on the unpublished conjecture of Furstenberg concern-
ing measures on R/Z invariant under x 7→ 2x (mod 1) and x 7→ 3x (mod 1),
and of Katok and Spatzier [16] and of Einsiedler and Katok [8] on invariant
measures for higher-rank diagonalizable flows in the direction of conjectures
of Furstenberg, Katok and Spatzier, and Margulis. More surprising is that
in [18] ideas from Ratner’s work [23] on unipotent flows were also used, an
unexpected connection because on the face of it the measures have very little
structure with respect to the unipotent horocycle flow.

Theorem 1.3 (Lindenstrauss). Let Γ be a congruence lattice over Q,
let X = Γ\ SL2(R) and let µ be a probability measure satisfying the following
properties:

[I] µ is invariant under the geodesic flow,
[R]p µ is Hecke p-recurrent for a prime p, and
[E] the entropy of every ergodic component of µ is positive for the geodesic

flow.

∗ The support of a measure µ is the smallest closed set A with µ(A) = 1.
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Then µ = mX is the Haar measure on X.

The conditions are labeled [I] for invariance, [R]p for recurrence and [E] for
entropy. The method behind the theorem is more general, and has led to a
number of further applications: Einsiedler, Katok and Lindenstrauss [9] ap-
plied this to obtain a partial result towards Littlewood’s conjecture on simul-
taneous Diophantine approximation for pairs of real numbers, and Einsiedler,
Lindenstrauss, Michel and Venkatesh [10] an application to the distribution
of periodic orbits for the full diagonal flow on SL3(Z)\ SL3(R).

For us, Theorem 1.3 will be used as a black box; we refer to the lecture
notes of the Pisa Summer School in the Clay Mathematical Proceedings by
Einsiedler and Lindenstrauss [6] for an introduction to the ideas and results
needed in the proof. Instead we will focus on explaining the three assumptions
in Theorem 1.3, and how they may be proved in order to deduce Theorem 1.2.

Finally, we note that conjecturally invariance [I] and recurrence [R]p (for
all primes p) should be sufficient to obtain the conclusion of Theorem 1.3.
However, this is out of reach with current techniques in ergodic theory.

1.3 Introduction to Microlocal Lifts – Establishing
Invariance

Šnirel′man [27], Colin de Verdière [5] and Zelditch [33] have shown in great
generality (specifically, for any manifold on which the geodesic flow is ergodic
with respect to the natural Liouvillian measure) that if one omits a subse-
quence of density zero from a complete sequence (ordered by eigenvalue) of
eigenfunctions as in Conjecture 1.1, then for the remaining sequence one has

|φi|2 dvolM −→
weak*

dvolM .

An important component of their proof is the microlocal lift of any weak*-
limit µ of the sequence

(
|φi|2 dvol

)
. The microlocal lift of such a limit is a

measure µ̃ on the unit tangent bundle T1M , invariant under the geodesic
flow on T1M , whose projection onto M is µ. The microlocal lift µ̃ is called
a quantum limit of the sequence (φi). Rudnick and Sarnak also stated the
following strengthened conjecture.

Conjecture 1.4 (QUE; Rudnick and Sarnak). Let Γ 6 SL2(R) be a congruence
lattice over Q, or a discrete subgroup such that M = Γ\H is compact. Then
the Haar measure mX for X = Γ\ SL2(R) is the only quantum limit.

What is actually shown in the proof of Theorem 1.2 is that any arithmetic
quantum limit must be mX . Here an arithmetic quantum limit is the microlo-
cal lift µ̃ of a weak*-limit µ of

(
|φi|2 dvol

)
, where the φi are Hecke–Maass cusp

forms.
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1.4 Further Steps in the Proof

For the proof of Theorem 1.2, it is important that the construction of the
microlocal lift has the property that the lift will have special properties arising
from the assumption that the φi are eigenfunctions of the Hecke operators Tn,
specifically properties [R]p and [E]. We will give such a construction of the
micro-local lift in Chapter 2. This particular construction goes back to work
of Wolpert [32], and could be described as a global construction of the micro-
local lift. By this, we mean that we do not use charts of the manifold or other
local tools, but instead define the lift on all of X at once.

It should now be clear how the proof of Theorem 1.2, assuming Theo-
rem 1.3, works. After establishing property [I] in Chapter 2 we explain and
prove the additional assumption [R]p in Chapter 3 and property [E] in Chap-
ter 4.
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Establishing Invariance – The Micro-Local Lift

In this chapter we will assume for the most part that Γ is a lattice in G =
SL2(R), which by definition means that the homogeneous space X = Γ\G
supports a probability measure mX , called the Haar measure on X , which is
invariant under the right action x 7→ xg−1 of G ∋ g on X ∋ x. Recall that G
acts on the upper half-plane H as in Section 1.1, and that if

K = SO(2) =

{
kθ =

(
cos θ sin θ
− sin θ cos θ

)
| θ ∈ R

}
(2.1)

denotes the orthogonal group, then

G/K ∼= SL2(R)/ SO(2) ∼= H,

where the coset g SO(2) corresponds to g · i ∈ H. Moreover, if

U =

{
ux =

(
1 x

1

)
| x ∈ R

}
,

and

A =

{
ay =

(
y1/2

y−1/2

)
| y > 0

}
, (2.2)

then we have the Iwasawa decomposition G = UAK (which is the Gram–
Schmidt orthonormalization process in disguise). This decomposition corre-
sponds to the co-ordinates in H in the sense that g = uxaykθ maps i to x+iy.

Next recall that the action of g ∈ G on H is complex differentiable, and

d

dz

(
az + b

cz + d

)
=

1

(cz + d)2
.

This gives rise to an action of G on the tangent bundle TH = H × C via

(D g)(z, v) = (g · z, 1
(cz+d)2 v)
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which preserves the hyperbolic Riemannian metric defined by

〈(z, v1), (z, v2)〉TzH =
1

y2
(v1 · v2),

where z = y + iy and (v1 · v2) denotes the inner product of v1 and v2 viewed
as elements of C ∼= R2. Here TzH = {z} × C is the tangent to H at z. The
action D g for g ∈ G restricted to the unit tangent bundle T1H = {(z, v) ∈
TH | ‖(z, v)‖TzH = 1} is almost simply transitive. In fact,

T1H ∼= PSL2(R) = SL2(R)/{±I2}.

Finally, we let M = Γ\H = Γ\ SL2(R)/ SO(2). Our goal in this chapter is
to associate to every eigenfunction φ ∈ C∞(M) ∩ L2(M) of the hyperbolic

Laplacian ∆ a new (lifted) function φ̃ ∈ L2(Γ\G) = L2(X) satisfying the
following.

Theorem 2.1. Let Γ 6 SL2(R) be either a uniform lattice or a congruence
lattice over Q, and let M = Γ\H. Suppose that (φi) is an L2-normalized∗

sequence of eigenfunctions of ∆ in C∞(M) ∩ L2(M), with the corresponding
eigenvalues λi satisfying |λi| → ∞ as i → ∞, and assume that the weak*-

limit µ of |φi|2 dvolM exists. If φ̃i denotes the sequence of lifted functions to
be defined in Section 2.5, then (possibly after choosing a subsequence to achieve

convergence) the weak*-limit µ̃ of |φ̃i|2 dvolM has the following properties:

[L] Projecting µ̃ on X = Γ\G to M = Γ\G/K gives µ.
[I] µ̃ is invariant under the right action of A.

The measure µ̃ is called a microlocal lift of µ, or a quantum limit of (φi).

In fact, we will prove effective versions of [L] and [I], which will be state-

ments about |φ|2 dvolM and |φ̃|2 dmX involving negative powers of |λ| in the
error terms. In the proof we will make use of the following special properties
of the eigenfunctions of ∆: The eigenfunctions are smooth, and moreover the
eigenfunctions are bounded and all their partial derivatives are bounded.

2.1 The Lie Algebra and its Universal Enveloping
Algebra

2.1.1 The Lie Algebra

Recall that

sl2(R) = {m ∈ Mat22(R) | tr(m) = m11 +m22 = 0}
∗ This will always mean that ‖φ‖L2 = 1.
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is the Lie algebra of SL2(R). In fact, this follows quickly from

det(exp(m)) = exp(tr(m)).

Also recall that g ∈ SL2(R) naturally acts on m ∈ sl2(R) by the adjoint
representation (which is just a fancy name for conjugation),

Adg(m) = gmg−1.

This action satisfies

exp(Adg(m)) = g exp(m)g−1.

2.1.2 First Order Differential Operators

We now interpret m ∈ sl2(R) as a differential operator on X = Γ\ SL2(R)
(this would also make sense for any other smooth manifold carrying a
smooth SL2(R)-action). Let f ∈ C∞(X), then

(m ∗ f)(x) =

[
∂

∂t
f(x exp(tm))

]

t=0

defines a new smooth function m ∗ f ∈ C∞(X) (since (x, t) 7→ x exp(tm) is
smooth and f is smooth). It is easy to check, for example by applying the
chain rule to the composition of t 7→ (t, t) with the smooth function

(t1, t2) 7−→ f(x exp(t1α1m1) exp(t2α2m2))

on R2 at t = 0 (and (t1, t2) = (0, 0) respectively) that the expression m ∗ f
is linear in m ∈ sl2(R). Clearly, we should think of (m ∗ f)(x) as the partial
derivative of f at x in the direction given by m.

Let us point out a few important special cases. The element

H =

(
1
2
− 1

2

)
∈ sl2(R)

gives the differential operator in the direction of the geodesic flow correspond-
ing to A. The element

W =

(
1

−1

)
∈ sl2(R)

gives the differential operator in the direction of K ∼= SO(2).

2.1.3 Second Order Differential Operators

If m,w ∈ sl2(R), then

C∞(R) ∋ f 7−→ m ∗ (w ∗ f) = (m ◦w) ∗ f ∈ C∞(R)
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defines a second-order differential operator. As indicated, we will write m ◦w
for this operator, which is a formal product (and has, so far, nothing to do
with matrix multiplication). By the linearity of m ∗ f in m discussed above,
we see that m ◦ w is bilinear in m and w.

Recall that ∂2

∂t1∂t2
f = ∂2

∂t2∂t1
f for any f ∈ C∞(R2). This familiar relation

does not generalize directly to our setting here. Instead we have the following
important property.

Proposition 2.2. For m,w ∈ sl2(R) we have

m ◦ w − w ◦m = [m,w]

where [m,w] = mw − wm is the Lie bracket, defined by the difference of the
matrix products. More concretely, this means that

m ∗ (w ∗ f) − w ∗ (m ∗ f) = ([m,w]) ∗ f

for any f ∈ C∞(X).

Proof. Let f ∈ C∞(X). Then

w ∗ f(x) =

[
∂

∂t1
f(x exp(t1w)

]

t1=0

,

and so

m ∗ (w ∗ f)(x) =

[
∂

∂t2
(w.f)(x exp(t2m))

]

t2=0

=

[
∂2

∂t1∂t2
f(x exp(t2m) exp(t1w))

]

t1=t2=0

.

Here the order of ∂t1 and ∂t2 does not matter, but the order of exp(t2m)
and exp(t1w) does. However, we may write

exp(t2m) exp(t1w) = exp(t1w) [exp(−t1w) exp(t2m) exp(t1w)]

= exp(t1w) exp(Adexp(−t1w) t2m),

which leads to

m ∗ (w ∗ f)(x) =

[
∂2

∂t1∂t2
f(x exp(t1w)) exp(t2 Adexp(−t1w)m)

]

t1=t2=0

=

[
∂

∂t1

(
Adexp(−t1w)(m) · f

)
(x exp(t1w))

]

t1=0

.

Applying the chain rule to the composition of the maps t1 7→ (t1, t1)
and (t, t′) 7→ Adexp(−tw) ·f(x exp(t′w)), we get
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m ∗ (w ∗ f)(x) =

[
∂

∂t

(
Adexp(−tw)m

)
· f(x)

]

t=0

+ w ∗ (m ∗ f).

However, we note that Adexp(−tw)m ∈ sl2(R) and that v 7→ v ∗ f(x) is linear
in v. Hence it is sufficient to calculate
[
∂

∂t

(
Adexp(−tw)m

)]

t=0

=

[
∂

∂t

(
1−tw+

t2

2
w2 + · · ·

)
m

(
1+tw+

t2

2
w2+· · ·

)]

t=0

= mw − wm, (2.3)

which gives m ◦ w = (mw − wm) + w ◦m as desired. �

For future reference, we note that (2.3) also shows that

adw(m) = [w,m] =

[
∂

∂t
Adexp(tw)m

]

t=0

. (2.4)

2.1.4 The Universal Enveloping Algebra

The universal enveloping algebra E of sl2(R) is defined to be the formal asso-
ciative infinite-dimensional algebra obtained by taking linear combinations of
a unit 1, elements of sl2(R), and formal products m1 ◦m2 · · ·md of all orders
with d > 2 with the identification m ◦ w − w ◦m = [m,w] ∈ sl2(R), together
with all its formal consequences.

This construction should be contrasted with the more familiar construction
of a Lie algebra from an associative algebra. Given any associative algebra A
over the reals, defining the Lie bracket by [u, v] = uv−vu gives A the structure
of a Lie algebra.

The construction of the universal enveloping algebra does not reverse this
process, but does associate to any Lie algebra l over R a ‘universal’ (that
is, most general) unital associative algebra E (l) with the property that the
Lie algebra constructed from E (l) as above contains l. The real constraint in
the construction of E (l) from l is to preserve the representation theory of l

in the sense that representations correspond one-to-one to modules over the
associative algebra E (l). In the case of a Lie algebra comprising elements that
act as infinitesimal transformations, the universal enveloping algebra acts via
differential operators. We refer to Knapp [17, Chap. III] for a more detailed
discussion.

2.2 The Casimir Operator and the Laplacian

Recall that SL2(R) acts on the Lie algebra sl2(R) by the adjoint representa-
tion (conjugation). This action extends to the universal enveloping algebra by
defining

Adg(m1 ◦m2) = (Adgm1) ◦ (Adgm2), (2.5)
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and analogously on all higher order terms – this can be done coherently
since Adg([u, v]) = [Adg(u),Adg(v)].

Recall (or this may be easily checked) that there is no non-zero element
in sl2(R) which is fixed under Adg for all g ∈ SL2(R); this makes the following
result a little surprising.

Proposition 2.3. Let

H =

(
1
2 0
0 − 1

2

)
,U+ =

(
0 1
0 0

)
,U− =

(
0 0
1 0

)
,

and

W = U+ − U− =

(
0 1
−1 0

)
.

Then the degree-2 element – called the Casimir element (or Casimir operator)
– defined by

Ωc = H◦H + 1
2 (U+◦U− + U−◦U+)

= H◦H + 1
4 (U+ + U−) ◦ (U+ + U−) − 1

4W ◦W ,

is fixed under the action of SL2(R) (equivalently, under the derived action
of sl2(R)).

Notice that the matrices H and U± satisfy the fundamental identities

[
H,U±] = ±U±,

[
U+,U−] = 2H. (2.6)

Proof of Proposition 2.3. Notice that the space E62 of elements with
degree no more than 2 in the universal enveloping algebra is finite dimensional
(indeed, it has dimension 1+3+6), and that after choosing a basis the action
is given by a smooth (in fact, polynomial) map

φ : SL2(R) → GL(E62).

Now SL2(R) is connected, so Ωc is fixed under the action of SL2(R) if and
only if

∂

∂t
Adexp(tw)(Ωc) = 0 (2.7)

for all t ∈ R and w ∈ sl2(R). However,

Ad(t+t0)w = Adexp(t0w) Adexp(tw),

so it is sufficient to show (2.7) at t = 0.
Next notice that for a second-order term m1 ◦ m2 we have to apply the

product rule (which is a consequence of the appropriate use of the chain rule)
in the calculation of ∂

∂t Adexp(tw)(m1 ◦m2) as the adjoint action is extended
using (2.5). Finally, we have
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[
∂

∂t
Adexp(tw)(m)

]

t=0

= [w,m]

by (2.4).
We now check that (2.7) holds at t = 0 when w takes the values H,U+,

and U− which suffices to prove (2.7) at t = 0 for all w, since those three
elements span sl2(R).

Taking w = H gives

[
∂

∂t
Adexp(tH)(Ωc)

]

t=0

= [H,H]◦H + H◦[H,H]

+ 1
2

(
[H,U+]◦U− + U+◦[H,U−]

+[H,U−]◦U+ + U−◦[H,U+]
)

= 0+0+ 1
2

(
U+◦U−−U+◦U−−U++U−U+

)
=0

by (2.6). For w = U+ we also have

[
∂

∂t
Adexp(tU+)(Ωc)

]

t=0

= [U+,H]◦H + H◦[U+,H]

+ 1
2

(
0 + U+◦[U+,U−]

+[U+,U−]◦U+ + 0
)

= −U+◦H−H◦U+ + 1
2

(
2U+◦H + H◦U+

)
= 0,

since [U+,H] = −[H,U+] = −U+, by (2.6). The case w = U− is similar.
Finally, the second formula for Ωc is simply an algebraic reformulation

using the definition of W . �

We are interested in the Casimir element Ωc because of the next result.
For this, notice that any function f on ΓrH can also be thought of∗ as a K-
invariant function on Γ\G.

Proposition 2.4. For f ∈ C∞(Γ\H) ⊆ C∞(Γ\ SL2(R)), we have

Ωc ∗ f = y2

(
∂2

∂x2
+

∂2

∂y2

)
f = ∆f. (2.8)

Sketch of Proof. We use the co-ordinate system

(x, y, θ) ∈ R × (0,∞) × (R/2πZ)

∗ Of course this also gives a lift, which we might denote φ̃wrong of φ satisfying the
desired lifting property [L](see p. 2.1). However, having made this choice it is not
clear how to show the invariance property [I].
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corresponding to the Iwasawa decomposition uxaykθ ∈ SL2(R), and use this
to interpret the actions of the differential operators H∗ f and (U+ +U−) ∗ f .
As W is the derivative along K, we have (W ◦W) ∗ f = 0 for f ∈ C∞(Γ\H).

We claim that

H∗ =
(
−y sin 2θ ∂

∂x + y cos 2θ ∂∂y + 1
2 sin 2θ ∂∂θ

)
, (2.9)

1
2 (U+ + U−) ∗ =

(
y cos 2θ ∂

∂x + y sin 2θ ∂
∂y − 1

2 cos 2θ ∂∂θ

)
(2.10)

as operators on C∞(SL2(R)). As every f ∈ C∞(SL2(R)) is the restriction
of a smooth function, also denoted f on Mat22(R), we may use this ambient
vector space to check the properties (2.9) and (2.10). Here notice that H∗ (and,
similarly, 1

2 (U+ +U−)∗) is defined by the right action, so that H∗ corresponds
to taking the derivative in the direction of the vector

uxaykθH ∈ Mat22(R).

On the other hand, ∂
∂x , ∂

∂y , and ∂
∂θ are the partial derivatives in the x, y, θ-

coordinates of g = uxaykθ, and so ∂
∂x corresponds to (the derivative in the

direction of)
uxU+aykθ,

while ∂
∂y corresponds to

1

y
uxayHkθ,

and ∂
∂θ to

uxaykθW .

Of these correspondences, perhaps the most mysterious is the one between ∂
∂y

and 1
yuxayHkθ, so we will explain this more carefully. Clearly, the derivative

of uxayaexp(t)kθ with respect to t at t = 0 is uxayHkθ. However,

ayaexp(t) = ay exp(t),

and so the derivative is y times the direction corresponding to ∂
∂y . Using this,

one can now calculate

H∗ = −y sin 2θ ∂
∂x + y cos 2θ ∂∂y + 1

2 sin 2θ ∂∂θ

= ux
(
−y sin 2θU+

)
aykθ + uxay (cos 2θH) kθ + uxaykθ

(
1
2 sin 2θW

)

= uxay
(
− sin 2θU+ + cos 2θH + 1

2 sin 2θW
)
kθ

= uxay

(
1
2 cos 2θ − 1

2 sin 2θ
− 1

2 sin 2θ − 1
2 cos 2θ

)(
cos θ sin θ
− sin θ cos θ

)

= 1
2uxay

(
cos 2θ cos θ + sin 2θ sin θ cos 2θ sin θ − sin 2θ cos θ
cos 2θ sin θ − sin 2θ cos θ − sin 2θ sin θ − cos2θ cos θ

)
,

which agrees with the calculation above. The proof for (2.10) is similar.
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Assuming the relations (2.9) and (2.10), we find that H ∗H∗ expands to

(
−y sin 2θ ∂

∂x+y cos 2θ ∂
∂y+ 1

2 sin 2θ ∂∂θ

)
∗
(
−y sin 2θ ∂

∂x+y cos 2θ ∂∂y+
[
1
2 sin 2θ ∂∂θ

])

= y2 sin2 2θ ∂2

∂x2 − y2 sin 2θ cos 2θ ∂2

∂x∂y

[
− y

2 sin2 2θ ∂2

∂x∂θ

]

−
(
−y2 sin 2θ cos 2θ ∂2

∂x∂y − y sin 2θ cos 2θ ∂
∂x

)

+
(
y2 cos2 2θ ∂

2

∂y2 + y cos2 2θ ∂
∂y + [· · · ]

)

+ 1
2 sin 2θ

(
−2y cos 2θ ∂

∂x − 2y sin 2θ ∂∂θ
)

+ [· · · ] ,

where we have used the product rule several times, and indicate by [· · · ] the
terms involving ∂

∂θ , which are not important when this operator is applied to
a function f ∈ C∞(M). Similarly, one calculates

(
y cos 2θ ∂

∂x+y sin 2θ ∂
∂y− 1

2 cos 2θ ∂∂θ

)
∗
(
y cos 2θ ∂

∂x+y sin 2θ ∂
∂y−

[
1
2 cos 2θ ∂∂θ

])

= y2 cos2 2θ ∂2

∂x2 + y2 sin 2θ cos 2θ ∂2

∂x∂y − [· · · ]

+
(
y2 sin 2θ cos 2θ ∂2

∂x∂y + y sin 2θ cos 2θ ∂
∂x

)

+
(
y2 sin2 2θ ∂2

∂y2 + y2 sin2 2θ ∂
∂y

)
+ [· · · ]

− 1
2 cos 2θ

(
−2y sin 2θ ∂

∂x + 2y cos 2θ ∂
∂y

)
+ [· · · ] .

Studying the above two expressions, we see that the underlined expressions
together give ∆, while the remaining ten terms cancel out. �

2.3 K-finite Vectors, Raising and Lowering Operators

2.3.1 K-eigenfunctions and K-finite vectors

We may normalize the Haar (that is, Lebesgue) measure mK on K to sat-
isfy mK(K) = 1. Then, using the usual Fourier expansion, the characters

en(kθ) = einθ (2.11)

for n ∈ Z and θ ∈ [0, 2π) form a complete orthonormal basis of L2(K). Also,
for f ∈ C∞(K) there is a Fourier expansion

f =
∑

n∈Z

cnen,



20 2 Establishing Invariance – The Micro-Local Lift

where cn = 〈f, en〉L2(K) ∈ C, converges absolutely since integration by parts
shows that

|cn| = | 〈cn, en〉 = |
〈
f ′, 1

inen
〉
| = 1

n2 | 〈f ′′, en〉 | ≪f
1
n2 .

Finally, note that

cnen(kψ) =

∫
f(kθ)en(kθ) dmKen(kψ)

=

∫
f(kθ)en(kψk

−1
θ ) dmK

= (f ∗ en)(kψ)

can also be obtained by convolution.
This generalizes to functions f ∈ C∞(SL2(R)) as follows. We define

fn(x) = f ∗K en(x) =

∫

K

f(xkθ)en(−kθ) dmK(kθ),

which satisfies

fn(xkψ) =

∫

K

f(xkψkθ)en(−kθ) dmK(kθ)

=

∫

K

f(xkθ′)en(−kθ′) dmK(kθ)en(kψ)

= fn(x)en(kψ)

by the substitution kθ′ = kψkθ. In other words, fn is an eigenfunction for the
right action of K on C∞(SL2(R)) corresponding to the character en on K.

If we also assume that f ∈ C∞
c (SL2(R)) then, again by integration by

parts,

‖fn‖∞ =

∥∥∥∥
∫

K

f(xkθ)en(−kθ) dmK

∥∥∥∥
∞

=
1

n2

∥∥∥∥
∫

((W ◦W) ∗ f) (xkθ)en(−kθ) dmK

∥∥∥∥
∞

≪f
1

n2
,

which shows that
∑

n∈Z fn converges uniformly to f . Similar results hold
for f ∈ L2(X) and f ∈ C∞

c (X) if X = Γ\ SL2(R). For any of these spaces we
define an associated subspace

An = {f | f(xkθ) = en(kθ)f(x)} (2.12)

for n ∈ Z; we will call the elements of An K-eigenfunctions of weight n.
In the case of the space C∞(X), a simple calculation shows that AℓAn ⊆

Aℓ+n for ℓ, n ∈ Z. A function that belongs to
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N⊕

n=−N
An

for some N will be called K-finite.
Finally, note that for L2(X) the spaces of K-eigenfunctions of different

weights are orthogonal, since for fℓ ∈ Aℓ, fn ∈ An with ℓ 6= n, there exists
some θ with en−ℓ(kθ) 6= 1, which forces

〈fℓ, fn〉L2(X) = 〈fℓ(xkθ), fn(xkθ)〉L2(X) = eℓ(kθ)e−n(kθ) 〈fℓfn〉

to be zero.

2.3.2 Raising and Lowering Operators

In Section 2.1.2 we showed that elements of sl2(R) are, in a natural sense,
differential operators on X = Γ\ SL2(R). This extends to

sl2(C) = sl2(R) + isl2(R)

simply by defining the extension

(m1 + im2) ∗ f = m1 ∗ f + i(m2 ∗ f)

for m1,m2 ∈ sl2(R) and f ∈ C∞(X) to be linear.
Almost all of the discussion in Section 2.1 also holds for the complex Lie

algebra sl2(C). For example, the complex version of Proposition 2.2 follows
quickly from its real counterpart as follows. If m = m1+im2 and w = w1+iw2

with m1,m2, w1, w2 ∈ sl2(R), then

(mw−wm)∗f = (m1 + im2)∗(w1f + iw2f) − (w1 + iw2)∗(m1f + im2f)

= m1∗(w1∗f)−m2∗(w2∗f) + i (m1∗(w2∗f) +m2∗(w1∗f))

−w1∗(m1∗f) + w2∗(m2∗f) − i (w2∗(m1∗f) + w1∗(m2∗f))

= ([m1, w1] − [m2, w2])∗f + i ([m1, w2] + [m2, w1])∗f

by collecting the appropriate terms and applying Proposition 2.2. On the other
hand, using the complex matrix products we also see in the same manner that

[m,w] = mw − wm = ([m1, w1] − [m2, w2]) + i ([m1, w2] + [m2, w1]) ,

which implies the desired complex version.
We note, however, that m ∗ f for m ∈ sl2(C)rsl2(R) does not correspond

to the partial derivative of f along the (non-existent) direction m. It is just,
as defined, the complex linear combination of the partial derivatives along two
(possibly different) directions.
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Definition 2.5. The raising operator is the element of sl2(C) given by

E+ =
1

2

(
1 i
i −1

)
= H +

i

2
(U+ + U−), (2.13)

and the lowering operator is the element of SL2(C) given by

E− =
1

2

(
1 −i
−i −1

)
= H− i

2
(U+ + U−). (2.14)

The next proposition explains the terminology.

Proposition 2.6. The operators E+ and E− raise and lower in the sense that

E+ : An → An+2,

E− : An → An−2

for all n ∈ Z.

Proof. We start by reformulating the definition of the subspace An in (2.12).
We claim that

An = {f | W ∗ f = inf}. (2.15)

To see this, suppose first that f(xkθ) = einθf(x) as in (2.12). Then, taking the
derivative along θ at θ = 0 gives W ∗ f = inf , so the right-hand side of (2.15)
contains An. Conversely, assume that f is a smooth function with W∗f = inf .
By the definition of W , this means that

[
∂

∂θ
f(xkθ)

]

θ=0

= inf(x)

for all x, so

∂

∂θ

[
e−inθf(xkθ)

]
θ=ψ

= −inf(xkψ) + inf(xkψ) = 0,

in other words, e−inθf(xkθ) is constant as required. Thus the right-hand side
of (2.15) is contained in An, proving the claim.

Notice that the matrix W =

(
0 1
−1 0

)
can be diagonalized over C, the

column vectors of m =

(
1 1
i −i

)
are the eigenvectors of W , and that

Wm =

(
i 0
0 −i

)
= 2imH.

Finally, we calculate that

E+m = 1
2

(
1 i
i −1

)(
1 1
i −i

)
= 1

2

(
0 2
0 2i

)
=

(
1 1
i −i

)(
0 1
0 0

)
= mU+
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and similarly E−m = mU−.
From this we see from (2.6) that

[W , E±] = 2im[H,U±]m−1 = ±2im(U±)m−1 = ±2iE±,

which implies that

W · (E± · f) = E± · (W · f) + [W , E±] · f
= niE± · f ± 2iE± · f
= (n± 2)iE± · f

for f ∈ An, as needed. �

We will also need formulas that relate E± to the other differential operators
that we introduced earlier. Note that complex conjugation extends to sl2(C) =
sl2(R) + isl2(R) in the natural way.

Lemma 2.7. We have E+ = E−, E+ + E− = 4H, and

Ωc = E−◦E+ − 1
4W◦W − i

2W = E+◦E− − 1
4W◦W + i

2W .

Proof. The first two formulas are immediate from the definitions of E+

and E− in (2.13) and (2.14). Moreover, the second formula for Ωc follows
from the first by complex conjugation. To derive the first formula for Ωc, we
calculate

E−◦E+− 1
4W◦W− 1

2 iW =
(
H− i

2 (U++U−)
)
◦
(
H+ i

2 (U++U−)
)

−1
4W◦W− 1

2 iW
= H◦H+ 1

4 (U++U−) ◦ (U++U−)− 1
4W ◦W

︸ ︷︷ ︸
Ωc

+i
2H ◦ (U++U−)− i

2 (U++U−) ◦ H− i
2W

= Ωc + i
2 [H,U+ + U−] − i

2W
= Ωc + i

2 (U+ − U−) − i
2W = Ωc.

�

Lemma 2.8. If f ∈ C∞ is K-finite, and m ∈ sl2(C), then m ∗ f is K-finite
as well.

Proof. This is clear for m = W and for m = E±, but W , E+, and E−

span sl2(C). �
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2.4 Differential Operators on L2(X) and their Adjoints

Recall that the action of SL2(R) on L2(Γ\ SL2(R)) defined by

(g.f)(x) = f(xg)

for f ∈ L2(Γ\ SL2(R)) and g ∈ SL2(R) is unitary (since the right action
of SL2(R) on Γ\ SL2(R) preserves the measure). On the other hand, elements
of sl2(R) do not even define continuous operators on L2(Γ\ SL2(R)). Instead
they define so-called unbounded operators, which are linear maps defined on
a dense subset, called the domain of the operator. In fact, for m ∈ sl2(R)
the operator m∗ is well-defined on the subspace C∞

c (Γ\ SL2(R)) (and also on
some larger subspaces) which is dense in L2(Γ\ SL2(R)) with respect to ‖ ·‖2.

The adjoint of an unbounded operator O defined on a dense subset D ⊆ H
of a Hilbert space H and mapping to a Hilbert space H ′ is the map that
associates to w ∈ H ′ the element O∗w ∈ H with the property

〈Ov, w〉H′ = 〈v,O∗w〉H
for all v ∈ D. However, the element O∗w may not always exist; the do-
main D∗ ⊆ H ′ of O∗ is defined to be the set of all w ∈ H ′ for which O∗w
exists. It is easy to check that for w ∈ D∗ the element O∗w is unique (that
is, O∗ is a map from D∗ to H), that D∗ is a linear subspace of H ′, and that O∗

is linear on D∗.
We note that the definition of O∗ is highly sensitive to both the opera-

tor O and its domain. For example, restricting O to a smaller (but still dense)
subspace of D may change the meaning of O∗.

2.4.1 Differential Operators on L2(SL2(R))

Proposition 2.9. Let m ∈ sl2(C), and consider m∗ as an unbounded operator
on L2(SL2(R)) with domain C∞

c (SL2(R)). Then

(m∗)∗f = −m ∗ f

for f ∈ C∞
c (SL2(R)).

By definition, this means that for f1, f2 ∈ C∞
c (SL2(R)) we have

〈m ∗ f1, f2〉 = −〈f1,m ∗ f2〉 .

As we will see, this is simply a generalization of integration by parts.

Proof of Proposition 2.9. Recall that for f1, f2 ∈ C∞
c (R) we have

0 =

∫ ∞

−∞

d

dx
(f1f2) dx = 〈f ′

1, f2〉L2(R) + 〈f1, f ′
2〉L2(R) , (2.16)
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where the first equality is an immediate consequence of the fact that the
functions are both compactly supported. Similarly, for f1, f2 ∈ C∞(K) we
have

0 =

∫

K

W(f1f2) dmK = 〈Wf1, f2〉L2(K) + 〈f1,Wf2〉L2(K) . (2.17)

Now take f1, f2 ∈ C∞
c (SL2(R)) and notice that

〈
U+f1, f2

〉
L2(SL2(R)

=

∫

SL2(R)

(
U+f1

)
(x)f2(x) dmSL2(R)

=

∫

KA

∫

U

(
U+f1

)
(kθayux)f2(kθayux) dxdµ(kθay),

(2.18)

since the Haar measure mSL2(R) can be written as a direct product µ×mU for
some measure µ on KA. Now the inner integral (over U) in (2.18) is precisely
of the form 〈f ′

1, f2〉L2(R) in (2.16). Hence we get

〈
U+f1, f2

〉
= −

∫

KA

∫

U

f1
(
U+f2

)
dmU dµ

= −
〈
f1,U+f2

〉
.

The proof for U− is similar, and the proof for W uses (2.17) together with the
fact that mSL2(R) can be written as the product mUA ×mK . Finally, notice
that 〈m · f1, f2〉 is linear in m ∈ sl2(C) and that 〈f1,m · f2〉 is complex linear.
This completes the proof. �

2.4.2 Differential Operators on L2(X) for Compact Quotients

Proposition 2.10. Let Γ < SL2(R) be a uniform lattice (so that the quotient
space X = Γ\ SL2(R) is compact), let m ∈ sl2(C) and consider m∗ as an
unbounded operator on L2(X) with domain C∞(X). Then (m∗)∗f = −m ∗ f
for f ∈ C∞(SL2(R)).

Proof. Recall from [12, Prop. 9.14] that for a discrete subgroup Γ < SL2(R)
and x ∈ X = Γ\ SL2(R) there exists some r = rx > 0 such that

BSL2(R)
r ∋ g 7−→ xg ∈ BXr (x)

is injective. Moreover, for compact subsets of SL2(R), such an injectivity ra-
dius r > 0 can be chosen uniformly. Therefore, for a uniform lattice Γ we
can write X = O1 ∪ · · · ∪Oℓ, where each Oj = BXr (xj) is an injective image

of B
SL2(R)
r .

Let χ1, . . . , χℓ be a smooth partition of unity adapted to the decomposition
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X = O1 ∪ · · · ∪Oℓ,

which means that χj ∈ C∞(X), χj > 0, Supp(χj) ⊆ Oj for j = 1, . . . , ℓ,

and
∑ℓ
j=1 χj = 1. Also choose functions ψ1, . . . , ψℓ ∈ C∞(X) with the prop-

erty that Supp(ψj) ⊆ Oj and with ψj ≡ 1 on a neighborhood of Supp(χj).
Then, for f1, f2 ∈ C∞(X) and m ∈ sl2(C),

〈m ∗ f1, f2〉L2(X) =

ℓ∑

j=1

〈m ∗ f1, χjf2〉L2(X)

=

ℓ∑

j=1

〈m ∗ (ψjf1), χjf2〉L2(X) .

However, ψjf1, χjf2 ∈ C∞
c (Oj) ⊆ L2(Oj), which we may identify with

C∞
c (BSL2(R)

r ) ⊆ L2(SL2(R)).

Hence we may apply Proposition 2.9 to get

〈m ∗ f1, f2〉L2(X) = −
ℓ∑

j=1

〈ψjf1,m ∗ (χjf2)〉L2(X)

= −
ℓ∑

j=1

〈f1,m ∗ (χjf2)〉L2(X)

= −〈f1,m ∗ f2〉L2(X) .

�

2.4.3 Differential Operators on L2(X) for Non-compact Quotients

Proposition 2.10 concerning a compact quotient easily generalizes to non-
compact quotients if we restrict attention to f1, f2 ∈ C∞

c (X). However, this
will not be sufficient for our purposes as, for example, the eigenfunctions
of ∆ are not compactly supported. Rather (at least in the case where Γ is a
congruence subgroup of SL2(Z)) they belong to

C = {f ∈ C∞
bd(X) | Df ∈ C∞

bd(X) for all D ∈ E(sl2(R))} (2.19)

where C∞
bd(X) = C∞(X) ∩ L∞(X).

Proposition 2.11. Let Γ ⊆ SL2(Z) be a congruence subgroup. For f1, f2 ∈ C
and m ∈ sl2(C) we have

〈m ∗ f1, f2〉 = −〈f1,m ∗ f2〉 .
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Proof. Given some ε > 0 there exists some compact set L ⊆ X such
that ‖f21XrL‖2 < ε and ‖(m ∗ f2)1XrL‖2 < ε. We choose a smooth func-
tion φ ∈ Cc(X) with 0 6 φ 6 1, φ ≡ 1 on a neighborhood of L, and such
that ‖m ·φ‖∞ 6 1 (this can be found concretely as a function φ ∈ C∞

c (Γ\H)).
Furthermore, choose ψ ∈ Cc(X) with ψ ≡ 1 on a neighborhood of Suppφ.
With these functions we have, by applying the case of C∞

c (X)-functions, that

〈m ∗ f1, f2〉 = 〈m ∗ f1, φf2〉 + O (‖m ∗ f1‖2‖(1 − φ)f2‖2)

= 〈m ∗ (ψf1), φf2〉 + Of1(ε)

= −〈ψf1,m ∗ (φf2)〉 + Of1(ε)

= −〈f1, (m ∗ φ)f2 + φ(m ∗ f2)〉 + Of1(ε)

= −〈f1, φ(m ∗ f2)〉 + O
(
‖f1‖2‖f21XrL‖2

)
+ Of1(ε)

= −〈f1,m ∗ f2〉 + O
(
‖f1‖2‖m ∗ f21XrL‖2

)
+ Of1(ε).

As ε > 0 was arbitrary, the proposition follows. �

2.4.4 Some Formulas

In this section we assemble some further useful formulas relating the operators
defined above. Let C be defined as in (2.19), which for X compact coincides
with C∞(X).

Corollary 2.12. If f ∈ C, then

(Ωc∗)∗f = Ωc ∗ f, and

(E±∗)∗f = −E∓ ∗ f.

Notice that in all of the classes of functions defined above (for example,
the spaces C∞

c (SL2(R)), C∞(X) for compact X , C for non-compact X) the
outcome of a differential operator or of its adjoint is in the same class, and so
we can apply the operator many times. In this way we also arrive at formulas
for the adjoint of elements of the universal enveloping algebra. For example,
if f1, f2 are elements of the class considered, and m,w ∈ sl2(C), then

〈m ∗ (w ∗ f1), f2〉 = −〈w ∗ f1,m ∗ f2〉
= 〈f1, w ∗ (m ∗ f2)〉

and so ((m ∗ w)∗)∗ = (w ∗m)∗.
Proof of Corollary 2.12. The first formula follows easily from the identity

Ωc = H ◦H + 1
2 (U+ ◦ U− + U− ◦ U+)

and the comment above. The second follows from the definitions in (2.13)
and (2.14). �
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Corollary 2.13. If f ∈ C ∩An satisfies Ωc · f = λf with λ = −(1
4 + r2) then

‖E+ ∗ f‖2 = |ir + 1
2 + 1

2n|‖f‖2, and

‖E− ∗ f‖2 = |ir + 1
2 − 1

2n|‖f‖2.

We will use these formulas repeatedly in our construction of the micro-
local lift. Notice, for example, that f = φ ∈ C ∩ A0 if φ ∈ C∞

bd(M) is an
eigenfunction of ∆.

Proof of Corollary 2.13. We have (E∗)∗ = −E−∗, and so

‖E+ ∗ f‖2
2 =

〈
E+ ∗ f, E+ ∗ f

〉

= −
〈
(E− ◦ E+) ∗ f, f

〉

= −
〈
(Ωc + 1

4W ◦W + i
2W) ∗ f, f

〉

by Lemma 2.7. Applying this to a function f ∈ An with eigenvalue λ gives

‖E+ · f‖2
2 =

(
−λ+ 1

4n
2 + 1

2n
)
‖f‖2

2.

As λ = −
(

1
4 + r2

)
by definition of r, we have

(
−λ+ 1

4n
2 + 1

2n
)

= r2 + 1
4 + 1

2n+ 1
4n

2 = |ir + 1
2 + 1

2n|2,

which gives the first formula of the corollary. The second follows by the
same procedure, using the formula (E−∗)∗ = −E+∗ and the third formula
of Lemma 2.7. �

2.5 The Micro-Local Lift

Recall that our goal is to define, for every eigenfunction φ of ∆ on M = X/K,

a new function φ̃ on X such that
∫
f |φ|2 dvolM ≈

∫
f |φ̃|2 dmX for every f ∈

C∞
c (M), and |φ̃|2 dmX defines a measure that is (in a suitable sense which

will be described in Corollary 2.20) almost invariant under the geodesic flow,
which will then prove Theorem 2.1. After all the preparations above, we are
ready to define φ̃.

Definition 2.14. Inductively define functions by

φ0(x) = φ(xK) ∈ A0,

and

φ2n+2 =
1

ir + 1
2 + n

E+ ∗ φ2n ∈ A2n+2 for n > 0, (2.20)

φ2n−2 =
1

ir + 1
2 − n

E− ∗ φ2n ∈ A2n−2 for n 6 0. (2.21)
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Proposition 2.15. The functions defined in Definition 2.14 have the follow-
ing properties.

(1) ‖φ2n‖2 = 1 for all n ∈ Z.
(2) The formulas (2.20) and (2.21) hold for all n ∈ Z; equivalently,

E−E+φ2n =
(
λ− n2 − n

)
φ2n

for all n ∈ Z.

Proof. Property (1) follows from Corollary 2.13, since φ ∈ A2n by induction.
For (2), recall that

E− ◦ E+ = Ωc + 1
4W ◦W + i

2W ,

which implies that

(
E− ◦ E+

)
∗ φ2n =

(
λ− n2 − n

)
φ2n

for all n ∈ Z, since Ωc∗ commutes with the action of sl2(C), which is used
to define φ2n inductively starting from φ0, and φ0 has Ωc ∗ φ0 = λφ0. Now
suppose that n > 0; then by definition and the identities above,

E− ∗ φ2n+2 =
1

ir + 1
2 + n

E− ◦ E+ ∗ φ2n

=
−(1

4 + r2) − n2 − n

ir + 1
2 + n

φ2n

=
−|ir + 1

2 + n|2
ir + 1

2 + n
φ2n

=
(
ir − 1

2 − n
)
φ2n,

which coincides with (2.21) for (n + 1) instead of n. The proof of (2.20) for
all n ∈ Z is similar. �

Definition 2.16. Define, for N = N(λ) to be chosen later,

φ̃ =
1√

2N + 1

N∑

n=−N
φ2n,

Notice that ‖φ̃‖2 = 1 since each φ2n has norm 1 by Proposition 2.15 and
the distinct terms in the sum are mutually orthogonal since φ2n ∈ A2n.
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2.5.1 Almost Lifts

The next result is the main step towards establishing property [L] in Theo-
rem 2.1.

Theorem 2.17. Let φ ∈ L2(M) be an eigenfunction of ∆ with corresponding
eigenvalue λ = −(1

2 + r2). If f ∈ C∞
c (M), then

∫
f |φ̃|2 dmX = 〈fφ, φ〉L2(M) + O

(
Nr−1

)

=

∫
f |φ|2 dvolM + O

(
Nr−1

)
.

More generally, if f is a K-finite function in C∞
c (M), then

∫
f |φ̃|2 dmX =

〈
f

N∑

n=−N
φ2n, φ

〉

L2(X)

+ Of

(
max{N−1, Nr−1}

)

Proof. Recall that AℓAn ⊆ Aℓ+n, which we will use below without explicit
reference. Suppose that

f ∈
L∑

ℓ=−L
A2ℓ

is K-finite (the case L = 0 is the first case of the theorem). Then

〈
fφ̃, φ̃

〉
=

1

2N + 1

N∑

m,n=−N
〈fφ2m, φ2n〉 ,

by definition of φ̃.
The case Nr−1 > 1 is true, but not so interesting for our purposes:

∫
f |φ̃|2 dmX = O(‖f‖∞) = Of (1),

and for n 6∈ [−L,L] we see that

fφ2n ∈
L∑

ℓ=−L
A2(ℓ+n)

is orthogonal to φ ∈ A0, which also shows that

〈
f

N∑

n=−N
φ2n, φ

〉
= O (‖f‖∞L) = Of (1).

Suppose therefore that Nr−1 6 1. Then by Proposition 2.15(2) ((2.20) applied
for φ2m−2), we have
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〈fφ2m, φ2n〉 =
1

ir + 1
2 +m− 1

〈
fE+ ∗ φ2m−2, φ2n

〉

=
1

ir − 1
2 +m



〈
E+ ∗ (fφ2m−2), φ2n

〉
−
〈
(E+ ∗ f)φ2m+2, φ2n

〉
︸ ︷︷ ︸

Of (1)




=
−1

ir − 1
2 +m

〈
fφ2m−2, E− ∗ φ2n

〉
+ Of (r

−1),

where we have also used the relation (E+∗)∗ = −(E−) from Corollary 2.12.
Together with (2.21) for φ2n−2, this gives

〈fφ2m, φ2n〉 =
−(−ir + 1

2 − n)

ir − 1
2 +m

〈fφ2m−2, φ2n−2〉 + Of (r
−1)

=
ir − 1

2 +m+ (n−m)

ir − 1
2 +m

〈fφ2m−2, φ2n−2〉 + Of (r
−1)

= 〈fφ2m−2, φ2n−2〉 + Of

(
|n−m|
r

)
+ Of

(
r−1
)
. (2.22)

However, recall that f ∈∑L
ℓ=−LA2ℓ, so that either |n−m| 6 2L = Of (1) or

〈fφ2m, φ2n〉 = 0 = 〈fφ2m−2, φ2n−2〉 .

Therefore, we may write Of

(
|n−m|
r

)
= Of (r

−1) in (2.22). Iterating this equa-

tion |n| 6 N times gives

〈fφ2m, φ2n〉 =
〈
fφ2(m−n), φ0

〉
+ Of (Nr

−1).

Summing over m,n ∈ [−N,N ] with |n − m| 6 2L (there are Of (N) sum-
mands), and dividing by 2N + 1 gives

〈
fφ̃, φ̃

〉
=

1

2N + 1

N∑

m,n=−N

〈
fφ2(m−n), φ0

〉
+ Of (Nr

−1)

=

L∑

ℓ=−L

2N + 1 − |ℓ|
2N + 1

〈fφ2ℓ, φ0〉 + Of (Nr
−1), (2.23)

since 2N + 1 − |ℓ| is the number of ways in which ℓ can be written as m− n

with m,n ∈ [−N,N ]. Now 2N+1−|ℓ|
2N+1 = 1 + Of

(
N−1

)
and 〈fφ2ℓ, φ0〉 = Of (1),

we finally get

〈
fφ̃, φ̃

〉
=

〈
f

L∑

ℓ=−L
φ2ℓ, φ0

〉
+ Of (N

−1) + Of (Nr
−1)

=

〈
f

N∑

ℓ=−N
φ2ℓ, φ0

〉
+ Of (N

−1) + Of (Nr
−1)
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since 〈fφ2ℓ, φ0〉 = 0 if |ℓ| > L, as stated in the theorem. If f ∈ A0, then the
last step is not needed and (2.23) is already the claim of the theorem. �

This gives us [L] in Theorem 2.1.

Corollary 2.18. Suppose that N = N(λ) is a function of λ chosen so
that Nr−1 = O(N |λ|−1/2) → 0 as |λ| → ∞. Assume also that (φi) is a
sequence of Maass cusp forms, with corresponding eigenvalues |λi| → ∞
as i → ∞, and that |φi|2 dvolM converges weak*. Then any weak*-limit

of |φ̃|2 dmX projects to the weak*-limit of |φi|2 dvolM .

Proof. This follows from Theorem 2.17, since a Borel measure is uniquely
determined by how it integrates smooth functions in C∞

c (M). �

2.5.2 Almost-Invariance

Clearly up to this point we could have chosen N = 0. However, for the proof
of [I] in Theorem 2.1 we will need the second formula in Theorem 2.17 and
the following result, both of which require N → ∞ as |λ| → ∞.

Theorem 2.19 (Zelditch). If f ∈ C∞
c (X) is a K-finite function, and N is

sufficiently large (the lower bound depends on f), then

〈
[(rH + V) ∗ f ]

N∑

n=−N
φ2n, φ0

〉
= 0

for some fixed degree-two differential operator V. In particular,

〈
(H ∗ f)

N∑

n=−N
φ2n, φ0

〉
= Of (r

−1).

As we will see, the proof only uses the identities

E− ◦ E+ ∗ φ0 = Ωc ∗ φ0 = λφ0,

Ωc ∗
N∑

n=−N
φ2n = λ

N∑

n=−N
φ2n,

and the product rule, which will produce extra terms.

Proof. First notice that for f1, f2 ∈ C, we have

0 = 〈f1f2,W ∗ φ0〉 = 〈W ∗ (f1f2), φ0〉
= 〈(W ∗ f1)f2, φ0〉 + 〈f1W ∗ f2, φ0〉 ,

or equivalently
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〈(W ∗ f1)f2, φ0〉 = −〈f1(W ∗ f2), φ0〉 . (2.24)

Also notice that we may write (2.20) as

E+ ∗
N∑

n=−N
φ2n = (ir − 1

2W − 1
2 ) ∗

N+1∑

n=−N+1

φ2n+2

and (2.21) as

E− ∗
N∑

n=−N
φ2n = (ir + 1

2W − 1
2 ) ∗

N−1∑

n=−N−1

φ2n−2.

We define the shorthand

ψ =

N∑

n=−N
φ2n,

so that E± ∗ψ and (ir∓ 1
2W− 1

2 )∗ψ differ by the sum of two K eigenfunctions
of weight about ±2N . In the formulas below we will look at inner products
of the form 〈FE± ∗ ψ, φ〉 with F ∈ {f, E+f, E−f}, which are all K-finite with
weights in the range {−2L− 2, . . . , 2L+ 2}.

This difference between E±∗ψ and (ir∓ 1
2W− 1

2 )∗ψ is not significant onceN
is large enough. In fact, if N > L + 2, then Fφ±2N , Fφ±2N±2 is orthogonal
to φ0. Finally, recall that E+ + E− = 4H and Ωc = E− · E+ − 1

4W ·W − i
2W

by Lemma 2.7.
With these formulas and the product rule for differentiation, we get

λ 〈fψ, φ0〉 =
〈
fψ, E−◦E+∗φ0

〉

=
〈
E−◦E+∗(fψ), φ0

〉

=
〈
(E−◦E+∗f)ψ + (E+∗f)(E−∗ψ) + (E−∗f)(E+∗ψ)

+f(E−◦E+∗ψ), φ0

〉

=
〈
(E−◦E+∗f)ψ+(E+∗f)(ir+ i

2W− 1
2 )∗ψ

+(E−∗f)(ir− i
2W− 1

2 )∗ψ+f(Ωc+
1
2W◦W+ i

2W) ∗ ψ, φ0

〉
.

Notice that on the right-hand side, one term is equal to

〈f(Ωc · ψ), φ0〉 = λ 〈fψ, φ0〉 ,

which is the term we started with on the left-hand side. This is the first of
two miracles: these are the only terms involving λ, and we may cancel them.
Next we look at the terms that contain r (which is of size |λ|1/2, and so are
the main terms after the terms in λ have been canceled). The terms in r, and
this is the second miracle, comprise

〈
(E+ ∗ f)irψ + (E− ∗ f)irψ, φ0

〉
= 4ir 〈(H ∗ f)ψ, φ0〉 .
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For the remaining terms, we use (2.24) (once or twice as required) to arrive
at

0 = 4ir 〈(H∗f)ψ, φ0〉 +
〈
(E−◦E+ ∗ f)ψ + (E+∗f)( i

2W − 1
2 ) ∗ ψ

+(E−∗f)(− i
2W − 1

2 ) ∗ ψ + f(1
2W◦W + i

2W) ∗ ψ, φ0

〉

= 4ir 〈(H∗f)ψ, φ0〉 + 4i 〈(V∗f)ψ, ψ〉
for some degree-two operator V , which is independent of φ, λ, and r.

The second formula follows from the first by recalling that

‖φ‖2 = ‖
N∑

n=−N
φ2n‖2 =

√
2N + 1,

and the observation that ‖Vf‖∞ = Of (1). �

Corollary 2.20. Suppose that N is defined as a function of λ so as to ensure
that Nr−1 → 0 and N−1 → 0 as |λ| → ∞. Assume that (φi) is a sequence
of Maass cusp forms with corresponding eigenvalues |λi| → ∞ as i → ∞,

and that |φi|2 dvolM converges weak*. Then any weak*-limit of |φ̃i|2 dmX is
invariant under the geodesic flow.

We may define N = ⌈r1/2⌉, which is then of size |λ|1/4. Then Corollary 2.20
applies, and gives [I] in Theorem 2.1. Moreover, Corollary 2.18 also applies,
so that together Theorem 2.1 will follow. For the proof of Corollary 2.20 we
need the following lemma.

Lemma 2.21. Let f ∈ C∞
c (Γ\ SL2(R)) and w ∈ sl2(C). Then the K-finite

approximations

f[−L,L] = f ∗K
L∑

ℓ=−L
eℓ

(where eℓ is the character defined in (2.11)) converge uniformly to f as L →
∞. Moreover, H·f[−L,L] converges uniformly to H·f as L→ ∞.

Proof. Just as in Section 2.4.2, we can consider the case of f ∈ C∞
c (SL2(R))

only. Let

fn(x) = f ∗K en(x) =

∫

K

f(xkθ)e(k
−1
θ ) dmK .

By the discussion in Section 2.3.1, ‖fn‖ ≪f
1
n2 , and from this one can quickly

show that f[−L,L] → f uniformly as L → ∞. For the second claim, we wish
to estimate

[H ∗ fn] (x) =

[
∂

∂t

∫
fn(x exp(tH)kθ)en(k

−1
θ ) dmK

]

t=0

=

∫ [
∂

∂t
fn(xkθ exp(tAd−1

kθ
(H)))

]

t=0

e(k−1
θ ) dmK

=

∫ (
Ad−1

kθ
(H) ∗ f

)
(xkθ)e(k

−1
θ ) dmK .
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Now notice that Ad−1
kθ

(H) ∗ f(x) is a smooth function of x and θ – in fact it
can be written as a linear combination (with coefficients depending smoothly
on θ), of H ∗ f(x) and U± ∗ f(x). Therefore, we may use integration by parts
with respect to θ twice to deduce that

‖H ∗ fn‖∞ = Of (1/n
2).

It follows that H∗ f[−L,L] converges to some function h ∈ C∞
c (SL2(R)). How-

ever, if g /∈ (Supp f)K then

f[−L,L](gaT ) =

∫ T

0

w ∗ f[−L,L](gat) dt →
∫ T

0

h(gat) dt

as L→ ∞, which shows that

f(gaT ) =

∫ T

0

h(gat) dt,

H ∗ f = h, and the lemma. �

Proof of Corollary 2.20. Assume that |φ̃i| dmX converges weak* to µ,
and let f ∈ C∞

c be a K-finite function. Then H∗f and V∗f are K-finite by
Lemma 2.8. Given φi, let us write φi,2n for the functions in Definition 2.14,
and let

ψi =

N(λi)∑

n=−N(λi)

φi.

By Theorems 2.17 and (2.19) we have

∫

X

H∗f |φ̃i|2 dmX = 〈H∗fψi, φ0〉 + Of (N
−1 +Nr−1)

= Of (N
−1 +Nr−1),

and so ∫

X

H∗f dµ = 0.

If f ∈ C∞
c (without the additional assumption that f is K-finite), then

Lemma 2.21 implies that H∗f is a uniform limit of a sequence (H∗fn) of K-
finite functions in C∞

c . It follows that

∫

X

H∗f dµ = 0

for any f ∈ C∞
c . Now let T ∈ R. Then we have

f(xaT ) − f(x) =

∫ T

0

(H ∗ f)(xat) dt
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(where at is defined as in (2.2)), and

∫

X

f(xat) dµ−
∫

X

f(x) dµ =

∫ T

0

∫

X

H ∗ (atf)(x) dµ(x) dt = 0

since (at.f)(x) = f(xat) defines a function at.f ∈ C∞
c . Thus

∫

X

f(xaT ) dµ =

∫
f(x) dµ

for any T ∈ R, so µ is invariant under the geodesic flow. �



3

Hecke Operators and Recurrence

In this chapter we define the Hecke operators, define the recurrence assump-
tion [R]p, and prove the recurrence assumption for any arithmetic quantum
limit on SL2(Z)\ SL2(R).

3.1 Hecke Operators

3.1.1 The Classical Definition of Tp

Definition 3.1. Let M = SL2(Z)\H, let p be a prime, and let f be a function
on M . Then the action of the Hecke operator Tp on f is defined by

(Tp(f)) (z) =
1

p+ 1


f(pz) +

p−1∑

j=0

f

(
z + j

p

)
 . (3.1)

Here we interpret f as a function on H satisfying the periodicity laws

f(γ.z) = f(z)

for all γ ∈ SL2(Z). We will see later in Section 3.1.3 that Tp(f) is again
an SL2(Z)-periodic function, and therefore may be viewed as a well-defined
function on M . The reader may check this now by considering the condition

of periodicity with respect to the matrices

(
1 1

1

)
and

(
−1

1

)
that together

generate SL2(Z).

3.1.2 SL2(Z)\SL2(R) and PGL2(Z)\PGL2(R) are Isomorphic

Recall that

SL2(Z)\ SL2(R) =
{
Z2g | g ∈ SL2(R)

}

=
{
Λ ⊆ R2 | Λ is a unimodular lattice in R2

}
,
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where a lattice Λ in R2 is a Z-module spanned by two linearly independent
vectors, equivalently Λ = Z2g for some g ∈ GL2(R), and a lattice Λ = Z2g
is unimodular if its covolume covol(Λ) = | det(g)| is equal to 1. Notice that
swapping the rows of g has the effect of changing the sign of det(g), but does
not change the lattice defined by g.

On the other hand,

PGL2(Z)\PGL2(R) =
{[

Z2g
]
| g ∈ GL2(R)

}

=
{
[Λ] | Λ is a lattice in R2

}
,

where [Λ] denotes the equivalence class of the lattice Λ under homothety. That
is, Λ′ ∈ [Λ] if and only if Λ′ = aΛ for some a ∈ R>0.

The map sending a unimodular lattice Λ to its equivalence class [Λ] de-
fines a map from SL2(Z)\ SL2(R) to PGL2(Z)\PGL2(R). This map is injec-
tive, since the relation Λ′ = aΛ implies that covol(Λ′) = a2covol(Λ), and
therefore a = 1 if both Λ′ and Λ are unimodular (notice in this connection
that −I ∈ SL2(Z), a property that does not hold in SLd(Z) for odd d). More-
over, the map Λ 7→ [Λ] is also surjective, since for any equivalence class [Λ],
there exists a unimodular representative Λ′ = 1

covol(Λ)1/2Λ.

3.1.3 The Second Definition of Tp

We now extend the definition of Tp given in Section 3.1.1 to the space of func-
tions on PGL2(Z)\PGL2(R). For this, notice once again that any function f
on SL2(Z)\H gives rise to a function (also denoted f) on SL2(Z)\ SL2(R) ∼=
PGL2(Z)\PGL2(R).

Definition 3.2. Let X = PGL2(Z)\PGL2(R), let p be a prime, and let f be
a function on X. Then the Hecke operator Tp is defined by sending f to the
normalized sum

(Tp(f)) ([Λ]) =
1

p+ 1

∑

Λ′⊆Λ,

[Λ:Λ′]=p

f ([Λ′]) (3.2)

of the values of f on all the sublattices Λ′ of Λ with index p.

For g ∈ PGL2(R) and a function f on X , we define g.f to be the func-
tion (g.f) ([Λ]) = f ([Λ]g).

Proposition 3.3. If Λ ⊆ R2 is a lattice, then there are p+1 subgroups Λ′ ⊆ Λ
with index p. The expression in (3.2) defines a function on the homothety
classes [Λ] ∈ PGL2(Z)\PGL2(R) of lattices Λ ⊆ R2. If f is a function
on M = SL2(Z)\H ∼= X/ SO(2) then so is Tp(f), and Tp(f) agrees with the
definition (3.1). Finally, for any g ∈ PGL2(R), we have g.Tp(f) = Tp(g.f).
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Proof. If Λ′ ⊆ Λ has index p, then Λ/Λ′ ∼= Z/pZ, and so pΛ ⊆ Λ′. Thus
index p subgroups λ′ ⊆ Λ are in one-to-one correspondence with lines (equiv-
alently, index p subgroups) of the two-dimensional vector space Λ/pΛ ∼=
(Z/pZ)

2
over the field Fp = Z/pZ. After choosing a basis of Λ, there is a

one-to-one correspondence between index p subgroups of Λ and points in the

projective line P1(Fp) over the field Fp. Note that |P1(Fp)| = p2−1
p−1 = p+ 1.

It is clear that if we replace the lattice Λ by aΛ for some a ∈ R>0, then we
replace each index p subgroup Λ′ ⊆ Λ with the index p subgroup aΛ′ ⊆ aΛ.
This shows that Tp(f) is indeed a function on X .

Now if g ∈ GL2(R), then the index p subgroups of Λg are all of the form Λ′g
as Λ′ varies over all index p subgroups of Λ. This shows that

[g.Tp(f)] ([Λ]) = Tp(f) ([Λ]g) =
1

p+ 1

∑

Λ′⊆Λ
f ([Λ′]g) = Tp(g.f)[Λ].

Now let fM be a function on SL2(Z)\H. Then the associated function on X
is given by

fX([Λ]) = fM (g.i)
where we assume that Λ = Z2g with det(g) > 0. This is well-defined, since
replacing Λ by aΛ with a ∈ R>0 replaces g by ga, with (ga).i = g ((aI).i) =
g.(aia

)
= g.i. Moreover, choosing a different basis of Λ (with positive deter-

minant) corresponds to replacing g with γg for some γ ∈ SL2(Z). Neither of
these changes affects the value of fM (g.i). Thus, Tp(fX) gives a function with

k ◦ Tp(fX) = Tp(k ◦ fX) = Tp(fX)

for all k ∈ SO(2), which shows that Tp(fX) induces a function on

X/SO(2) ∼= SL2(Z)\H = M.

We now calculate the function Tp(fX) as a function on M , and will arrive at
the expression in Definition 3.1. Let z ∈ H, so that

z = x+ iy =

(
1 x

1

)(
y

1

)
.i

corresponds to the lattice

Λ = Z2

(
1 x

1

)(
y

1

)
,

which is spanned by the vectors

(1, 0)

(
1 x

1

)(
y

1

)
= (y, x)

and
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(0, 1)

(
1 x

1

)(
y

1

)
= (0, 1).

It follows that the index p subgroups of Λ are given by

〈p(y, x), (0, 1)〉

and
〈(y, x) + j(0, 1), (0, p)〉

for j = 0, . . . , p − 1. The first is the lattice corresponding to pz. Each of the
lattices of the second type is homothetic to

〈 1
p (y, x+ j), (0, 1)〉,

which corresponds to z+j
p for j = 0, . . . , p − 1. Therefore, Tp(fX) as defined

by Definition 3.2, when viewed as a function on M , gives Tp(fM ) as defined
by Definition 3.1 if fX is the function on X defined by fM on M . �

Corollary 3.4. For any p the p-Hecke operator Tp commutes with any dif-
ferential operator m ∈ sl2(C) (or even any element of the enveloping algebra
of sl2(C)).

Proof. Since Tp(g.f) = g.Tp(f) by Proposition 3.3, we have

m ∗ (Tp(f)) (x) =

[
∂

∂t
Tp(f)(x exp(tm))

]

t=0

= Tp(m ∗ f)(x)

for any f ∈ C∞(X). �

3.1.4 The p-adic Extension X∞,p of X∞ = PGL2(Z)\PGL2(R)

Recall that Qp is the completion of Q with respect to the non-Archimedean
norm defined by |0|p = 0 and

∣∣∣m
n
pk
∣∣∣
p

= p−k

for m,n ∈ Zr{0} with p 6
∣∣ mn and k ∈ Z. Then Qp is a locally compact

non-discrete field, and the closure Zp of Z in Qp is a maximal compact open
subring of Qp, called the ring of p-adic integers. Finally, recall that Z[ 1p ] is a
dense subset of Qp, but that under the diagonal embedding

{(a, a) | a ∈ Z[ 1p ]} ⊆ R × Qp

is a discrete and co-compact subgroup (for background on properties of the p-
adic numbers, see Weil [31]).
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For a ring R with a unit 1, and group of units R×, we define

PGL2(R) =

{
γ =

(
a b
c d

)
| a, b, c, d ∈ R, det γ ∈ R×

}
/ ∼

where γ ∼ γ′ if there is a scalar r ∈ R× with γ = rγ′. If R is a topological
ring, then there is an inherited topology on GL2(R) and thence on PGL2(R).

Proposition 3.5. Embed PGL2(Z[ 1p ]) as a subset of PGL2(R) × PGL2(Qp)

diagonally, by sending γ to (γ, γ). Then PGL2(Z[ 1p ]) is a lattice in PGL2(R)×
PGL2(Qp), and the double quotient

PGL2(Z[ 1p ])\PGL2(R) × PGL2(Qp)/PGL2(Zp) (3.3)

is naturally isomorphic to

PGL2(Z)\PGL2(R). (3.4)

Proof. We note that PGL2(R)×PGL2(Zp) is an open subgroup of PGL2(R)×
PGL2(Qp). If (γ, γ) ∈ PGL2(R) × PGL2(Zp) for some γ ∈ PGL(Z[ 1p ]) then,

after modifying γ by a scalar if necessary, we may assume that γ ∈ GL2(Z).
Therefore, γ = I or (γ, γ) is not close to (I, I). That is, the diagonally em-
bedded subgroup PGL2(Z[ 1p ]) is a discrete subgroup. Moreover, this also

shows that the orbit of the identity coset PGL2(Z[ 1p ]) under the action

of PGL2(R) × PGL2(Zp) is isomorphic to PGL2(Z)\PGL2(R) × PGL2(Zp)
(where PGL2(Z) is again embedded diagonally). We claim that this or-
bit PGL2(Z[ 1p ])PGL2(R) × PGL2(Zp) of the open subgroup is actually all of

the space in (3.3). This then implies that PGL2(Z[ 1p ]) is a lattice, and gives

the isomorphism between (3.3) and (3.4).
The claim on the other hand is equivalent to

PGL2(Qp) = PGL2(Z[ 1p ]) PGL2(Zp),

which may be seen as follows. Given an element

(
a b
c d

)
∈ PGL2(Qp),

we claim that we may multiply on the left by elements of PGL2(Z[ 1p ]) and on

the right by elements of PGL2(Zp) to obtain the identity. Notice that left mul-
tiplication corresponds to row operations and right multiplication to column
operations. Applying a column operation, we can ensure that |a|p > |b|p and

so b
a ∈ Zp. Thus we can multiply on the right by

(
1 − b

a
1

)
to obtain

(
a 0
c d′

)
.

Multiplying on the left by

(
1
α 1

)
with some α ∈ Z[ 1p ] very close to − c

a we
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obtain

(
a

aα+ c d′

)
, where we may assume that |aα + c|p 6 |d′|p. This al-

lows us to multiply (since d′ 6= 0) on the right by

(
1

−aα+c
d′ 1

)
to finally

obtain

(
a
d′

)
. Using diagonal matrices in PGL2(Z[ 1p ]) and PGL2(Zp), the

claim and the proposition follows. �

We note that the orbit of a point in

PGL2(Z[ 1p ])\PGL2(R) × PGL2(Qp) (3.5)

under PGL2(Qp) is mapped under the isomorphism between (3.3) and (3.4)
in Proposition 3.5 to a set isomorphic to

T = PGL2(Qp)/PGL2(Zp). (3.6)

This holds since PGL(Z[ 1p ]) is embedded injectively into PGL2(R), which

implies that the stabilizer of any point in (3.5) under the action of PGL2(Qp)
is trivial.

The space T in (3.6) may be thought of as the p-adic analog of the hyper-
bolic plane – PGL2(Zp) is a maximal compact subgroup of PGL2(Qp), just
as SO(2) is a maximal compact subgroup of SL2(R). We may also think of Tp
as being the p-adic Laplace operator. In fact T has the structure of a (p+ 1)-
regular tree, and Tp is the Laplace operator on this tree in the sense of graph
theory (see the discussion in Section 3.2.1).

3.1.5 Defining Tp as a Convolution Operator

Notice that Kp = PGL2(Zp) is a compact and open subgroup of PGL2(Qp),
which shows that

Kp

(
p

1

)
Kp

must be a finite disjoint union of cosets Kpgp for some elements gp ∈
PGL2(Qp). The next lemma makes this explicit.

Lemma 3.6.

Kp

(
p

1

)
Kp = Kp

(
p

1

)
⊔
p−1⊔

j=0

Kp

(
1 j
p

)
= Kp

(
1
p

)
Kp.

Proof. Note that Kpg1 = Kpg2 if and only if g1g
−1
2 ∈ Kp. For g1 =

(
1 j1
p

)

and g2 =

(
1 j2
p

)
with j1 6= j2, we have
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g1g
−1
2 =

(
1 j1
p

)(
1 − j2

p
1
p

)
=

(
1 (j1 − j2)p

−1

1

)
,

so that Kp

(
1 j1
p

)
6= Kp

(
1 j2
p

)
are disjoint. The disjointness of these

toKp

(
p

1

)
is proved similarly. Also notice that

(
p

1

)
,

(
1 j
p

)
∈ Kp

(
p

1

)
Kp

for j = 0, 1, . . . , p− 1.

Finally let g ∈ Kp

(
p

1

)
Kp, which we may write as

g =

(
a b
c d

)
∈ Mat22(Zp)

and | det(g)|p = 1
p . If a ∈ Z×

p (the case of c ∈ Z×
p can be reduced to this

one by multiplying with

(
1

1

)
∈ Kp on the left), then we may multiply

with

(
1
a

− c
a 1

)
(respectively,

(
1

1
d

)
) on the left to obtain

Kpg = Kp

(
1 b′

d′

)
= Kp

(
1 b′′

p

)
,

where |d′|p = p, equivalently d′ = d1p with d1 ∈ Z×
p . Now there exists some j

in {0, 1 . . . , p−1} with b′′ ≡ j (mod p), so that

(
1 −b′′+j

p

1

)
∈ Kp which gives

Kpg = Kp

(
1 j
p

)
.

If, on the other hand a, c ∈ pZp, then one of them, say a, must belong to pZ×
p

since det(g) ∈ pZ×
p by assumption. Multiplying on the left by

(
(ap )

−1

− c
a 1

)

(respectively, by

(
1 − b1

d1

d−1
1

)
) gives

Kpg = Kp

(
p b1
d1

)
= Kp

(
p

1

)
,

since we must have d1 ∈ Z×
p .

Finally, notice that Kp contains

(
1

1

)
, which shows that

Kp

(
p

1

)
Kp = Kp

(
1
p

)
Kp.
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�

We normalize the Haar measure mPGL2(Qp) so that mPGL2(Qp)(Kp) = 1,
which then by Lemma 3.6 implies that

mPGL2(Qp)

(
Kp

(
p

1

)
Kp

)
= p+ 1.

Recall that if χ ∈ L1(H) and the group H acts on X , then for functions f ∈
L2(X), we may define the convolution

f ∗ χ(x) =

∫

H

f(xh−1)χ(h) dmH(h).

Proposition 3.7. For a function f on PGL2(Z[ 1p ])\PGL2(R) × PGL2(Qp),
we may obtain the p-Hecke operator by the convolution

Tp(f) =
1

p+ 1
f ∗ 1

Kp


p

1


Kp

. (3.7)

For a function f on PGL2(Z)\PGL2(R), this agrees with Tp as defined in
Definition 3.2.

Proof. Notice that for k ∈ Kp we have

f ∗ 1
Kp


p

1


Kp

(xk) =

∫

PGL2(Qp)

f(xkh−1)1
Kp


p

1


Kp

(h) dm(h)

= f ∗ 1
Kp


p

1


Kp

(x),

which shows that f ∗ 1
Kp


p

1


Kp

is invariant under Kp and so can be con-

sidered as a function on PGL2(Z)\PGL2(R) by Proposition 3.5.
Suppose now that f ∈ L2(PGL2(Z)\PGL2(R)). We may consider f as a

function on PGL2(Z[ 1p ])\PGL2(R) × PGL2(Qp) with the property that

f(xk) = f(x)

for all k ∈ Kp. Then

1

p+1
f ∗1

Kp


p

1


Kp

(x)=
1

p+1


f(x(I,

(
p

1

)−1

))+

p−1∑

j=0

f(x(I,

(
1 j
p

)−1

))


,
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which we now evaluate further. We suppose that x = PGL2(Z[ 1p ])(g, I) for g ∈
PGL2(R), which is the general case by the first paragraph of the proof, and
corresponds to the homothety class [Z2g]. Then

x

(
I,

(
1 j
p

))
= PGL2(Z[ 1p ])

(
g,

(
1 j
p

)−1
)

= PGL2(Z[ 1p ])

((
1 j
p

)
g, I

)

corresponds to the homothety class of the index p subgroup Z2

(
1 j
p

)
g ⊆ Z2g

for j = 0, . . . , p − 1. The case of

(
p

1

)
is similar, so that indeed Tp(f), as

defined in Definition 3.2, is equal to the right-hand side of (3.7). �

Corollary 3.8. Tp is a self-adjoint operator on L2(PGL2(Z)\PGL2(R)) (and
on L2(PGL2(Z[ 1p ])\PGL2(R) × PGL2(Qp))).

Proof. Recall that the adjoint of (h.) for h ∈ PGL2(Qp) is (h−1.), since the
action of PGL2(Qp) is unitary. This implies that

T ∗
p (f) =

1

p+ 1
f ∗ 1

Kp


p

1


Kp




−1 .

However, as

(
p

1

)(
1
p

)
=

(
p
p

)
= I in PGL2(Qp) we have

(Kp

(
p

1

)
Kp)

−1 = Kp

(
p−1

1

)
Kp

= Kp

(
1
p

)
Kp

= Kp

(
p

1

)
Kp

by Lemma 3.6. �

Corollary 3.9. For any two primes p1 6= p2 the two associated Hecke opera-
tors Tp1 and Tp2 on PGL2(Z)\PGL2(R) and on

PGL2(Z[ 1
p1p2

])\PGL2(R) × PGL2(Qp1) × PGL2(Qp2)

commute.
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Proof. It may be shown (as above) that

PGL2(Z[ 1
p1p2

])\PGL2(R) × PGL2(Qp1) × PGL2(Qp2)

is a common extension of

PGL2(Z[ 1
p1

])\PGL2(R) × PGL2(Qp1)

and
PGL2(Z[ 1

p2
])\PGL2(R) × PGL2(Qp2),

and that Tp1 and Tp2 can again be defined by the convolution operators (3.7)
associated to the group actions of PGL2(Qp1), respectively PGL2(Qp2). How-
ever, as these actions commute we obtain the corollary. �

3.2 Trees, Recurrence Relations, and Recurrence

In this section we will prove Hecke recurrence, which we now define.

Definition 3.10. Let H be a σ-compact locally compact group, acting contin-
uously on a σ-compact locally compact space Y . Let ν be a Borel probability
measure on Y . Then the H-action is called recurrent with respect to ν if,
for any Borel set B ⊆ Y with ν(B) > 0, there is a sequence (hn) in H
with∗ hn → ∞ such that hn.y ∈ B for all n > 1.

Notice that invariance of ν under the H-action implies recurrence auto-
matically, but that recurrence is a much weaker requirement than invariance.

Since the p-adic group PGL2(Qp) does not act on SL2(Z)\ SL2(R), we have
to modify the definition slightly to adapt to our situation.

Definition 3.11. Let p be a prime, and let µ be a finite measure on the space

X = SL2(Z)\SL2(R) ∼= PGL2(Z[ 1p ])\PGL2(R) × PGL2(Qp)/PGL2(Zp).

Then µ is Hecke-p-recurrent if for any Borel set B ⊆ X and µ-almost ev-
ery x = Γ (g∞, I)Kp ∈ B there exists a sequence (hn) with hn ∈ PGL2(Qp),
going to infinity, for which Γ (g∞, hn)Kp ∈ B for all n > 1.

In this chapter, we will prove the following theorem.

Theorem 3.12. Let X = SL2(Z)\ SL2(R), let p be a prime, and let (φi) be
a sequence in L2

mX
of eigenfunctions of Tp with ‖φi‖2 = 1. Then any weak*-

limit µ of |φi|2 dmX is Hecke-p-recurrent.

∗ This means that for any compact set A ⊆ H there is some N = N(A) such
that n > N =⇒ hn /∈ A.
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3.2.1 The Tree PGL2(Qp)/PGL2(Zp) and its Laplacian

In this section we show that PGL2(Qp)/PGL2(Zp) is a (p + 1)-regular tree,
and define the graph-theoretic Laplacian as the averaging operator over the
nearest neighbors.

Lemma 3.13. For any prime p, the quotient PGL2(Qp)/PGL2(Zp) is nat-
urally identified with the space of homothety equivalence classes [Λ] of two-
dimensional free Zp-submodules of the form Λ = gZ2

p of the column space Q2
p

for g ∈ GL2(Qp).

Proof. Note that GL2(Qp) acts transitively on the set of two-dimensional Zp-
submodules, so that PGL2(Qp) acts transitively on homothety equivalence
classes. Moreover, PGL2(Zp) is the stabilizer subgroup of [Z2

p], proving the
lemma. �

We now let N ⊆ Mat22(Zp) be a set of (p+1) matrices with determinants
in pZ×

p such that any one-dimensional subspace over Fp = Z/pZ of F2
p
∼=

Z2
p/pZ

2
p is of the form Im (h (mod pZp)) = hZ2

p/pZ
2
p for some (and hence for

precisely one) h ∈ N . For example, we could take

N =

{(
1
p

)
,

(
p j

1

)
| 0 6 j 6 p− 1

}
.

Lemma 3.14. If g ∈ Mat22(Zp)rpMat22(Zp), then there is a unique se-
quence h1, . . . , hℓ ∈ N with g ∈ h1 · · ·hℓGL2(Zp). Moreover, ℓ has the prop-
erty that det(g) ∈ pℓZ×

p , and for any k ∈ {1, . . . , ℓ− 1} we have

ker(hk(modpZp)) 6= Im(hk+1(modpZp)).

Proof. As g /∈ pMat22(Zp), we have either det(g) ∈ Z×
p and g ∈ GL2(Zp) or

(gZ2
p + pZ2

p)/pZ
2
p ⊆ Z2

p/pZ
2
p
∼= F2

p

is a line in the two-dimensional plane over Fp. Hence

gZ2
p + pZ2

p = h1Z2
p

for precisely one matrix h1 ∈ N . Equivalently,

g = h1 + pg′

for some g′ ∈ Mat22(Zp). Applying h−1
1 we get

g1 = h−1
1 g = I + ph−1

1 g′ ∈ Mat22(Zp)

since det(h1) ∈ pZ×
p by assumption, and so ph−1

1 ∈ Mat22(Zp). Now ei-
ther g1 ∈ GL2(Zp), or we may apply the argument above again. Iterating,
we find g ∈ h1 · · ·hℓ GL2(Zp) as required.
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To see that the sequence constructed is unique, assume that we also
have g ∈ h′1 · · ·h′ℓ GL2(Zp) with h′1, . . . , h

′
ℓ ∈ N . This implies that

det(g) ∈
(
pℓ

′

Z×
p

)
∩
(
pℓZ×

p

)
,

and so ℓ′ = ℓ. Moreover,

gZ2
p + pZ2

p ⊆ h′1Z2
p + pZ2

p

must equal h1Z2
p + pZ2

p, and so h′1 = h1 by our assumption on N . Now

apply h−1
1 , and repeat the argument.

For the final claim, notice that if the kernel of the matrix hk modulo Zp,
considered as a representation of a linear map from the column space F2

p to
itself, coincides with the image of the matrix hk+1 modulo pZ2

p, then hkhk+1 ∈
pMat22(Zp). Hence g ∈ pMat22(Zp), contradicting the assumption on g. �

Proposition 3.15. For any prime p the quotient PGL2(Qp)/PGL2(Zp) is
a (p + 1)-regular tree, where two equivalence classes [Λ1], [Λ2] of two two-
dimensional Zp-submodules Λ1, Λ2 ⊆ Q2

p are adjacent if the representa-
tives Λ1, Λ2 can be chosen so that Λ1 ⊆ Λ2 and [Λ2 : Λ1] = p. Equivalently,
the neighbors of PGL2(Zp) are hPGL2(Zp) for h ∈ N , and the neighbors
of gPGL2(Zp) are ghPGL2(Zp) for h ∈ N . If

g ∈ h1 · · ·hℓ GL2(Zp)rpMat22(Zp),

then the neighbors are also given by

h1, . . . , hℓ−1 PGL2(Zp)

and
h1, . . . , hℓhℓ+1 PGL2(Zp)

with hℓ+1 ∈ N and Im(hℓ+1 (mod pZp)) 6= ker(hℓ (mod pZp)).

Notice that Proposition 3.15 and Lemma 3.14 together imply that

{w ∼ℓ PGL2(Zp)} = {h1 · · ·hℓ PGL2(Zp) | h1, . . . , hℓ ∈ N , p6
∣∣ h1 · · ·hℓ}

= {gp PGL2(Zp) | gp ∈ Mat22(Zp), p6
∣∣ gp, det gp ∈ pℓZ×

p }.

Proof of Proposition 3.15. We have to show that the three definitions
of adjacency agree, and that they define a (p + 1)-regular tree. For this,
notice first that the first definition in the proposition is indeed symmetric:
If Λ1 ⊆ Λ2 and [Λ2 : Λ1] = p then pΛ2 ⊆ Λ1, and [Λ1 : pΛ2] = p also. Next
suppose that Λ = Z2

p, so that by choice of N we have [hZ2
p] for h ∈ N are

all neighbors of [Z2
p]. Applying a linear map g ∈ GL2(Zp) to Z2

p and its in-
dex p subgroups {hZ2

p | h ∈ N}, we see that the neighbors of [gZ2
p] are [ghZ2

p]
for h ∈ N . This shows the equivalence of the first and second definitions.
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Suppose now that g = h1 · · ·hℓ, and let h′ ∈ N be the matrix for
which Im(h′ (mod pZp)) = ker(hℓ (mod pZp)). Then hℓh

′ ∈ pMat22(Zp)
and det(hℓh

′) ∈ p2Z×
p so that 1

phℓh
′ ∈ GL2(Zp). Therefore,

h1 · · ·hℓ−1hℓh
′ PGL2(Zp) = h1 · · ·hℓ−1 PGL2(Zp)

which shows that the first two and the last definition of adjacency agree. Also
notice that for h ∈ Nr{h′}, we still have

h1 · · ·hℓh ∈ Mat22(Zp)rpMat22(Zp).

It remains to show that PGL2(Qp)/PGL(Zp) is a (p+1)-regular tree. First,
it is clear that every vertex gPGL2(Qp) has (p+1) neighboring vertices. Next
notice that the neighbors of the neighbors of the base vertex [Z2

p] give, by the
definition and Lemma 3.14, apart from the base vertex, p(p+ 1) new distinct
vertices, which are the element of the sphere of radius two in the graph.
Similarly, the set of neighbors of the elements of the sphere of radius ℓ > 1
consists of the elements of the sphere of radius ℓ−1 and pℓ(p+1) new distinct
elements of the sphere of radius ℓ+1. Finally, the graph PGL2(Qp)/PGL2(Zp)
is also connected by Lemma 3.14. �

To simplify the notation we will write v, w, . . . for the vertices of the
tree PGL2(Qp)/PGL2(Zp), write v ∼ w if v and w are neighbors, write v∼ℓw
if v and w have distance ℓ in the tree, and write v∼6ℓw if v and w have
distance no more than ℓ in the tree structure.

Definition 3.16. Let p be a prime, and let f be a function on the quotient
space PGL2(Qp)/PGL2(Zp). Then the tree-Laplacian or Hecke operator Tp is
defined by the normalized sum

Tp(f)(v) =
1

p+ 1

∑

w∼v
f(w)

of the values of f on the neighbors w of v.

3.2.2 The Embedded Trees

We already showed (see the discussion at the end of Section 3.1.4) that for
any point

PGL2(Z[ 1p ])(g, I) PGL2(Zp)

in
X∞ = PGL2(Z[ 1p ])\PGL2(R) × PGL2(Qp)/PGL2(Zp),

the image in X∞ of the orbit

PGL2(Z[ 1p ]){g} × PGL2(Qp) ⊆ X∞,p
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(obtained by taking the right quotient by Kp = PGL2(Zp)) is isomorphic to
the (p+ 1)-regular tree

PGL2(Qp)/PGL2(Zp)

discussed in Section 3.2.1. We will call this image the embedded Hecke tree
through PGL2(Z)g.

Proposition 3.17. The Hecke operator Tp as defined in Definition 3.2 agrees
with the tree-Laplacian Tp as defined in Definition 3.16 when applied to each
embedded Hecke tree. Write Spk(f)(v) =

∑
w∼kv

f(w) for the summing oper-
ator over the distance k neighbors w ∈ T of v ∈ T . Then Spk applied to each
embedded Hecke tree gives the operator

Spk(f) (PGL2(Z)g) =
∑

η∈GL2(Z)\ Mat22(Z),

p6 |η,det(η)=pk

f(PGL2(Z)ηg), (3.8)

where the notation GL2(Z)\Mat22(Z) means that we take, from each GL2(Z)
orbit (under left multiplication) in Mat22(Z) satisfying the additional proper-
ties, one representative in the summation.

Proof. Note that the second part of the proposition implies the first: If k =
1 then Tp = 1

p+1Sp and η ∈ Mat22(Z) with det η = p defines an index p

subgroup Λη = Z2ηg of Λ = Z2g as in Definition 3.2. For this, also notice
that Λη = Λη′ if and only if Z2η = Z2η′ and if and only if GL2(Z)η =
GL2(Z)η′.

Now let k > 1 be arbitrary. By Proposition 3.15, w ∈ T is of distance k
to v = PGL2(Zp) ∈ T = PGL2(Qp)/PGL2(Zp) if w = gpPGL2(Zp) for
some gp ∈ Mat22(Z) with p 6

∣∣ gp and det(gp) = pk. Also by Proposition 3.15,
we can in fact choose gp to be a product of k elements of N (where N is
chosen as in the discussion before Lemma 3.14), so that gp ∈ Mat22(Z).

We define η = pkg−1
p ∈ Mat22(Z) with

det η = p2k det(gp)
−1 = pk.

We claim that p 6
∣∣ η. To see this, notice that p

∣∣η implies that η1 = p−1η ∈
Mat22(Z), det(η1) = pk−2, and

gp = pk(pkg−1
p )−1 = pk−1η−1

1 = p(pk−2η−1
1 ) ∈ pMat22(Z),

which is a contradiction of the choice of gp. Clearly

gp,1 PGL2(Zp) = gp,2 PGL2(Zp)

if and only if the associated ηi = pkg−1
p,i satisfy

GL2(Z)η1 = GL2(Z)η2.
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Since

PGL2(Z[ 1p ])(g, gp) = PGL2(Z[ 1p ])(η
−1, η−1)(g, g)

∈ PGL2(Z[ 1p ])(η
−1g) × PGL2(Zp),

this correspondence between gp and η proves the proposition. �

3.2.3 Chebyshev Polynomials of the Second Kind and Recurrence
Relations for Tp

Definition 3.18. The Chebyshev polynomials of the second kind are the poly-
nomials Un ∈ Z[x] defined recursively by

U0(x) = 1,

U1(x) = 2x, and

Un+1(x) = 2xUn(x) − Un−1(x)

for n > 1.

Lemma 3.19. If x = cos θ, then

Un(x) =
sin[(n+ 1)θ]

sin θ
, (3.9)

and if x = cosh θ, then

Un(x) =
sinh[(n+ 1)θ]

sinh θ
.

The lemma is easily checked using the standard addition formulas for sin θ
and sinh θ (which are identical).

Proof of Lemma 3.19. First notice that if x = cos θ, then

sin 2θ

sin θ
=

2 sin θ cos θ

sin θ
= 2x,

which proves the case n = 1. Now assume that the lemma holds for n− 1 and
for n, for some n > 2. Then

sin[(n+ 2)θ]

sin θ
=

sin[(n+ 1)θ + θ]

sin θ
+

sin[(n+ 1)θ − θ]

sin θ
− Un−1(x)

=
sin[(n+ 1)θ] cos θ

sin θ
+

cos[(n+ 1)θ] sin θ

sin θ

+
sin[(n+ 1)θ] cos(−θ)

sin θ
+

cos[(n+ 1)θ] sin(−θ)
sin θ

− Un−1(x)

= 2xUn(x) − Un−1(x) = Un+1(x),
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giving the case n + 1. As the addition formula for sinh θ is the same as the
addition formula for sin θ, the proof of the second case is identical. �

The relationship between regular trees and Chebyshev polynomials – and
hence the reason for our interest in these polynomials – is revealed in the next
lemma.

Lemma 3.20. Let Un be the operator that maps any function f on a (p+1)-
regular tree to the function Un(f) defined by

Un(f)(v) =
1

pn/2

∑

k6n,
k≡n(mod2)

∑

w∼kv

f(w),

where as before w ∼k v means that w and v have distance k in the tree T .
Then the sequence of operators (Un) satisfies

U0 = I,

U1 =
p+ 1√
p
Tp =

1√
p
Sp, and

Un+1 =
1√
p
Sp ◦ Un − Un−1

for n > 1, where

Sp(f)(v) =
∑

w∼v
f(w)

is the summing operator over the neighbors.

Proof. The cases n = 0 and n = 1 hold trivially by definition. For n > 2, we
need to calculate the product

1√
p
Sp (Un(f)) (v) =

1√
p

∑

v′∼v
Un(f)(v′)

=
1

p(n+1)/2



∑

v′∼v

∑

k6n,
k≡n(mod2)

∑

w∼kv′

f(w)


 .

Here there are two possibilities for the distance from w to v. The distance
could be k + 1, in which case v′ is the unique element with distance 1 to v in
the direction of the path to w. The distance could be k − 1, in which case v′

could be any of the p neighbors of v away from the direction of the path
to w (see Figure 3.1 for the case p = 2). There is one exceptional case in this
description: If k = 1 and w = v then all (p+ 1) choices of neighbors of v give
rise to w = v.

We reorder the summation, and then split the inner summation into two
sums depending on the two cases, keeping track of the multiplicities coming
from the choices for v′ in the second case, giving
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w

v′
0

v

v′
1

v′
2

Fig. 3.1. In the (p + 1)-regular tree there is always a unique geodesic path from v
to w. Here v′

0 is the unique neighbor of v on this path, and v′
1, v

′
2 are further from w

than v is.

1

p(n+1)/2

∑

k6n,
k≡n(mod2)


 ∑

w∼k+1v

f(w) + p
∑

w∼k+1v

f(w) + δk−1f(v)


 .

In the case k = 0 we adopt the convention that the sum over w ∼−1 v sums
over an empty set and so can be ignored. The extra term involving

δk1 =

{
0 k 6= 1,

1 k = 1

corrects the multiplicity as discussed above. Shifting the summation over k to
a summation over ℓ = k + 1 (respectively ℓ = k − 1), we get

1

p(n+1)/2

∑

ℓ6n+1,
ℓ≡n+1(mod2)

∑

w∼ℓv

f(w) +
1

p(n−1)/2

∑

ℓ6n−1,
ℓ≡n−1(mod2)

∑

w∼ℓv

f(w)

which is equal to
Un+1(f)(v) + Un−1(f)(v),

proving the lemma. �

Lemma 3.21. For U′
n = (−1)nUn the following recurrence formulas hold:

U′
0 = I,

U′
1 = − 1√

p
Sp, and

U′
n+1 =

(
− 1√

p
Sp

)
U′
n − U′

n−1

for n > 1.
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This is easily proved using Lemma 3.20 by keeping track of signs. The
next proposition is the main step towards the goal of establishing Hecke p-
recurrence.

Proposition 3.22. There exists an absolute constant c0 > 0 with the follow-
ing property. Suppose that T is a (p+ 1)-regular tree, and let f be a non-zero
eigenfunction of Sp (or, equivalently, of Tp) with real eigenvalue λ ∈ R. Then

∑

w∼6nv

|f(w)|2 > c0n|f(v)|2

for all n > 0.

We emphasize that the constant c0 is independent of n, λ, and f (and also
of p, which is less important for our purposes). We define the operator

Spk(f)(v) =
∑

w∼kv

f(w),

which can easily be defined as a linear combination of Uk and Uk−1, which in
turn are polynomials in Sp by Lemma 3.20. This shows that Sp, Uk, and Spk

all commute.

Proof of Proposition 3.22 in the ‘non-tempered’ case |λ| > 2
√
p.

We may assume that λ > 0, for otherwise we could simply work with
the operators −Sp and U′

k as in Lemma 3.21, instead of Sp and Uk. We
set cosh θ = λ

2
√
p , so that

U0(f) = f = U0(cosh θ)f,

U1(f) =
λ√
p
f = U1(cosh θ)f,

and, by Lemma 3.20, Definition 3.18 and induction,

Un+1(f) =
1√
p
SpUn(f) − Un−1(f)

=
1√
p
Sp(f)Un(cosh θ) − Un−1(cosh θ)f

= [2 cosh θUn(cosh θ) − Un−1(cosh θ)] f

= Un+1(cosh θ)f.

By Lemma 3.19, this shows that for n = 2m,

m∑

k=0

∑

w∼2kv

f(w) = pm
sinh(2m+ 1)θ

sinh θ
f(v).

However, we have
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sinh(2m+ 1)θ

sinh θ
> (2m+ 1) (3.10)

by convexity of the function θ 7→ sinh θ. Together with the Cauchy–Schwartz
inequality, applied on the set {w | w ∼2k v, k = 0, . . . ,m} of cardinality

1 + p(p+ 1) + · · · + p2m−1(p+ 1)

we get the inequality

pm(2m+1)|f(v)| =

∣∣∣∣∣

m∑

k=0

∑

w∼2kv

f(w)

∣∣∣∣∣

6

(
m∑

k=0

∑

w∼2kv

|f(w)|2
)1/2(

1+p(p+1)+· · ·+p2m−1(p+1)
)1/2

.

Using the geometric series we may bound the last square root by

2p1/2(p+ 1)1/2
(
1 + p2 + · · · + p2m−2

)1/2
6 4p

(
p2m − 1

p2 − 1

)1/2

6 8pm,

where we have used (without much concern for optimality) the factor 2 repeat-
edly to ignore the leading 1 in the original expression and the ratio between p
and p+ 1. Squaring, we deduce that

m∑

k=0

∑

w∼2kv

|f(w)|2 > 1
42 (2m+ 1)2|f(v)|2,

which implies the proposition in this case. �

The proof of Proposition 3.22 above for the ‘non-tempered’ case in

which |λ| > 2
√
p was quite direct, since θ 7→ sinh(2m+1)θ

sinh θ is monotone in m,
and is easily bounded. In the second case, where we will use the formula 3.9,
more care is needed.

Proof of Proposition 3.22 in the ‘tempered’ case |λ| 6 2
√
p. Once

more we may assume that λ > 0, and set cos θ = λ
2
√
p for some θ ∈ [0, π2 ], so

that

Un(f) = Un(cos θ)f

=
sin[(n+ 1)θ]

sin θ
f,

just as in the beginning of the proof of the non-tempered case. Let us write λp2k

for the eigenvalue of f under Sp2k , so that

m∑

k=0

λp2k = pm
sin[(2m+ 1)θ]

sin θ
. (3.11)
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Note that if θ and (2m + 1)θ are sufficiently small, say mθ 6 c1, then sin θ
(respectively sin(2m + 1)θ) is approximately θ (respectively (2m + 1)θ). In
particular, we have in this case

sin[(2m+ 1)θ]

sin θ
> m,

which is a weaker version of (but still similar to) the estimate in (3.10). Ar-
guing just as in the non-tempered case, this implies that there exists some
absolute constant c2 > 0 with

m∑

k=0

∑

w∼2kv

|f(w)|2 > c2m|f(v)|2, (3.12)

whenever m = 1 (which holds trivially if c2 6 1) or mθ 6 c1.
To handle the further cases, we again apply Cauchy–Schwartz, applied this

time on the set {w | w ∼2k v}, to obtain

∑

w∼2kv

|f(w)|2 >
1

(p+ 1)p2k−1

∣∣∣∣∣
∑

w∼2kv

f(w)

∣∣∣∣∣

2

(3.13)

=
1

(p+ 1)p2k−1
|λp2k ||f(v)|2

> 1
2

[
sin[(2k+1)θ]

sin θ − sin[(2k−1)θ]
p sin θ

]2
|f(v)|2, (3.14)

where we used the inequality (p+1) 6 2p and (3.11) for m = k and m = k−1
to express λp2k as a difference. Since p > 2, we have

∣∣∣∣
sin[(2k + 1)θ]

sin θ
− sin[(2k − 1)θ]

p sin θ

∣∣∣∣ > c3
1

| sin θ| > c3 (3.15)

for some absolute constant c3 > 0, whenever

(2k + 1)θ (mod π) ∈ I = [π4 − π
100 ,

3π
4 + π

100 ]

as in this case | sin[(2k + 1)θ]| > 1
2 + c3.

We now show how the estimates (3.12) and (3.14), (3.15) together prove
the proposition. We claim that there exists some absolute constants c4, c5 such
that if mθ > c4 then

m∑

k=1

1I ((2k + 1)θ (mod π)) > c5m. (3.16)

This then implies that we can use the estimate (3.15) for at least c5m of the
various k ∈ [0,m], giving
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m∑

k=0

∑

w∼2kv

|f(w)|2 > 1
2c3c5m|f(v)|2 (3.17)

whenever mθ > c4.
Together with (3.12) we get the proposition: If m = 1 or mθ < c1,

then (3.12) applies. If mθ > c4 then (3.17) applies. Thus

m∑

k=0

∑

w∼2kv

|f(w)|2 > min{c2 c1
2c4
, 1

2c3c5}︸ ︷︷ ︸
c0

m|f(v)|2 (3.18)

holds for any m. In fact (3.18) is weaker than (3.17) if mθ > c4, and
if mθ 6 c4 then m′ = max{1, ⌊ c1c4m⌋} satisfies (3.12) and m′ > c1

2c4
m, which

implies (3.18).
Thus it remains to prove the claim in (3.16). To simplify the notation, we

divide by π and consider the interval

I = [14 − 1
100 ,

3
4 + 1

100 ] ⊆ [0, 1],

whose length strictly exceeds 1
2 . Moreover, we will write A≪ B if there exists

an absolute constant c > 0 with A 6 cB.
The proof of the claim consists of several cases. We start by assuming θ ∈

[0, 1
4 ], in which case 2θ 6 1

2 . For any α ∈ [0, 1
4 ], there exists some k ∈ Z

with α + 2kθ ∈ [14 ,
3
4 ] ⊆ I. This k satisfies 2kθ 6 3

4 , so k 6 3
8θ . Indeed, more

is true: If θ is sufficiently small, then
∣∣{k ∈ [0, 3

8θ ] ∩ Z | α+ 2kθ ∈ I}
∣∣ > 3

16θ ,

since the length of I exceeds 1
2 . In either case this shows that

∣∣{k ∈ [0, 3
8θ ] ∩ Z | α+ 2kθ ∈ I}

∣∣≫ 1
θ . (3.19)

Now suppose that mθ > c4 = 1. Then we may split the sequence

θ, 3θ, . . . , (1 + 2m)θ

into consecutive subintervals

α0 = θ, 3θ, . . . , (1 + 2ℓ0)θ ∈ [0, 1),

α1 = (1 + 2ℓ0 + 2)θ, α1 + 2θ, . . . , α1 + 2ℓ2θ ∈ [1, 2),

and so on, where the lengths ℓi satisfy θ ≪ ℓi ≪ 1
θ (and the last interval may

be shorter). Applying (3.19) to each of the these intervals (except the last
one) and summing, we obtain

|{k ∈ Z ∩ [0,m] | 1 + 2kθ (mod 1) ∈ I}| ≫ m (3.20)

as required. By the symmetry of the claim, this also deals with the case θ ∈
[34 , 1].
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Now suppose θ ∈ [14 ,
3
4 ], and write θ = 1

2 + κ for some κ with |κ| 6 1
4 .

Then we are interested in the sequence

θ, θ + 2κ, θ + 4κ, . . . , θ + 2mκ (mod 1).

As before, the angle of rotation 2α is less than 1
2 , and so we must have visits

to the interval I modulo 1. There is one difference to the previous case: If κ
is small then, since θ lies in the interior of I, we have

θ, θ + 2α, . . . , θ + kα ∈ I

for some k ≫ 1
α . In other words, in this case the sequence starts with a long

segment in I, followed by a comparable length segment outside I, and so on.
This shows (3.20) for all m. If κ is bigger, then the visits to I are frequent
enough to also give (3.20). �

Proposition 3.22 has an interesting corollary. Even though we will not
need this directly, our arguments below are closely related. Recall that the
operator Sp is self-adjoint, since it can be expressed as a polynomial in Tp
with real coefficients.

Corollary 3.23. For p > 2, the operator Sp restricted to L2(T ) for the (p+1)-
regular tree T has no eigenfunctions.

Corollary 3.24. Let µ be a weak*-limit of |φi|2 dmX as in Theorem 3.12, and
let f ∈ Cc(X) be non-negative. Then

∫ n∑

k=0

Spk(f) > c0n

∫
f dµ.

The same holds for any f > 0.

Here Sn is the operator defined on the (p+ 1)-regular tree T , extended to

PGL2(Z[ 1p ])\PGL2(R) × PGL2(Qp)/PGL2(Zp),

where, by the discussion on page 42 at the end of Section 3.1.4, every set of
the form

PGL2(Z[ 1p ])(g∞, gp)PGL(Qp)/PGL2(Zp)

is identified with PGL2(Qp)/PGL2(Zp).

Proof of Corollary 3.24. Let φ ∈ L2
mX

, then

∫
Spk(f)|φ|2 dmX =

〈
n∑

k=0

Spk(f), |φ|2
〉

L2
mX

=

〈
f,

n∑

k=0

Spk(|φ|2)
〉

L2
mX

,
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since Spk can be expressed as a polynomial in Tp with real coefficients, and Tp
is self-adjoint. By Proposition 3.22,

n∑

k=0

Spk(|φ|2) > c0n|φ|2,

which shows that

∫ n∑

k=0

Spk(f)|φ|2 dmX > c0n

∫
f |φ|2 dmX .

Applying this to φ = φi and taking the weak*-limit, we get the statement in
the corollary for any positive f ∈ Cc(X).

Now let K ⊆ X be compact, and choose some positive sequence (fn)
in Cc(X) with fn ց 1K . Then by dominated convergence the estimate for
each fn implies the same property for f = 1K . Similarly, if F =

⋃
nKn is a

countable union of compact sets, the monotone convergence theorem implies
the estimate for f = 1F . Finally, if B ⊆ X is any Borel set, then there exists
some F of this form with F ⊆ B and µ(BrF ) = 0. This shows that

∫ n∑

k=0

Spk(1B) dµ >

∫ n∑

k=0

Spk(1F ) dµ > c0n

∫
1F dµ = c0n

∫
1B dµ.

Approximating a measurable non-negative function from below by simple
functions, the corollary follows from monotone convergence. �

Proof of Theorem 3.12. Let B ⊆ X be Borel measurable, with µ(B) > 0.
Suppose that µ is not Hecke-p-recurrent, and that for some positive measure
subset B′ of B we have that

x = Γ (g∞, I)Kp ∈ B′, Γ (g∞, h)Kp ∈ B

implies that h belongs to some compact subset M ⊆ PGL2(Qp) (which may
depend on x).

As PGL2(Qp) is σ-compact, this shows that there exists a Borel subsetB ⊆
X with µ(B) > 0, and a compact subset M ⊆ PGL2(Qp) with the property
that

x = Γ (g∞, I)Kp ∈ B,Γ (g∞, h)Kp ∈ B

implies h ∈M .
We may replace B with another subset of B to simplify the argument.

Let x0 = Γ (g0, I)Kp ∈ Suppµ|B. By the discussion at the end of Section 3.1.4
on page 42, there is a bijective correspondence between

Γ{g∞} × PGL2(Qp)/PGL2(Zp)

and
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PGL2(Qp)/PGL2(Zp).

Therefore, there exists some δ > 0 such that

h ∈M =⇒ h ∈ PGL2(Zp),

or
dX (Γ (g0, I)Kp, Γ (g0, h)Kp) > 2δ.

Now let B′ = B ∩Bδ(x), and suppose that

x = Γ (g∞, I)Kp ∈ B′, Γ (g∞, h)Kp ∈ B′

where we may assume that dSL2(R)(g0, g∞) < δ. Then h ∈ M by the choice
of B, and

dX (Γ (g0, h)Kp, Γ (g∞, h)Kp) < δ

since the action of SL2(R) ⊆ PGL2(R) (which is used to measure distances
in X) commutes with the action of PGL2(Qp) on

Γ\PGL2(R) × PGL2(Qp).

Therefore, we must have h ∈ Kp = PGL2(Zp). To summarize: We may assume
that B ⊆ X has positive measure, and

Γ (g∞, I)Kp, Γ (g∞, h)Kp ∈ B

implies h ∈ Kp. In other words, for x ∈ B the only point of the tree in X
associated to x that belongs to B is x.

We now apply Corollary 3.24 to f = 1B and see that

∫ n∑

k=0

Spk(1B) dµ > c0nµ(B)

for all n > 1. We claim that
∑n
k=0 Spk(1B) 6 1, which then gives the contra-

diction as 1 > c0nµ(B) cannot hold for all n > 1.
If Un(1B)(y) > 2 for some n and y ∈ X , then the tree through y contains

at least two points x1, x2 within distance no more than n that belong to B.
However, this is impossible as in this case x2 belongs to the tree through x1

(with distance no more than 2n) which contradicts the construction of B. �

By Proposition 3.17, the operator Un, as defined in Lemma 3.20, when
applied to an embedded Hecke tree gives rise to the operator

Un(f)(PGL2(Z)g) =
1

pn/2

∑

η∈GL2(Z)\ Mat22(Z),
det η=pn

.

Notice here that the absence of the condition p 6
∣∣ η appearing in (3.8) gives

rise to the various distances k 6 n with k ≡ n modulo 2. This operation is
(with this normalization) usually called the pn-Hecke operator.
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3.3 Ruling out Scarring on Periodic Orbits

In this section we will show that arithmetic quantum limits on SL2(Z)\ SL2(R)
assign zero mass to compact geodesic orbits. The possibility of positive mass
on periodic orbits for quantum limits is usually referred to as scarring∗. As we
will see, Hecke-p-recurrence for all (or almost all) primes is enough to prove
the following theorem, due to Lindenstrauss [18] (extending earlier work of
Rudnick and Sarnak [24]). Recall that

A =

{(
et

e−t

)
| t ∈ R

}
⊆ SL2(R)

denotes the diagonal subgroup.

Theorem 3.25. Let X = SL2(Z)\ SL2(R), and suppose that φi ∈ L2(X) are
Hecke eigenfunctions with ‖φi‖2 = 1. Let µ be a weak*-limit of |φi|2 dmX .
Then µ(xA) = 0 for any periodic (that is, compact) A-orbit xA for x ∈ X.

The proof comprises three steps. First, we show that a periodic orbit xA
corresponds to a real quadratic number field F. Second, we discuss F ⊗Q Qp,
and choose p to be an ‘inert’ prime. Finally, we show that µ(xA) > 0 and
Hecke-p-recurrence are mutually exclusive.

Proposition 3.26. If x = SL2(Z)g ∈ X = SL2(Z)\ SL2(R) has periodic A-
orbit, then xa = x for some a ∈ Ar{I}, and so

ga = γg (3.21)

for some γ ∈ SL2(Z). The algebra F = Q(γ) ⊆ Mat22(Q) is a real quadratic
field extension of Q, and γ ∈ O×

F is an algebraic unit.

Proof. The existence of a and γ is clear, as A ∼= R, and the only non-trivial
compact quotients of R are of the form R/tR for some t 6= 0. Suppose therefore

that a =

(
et

e−t

)
for some t 6= 0. Then (3.21) shows that the eigenvalues

of γ must be et, e−t 6= ±1. It follows that the characteristic polynomial of γ
(with leading and trailing coefficients equal to ±1) must be irreducible. This
implies that F is a field, and that γ is an algebraic integer and unit in F, and
that the Galois embeddings (which may be obtained by conjugating F by g,
and reading off one of the diagonal entries) are both real. �

We now recall some basic algebraic number theory for quadratic number
fields F|Q. If OF denotes the ring of algebraic integers, then OF is a Dedekind
domain, and every ideal J ⊆ OF has a unique prime factorization

∗ For an introduction to the physical meaning behind (the absence of) this phe-
nomenon, see the brief survey by Anantharaman and Nonnenmacher [1].
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J =
∏

P

PvP(J ),

where the product runs over all prime ideals P ⊆ OF. Applying this to the
ideal J = pOF for a fixed prime p ∈ Z, there are three possibilities:

• pOF = P2 for some prime ideal P ⊆ OF – in this case p is said to be
ramified for F|Q;

• pOF = P is a prime ideal in OF – in this case p is said to be inert for F|Q;
• pOF = P1P2 is a product of two distinct prime ideals P1,P2 ⊆ OF – in

this case p is said to be split for F|Q.

We also recall the following standard fact about quadratic number fields.

Proposition 3.27. Let F|Q be a quadratic number field. For any prime p the
following properties are equivalent:

(1) p is ramified or inert for F|Q;
(2) F ⊗Q Qp|Qp is a field extension;
(3) the group of units of the ring OF[ 1p ] contains

• s = 1 if F is complex, and
• s = 2 if F is real
multiplicatively independent elements∗.

Our final ingredient from algebraic number theory is the following result,
which is an easy consequence of Dirichlet’s theorem on primes in arithmetic
progression.

Proposition 3.28. Let F|Q be a real quadratic number field. Then there are
infinitely many inert primes p ∈ Z for F|Q.

Proof. Let λ =
√
d ∈ OF with d ∈ N square-free be chosen so that F = Q[λ],

and let N0 have the property that for any prime p > N0 the local rings O
(p)
F

and (Z[λ])
(p)

coincide. Then a prime p > N0 is inert if pO
(p)
F is prime in O

(p)
F ,

or equivalently if the characteristic polynomial of λ is irreducible modulo p.
As λ =

√
d, this is the case if and only if d is a non-square modulo p, that is

if
(
d
p

)
= −1 (where

(
d
p

)
denotes the Legendre symbol as usual). If d = q1 · · · qℓ

is the prime factorization of d, then

(
d

p

)
=

(
q1
p

)
· · ·
(
qℓ
p

)

= (−1)(p−1)(q1−1)/4

(
p

q1

)
· · · (−1)(p−1)(qℓ−1)/4

(
p

qℓ

)

∗ That is, OF(
1

p
)× ∼= F ×Zs where F is a finite group of roots of unity in F. See [31]

for the equivalence of (1) and (2); the equivalence of (1) and (3) is a consequence
of Dirichlet’s S-unit theorem.
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by quadratic reciprocity (with the understanding that if some prime qi = 2,

then the corresponding factor (−1)(p
2−1)/8 has to be included). In either case,

this implies that
(
d
p

)
= −1 is equivalent to a finite list of congruence conditions

concerning p modulo 8d. Choose a ∈ N coprime to 8d such that p ≡ a (mod d)

implies
(
d
p

)
= −1. By Dirichlet’s theorem, there are infinitely many primes p

congruent to a modulo d, and so
(
d
p

)
= −1 for those infinitely many primes

as required. �

In fact, we will only need one inert prime.

Proof of Theorem 3.25. Let xA ⊆ X be a compact A-orbit. Assume, for
the purposes of a contradiction, that µ(xA) > 0, and let F be the real quadratic
number field associated to xA in the sense of Proposition 3.26. Let p ∈ Z be
an inert prime for F|Q. By Theorem 3.12, the limit µ is Hecke-p-recurrent.
Therefore, on replacing x = SL2(Z)g by some x′ ∈ xA if necessary, there
exists a sequence (hn) in PGL2(Qp) with

hnKp 6= hmKp

for n 6= m such that

PGL2(Z[ 1p ])(g, hn)Kp ∈ PGL2(Z[ 1p ])(g, I)AKp
∼= xA.

We wish to remove the p-adic extension from this statement. For any hn, there
is some γn ∈ PGL2(Z[ 1p ]) with γnhn ∈ Kp, or equivalently γ−1

n Kp = hnKp.
With this, we get

Kpγn 6= Kpγm (3.22)

for n 6= m, and that

PGL2(Z[ 1p ])(g, hn)Kp = PGL2(Z[ 1p ])(γn, γn)(g, hn)Kp

= PGL2(Z[ 1p ])(γng, I)Kp

corresponds in PGL2(Z)\PGL2(R) to

PGL2(Z)γng = PGL2(Z)gan ∈ PGL2(Z)gA.

Modifying γn on the left by some element of PGL2(Z) if necessary (which
does not change any of its other properties) we may assume that

γng = gan ∈ PGL2(R).

This and (3.21) together shows that γn is diagonalized by the same ma-
trix g as γ, and so commutes with γ. We now make the implicit scalars in the
above equations in PGL2(R) explicit, so as to obtain equations in Mat22(R).
As the equivalence class γn belongs to PGL2(Z[ 1p ]), we may represent it by a
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matrix (which we again denote by γn) in Mat22(Z) with determinant in ±pN.
As F is a two-dimensional vector space over Q, and the centralizer of γ is
also two-dimensional (after tensoring with R, this follows from (3.21)), we
have γn ∈ F. However, as Z[γn] is a finitely-generated over Z, γn ∈ OF must be
an integer. Finally, the determinant det(γn) equals the norm NF|Q(γn) = ±pℓ,
which shows that γn ∈ (OF[ 1p ])

×.

The prime p was chosen inert for F|Q, which by Proposition 3.27 means
that (OF[ 1p ])

× contains O×
F p

Z as a finite-index subgroup. Also notice that

O = F ∩ Mat22(Z)

is an order in F, so that O× ⊆ OF is also of finite index. Together, we deduce
that there exists a finite list

η1, . . . , ηℓ ∈ (OF[ 1p ])
×

with the property that

ℓ⋃

i=1

O×pZηi = (OF[ 1p ])
×.

As γn ∈ (OF[ 1p ])
× for all n > 1, there exist m,n with m 6= n for which

O×pZγn = O×pZηi = O×pZγm.

However, since O× ⊆ GL2(Z), this implies that

PGL2(Zp)γn = PGL2(Zp)γm.

This contradiction to (3.22) implies that µ(xA) = 0, completing the proof of
the theorem. �



4

Establishing Positive Entropy

In this chapter we discuss measure-theoretic entropy and show how it can be
established for Hecke–Maass cusp forms by using the Hecke operators. For
this we first give the general definitions in Section 4.1, and then consider a
commutative case of how positive entropy can be established in Section 4.2.
This commutative case is a toy case in preparation for the later picture. After
some more preparations in Section 4.3, we prove positive entropy of almost
all ergodic components in Section 4.4.

4.1 Measure-Theoretic Entropy

We start with the basic definitions of measure-theoretic entropy; for full details
see [11] or [29].

4.1.1 Definitions

Let (X,B, µ) be a probability space, and let T : X → X be a measure-
preserving map. Then the (static) entropy of a countable measurable parti-
tion ξ = {A1, A2, . . . } of X is

Hµ(ξ) = −
∑

Ai∈ξ
µ(Ai) logµ(Ai).

The (dynamical) entropy of ξ with respect to T is defined by

hµ(T, ξ) = lim
n→∞

1

n
Hµ

(
n−1∨

i=0

T−iξ

)

where
∨n−1
i=0 T

−iξ denotes the common refinement of the partitions

ξ, T−1ξ, . . . , T−(n−1)ξ.
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It is not difficult to show that the limit above exists by subadditivity along
the following lines. It is not difficult to show that Hµ(ξ ∨ η) 6 Hµ(ξ) +Hµ(η)
for countable partitions ξ and η, and Hµ(T

−1ξ) = Hµ(ξ), so

Hµ

(
m+n−1∨

i=0

T−iξ

)
6 Hµ

(
m−1∨

i=0

T−iξ

)
+Hµ

(
m+n−1∨

i=m

T−iξ

)

= Hµ

(
m−1∨

i=0

T−iξ

)
+Hµ

(
n−1∨

i=0

T−iξ

)
.

Finally the entropy of T is defined to be

hµ(T ) = sup
ξ
hµ(T, ξ),

where the supremum is taken over all countable partitions ξ of X with finite
entropy (equivalently, over all finite partitions since a countable partition can
be approximated by a finite partition and the static entropy is a continuous
function of the partition in an appropriate metric).

4.1.2 (Non)-Ergodicity

Recall that a measure-preserving transformation T on (X,B, µ) (equivalently,
the T -invariant probability measure µ on (X,B)) is said to be ergodic if any
(equivalently, all) of the following equivalent conditions are satisfied:

• T−1B = B for some B ∈ B implies that µ(B) ∈ {0, 1} (there are no
non-trivial T -invariant sets);

• µ(T−1B△B) = 0 for B ∈ B implies that µ(B) ∈ {0, 1} (there are no
non-trivial almost T -invariant sets);

• f ◦ T = f for f ∈ L2
µ implies that f is equal to a constant almost every-

where.

We note that many natural invariant measures (for example, Haar measures)
are often ergodic unless there are obvious obstructions to ergodicity. However,
it is easy to give examples of non-ergodic measures. If µ1 and µ2 are two
singular T -invariant probability measures, then the convex combination

ν = sµ1 + (1 − s)µ2 (4.1)

is another invariant probability measure, which is not ergodic for s ∈ (0, 1).
In fact, it is possible to present any invariant probability measure ν as

a (generalized) convex combination of T -invariant ergodic probability mea-
sures µθ. However, in general this requires an integral representation∗ over

∗ The convex combination (4.1) is a special case, with Ξ = {µ1, µ2}, ρ({µ1}) = s,
and ρ({µ2}) = 1 − s.
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a probability space (Ξ,BΞ , ρ). This is a consequence of Choquet’s theorem,
and allows us to write

ν =

∫

Ξ

νθ dρ(θ), (4.2)

which is called the ergodic decomposition of ν (see [12, Sect. 4.2]). It is in-
teresting to note that it is possible to take Ξ = X , ρ = ν, and to define for
almost every x ∈ X “its” ergodic component νE

x , which as the name suggests
is a T -invariant and ergodic probability measure on X , so that

ν =

∫
νE
x dν(x) (4.3)

(here E denotes the sub-σ-algebra of T -invariant sets in B, and νE
x is the

conditional measure of ν at x with respect to E ). Moreover, νE
Tx = νE

x (this
is a consequence of the construction, which is described in [12, Sect. 6.1]).

4.1.3 Entropy and the Ergodic Decomposition

If ν = sµ1 + (1 − s)µ2 for two invariant probability measures µ1 and µ2 that
are singular, then one can show (as a consequence of the convexity of the
map x 7→ − log x) that

sHµ1(ξ) + (1 − s)Hµ2(ξ) 6 Hν(ξ) 6 sHµ1(ξ) + (1 − s)Hµ2(ξ) + log 2.

For the dynamical entropy, this immediately implies that

hν(T, ξ) = shµ1(T, ξ) + (1 − s)hµ2(T, ξ),

and hence
hν(T ) = shµ1(T ) + (1 − s)hµ2(T ).

This generalizes (but not immediately) to the ergodic decomposition in (4.2),
giving

hν(T, ξ) =

∫

Ξ

hµθ
(T, ξ) dρ(θ)

and

hν(T ) =

∫

Ξ

hµθ
(T ) dρ(θ).

We refer to [11, Sect. 4.4] for a proof of this.

4.1.4 Positive Entropy of Almost All Ergodic Components

It should now be clear what the assumption [E] in Theorem 1.3 means: Let

T (x) = x

(
e1/2

e−1/2

)
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be the time-one map of the geodesic flow on the quotient X = Γ\ SL2(R) by a
lattice Γ . Then a T -invariant measure ν on X has positive entropy for almost
all ergodic components if ν is written as in (4.2) and hνθ

(T ) > 0 for ρ-almost
every θ ∈ Ξ (equivalently, if hνE

x
(T ) > 0 for ν-almost every x).

This condition may look like an extremely difficult thing to check – in
particular, if ν is not known concretely, then neither can the decomposition
space (Ξ,BΞ , ρ) be known in an explicit way. However, the following obser-
vation makes condition [E] a little easier to check.

Proposition 4.1. Let T be a measure-preserving transformation of a proba-
bility space (X,B, ν), and suppose that the ergodic decomposition of ν is given
by equation (4.2). If there exists a partition ξ of X with Hµ(ξ) <∞ such that
for any T -invariant set B of positive measure one has

h( 1
ν(B)

)ν|B (T, ξ) > 0,

then hµθ
(T ) > 0 for ρ-almost every θ ∈ Ξ.

We will use Proposition 4.1 as the criterion for positivity of (almost) all
ergodic components.

Proof of Proposition 4.1. Suppose that the conclusion does not hold, and
use the ergodic decomposition from (4.3), so that the set

B = {x ∈ X | hνE
x
(T ) = 0}

is measurable with positive measure. Since νE
Tx = νE

x , the set B is also T -
invariant. Thus the ergodic decomposition of the measure 1

ν(B)ν|B (that is,

of ν restricted to B and then normalized to be a probability measure again)
is given by

1

ν(B)
ν|B =

1

ν(B)

∫

B

νE
x dν(x),

so that

h( 1
ν(B)

)ν|B (T, ξ) =
1

ν(B)

∫

B

hνE
x
(T, ξ) dν(x) = 0

by the choice of B, which contradicts the assumption of the proposition. �

4.1.5 Entropy as a Decay Rate

We defined the (static) entropy Hν(ξ) of a partition ξ as the weighted average
of − log ν(Aj) over all the elements Aj ∈ ξ of the partition. Therefore, if we
wish to show that hν(T, ξ) > h for some h > 0, then it would be sufficient to
find a constant c > 0 such that

Hν

(
ξ ∨ · · · ∨ T−(n−1)ξ

)
> nh− c
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for all n > 1, which in turn would follow from

ν(A) 6 e−nh+c (4.4)

for all A ∈ ξ ∨ · · · ∨ T−(n−1)ξ. This leads to the following formulation of
positive entropy for almost all ergodic components.

Corollary 4.2. Let T be a measure-preserving transformation on the proba-
bility space (X,B, ν), and let ξ be a countable partition of X with Hν(ξ) <∞.
If there exist constants h > 0 and c > 0 such that

ν(A) 6 e−nh+c

for all A ∈ ξ ∨ · · · ∨ T−(n−1)ξ and all n > 0, then almost every ergodic
component of ν has positive entropy. Moreover, hνθ

(T, ξ) > h for ρ-almost
every θ ∈ Ξ in the ergodic decomposition (4.2).

Proof. We will only prove the positivity, and leave it to the reader to modify
Proposition 4.1 in order to obtain the final claim of the corollary (which,
strictly speaking, is not needed later). Let B ⊆ X be a measurable T -invariant
set with positive measure. Then our assumption implies that

1

ν(B)
ν|B(A) 6

1

ν(B)
e−nh+c

for all A ∈ ξ ∨ · · · ∨ T−(n−1)ξ and n > 1. As discussed above, this shows that

h( 1
ν(B)

)ν|B (T, ξ) > h,

which by Proposition 4.1 gives positive entropy for almost all ergodic compo-
nents as required. �

The assumed bound on ν(A) above may be called effective positive entropy,
and is a much stronger assumption than simple positivity. In fact, the effective
version of positivity of entropy has been shown for the arithmetic quantum
limits by Bourgain and Lindenstrauss [2]. In fact, they show the assumption
of Corollary 4.2 with h = 1

9 , when T is the time-one map of the geodesic flow
on Γ\ SL2(R), where Γ is a congruence lattice over Q. Notice that hmX (T ) =
1.

We will simplify their argument, reaching a weaker conclusion. This will
nonetheless give positivity of entropy for almost all ergodic components by
using the fundamental Shannon–McMillan–Breiman theorem (see [11] for a
detailed discussion and references; the result was proved in increasingly gen-
eral settings by Shannon [26], McMillan [20], Carleson [4], and Breiman [3]).
The Shannon–McMillan–Breiman theorem may be viewed as the pointwise
ergodic theorem of entropy theory. For any countable partition η of a proba-
bility space (X,B, µ), we denote by [x]η the element of η containing x (this
will also be called the atom of η containing x).
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Theorem 4.3. Let T be a measure-preserving transformation on (X,B, µ),
and let ξ be a countable partition of X with Hµ(ξ) <∞. Then

− 1

n
logµ

(
[x]∨n−1

i=0 T−iξ

)
−→ hµE

x
(T, ξ) (4.5)

as n→ ∞ for µ-almost every x.

This result makes it easier to show positive entropy for almost all ergodic
components, as one does not have to show (4.4) for all n > 0. Instead it is
sufficient to show (4.4) for infinitely many n – since the convergence in (4.5)
is guaranteed, then a similar bound must also hold for all other n.

4.2 An Abelian Case

We will explain the method of Bourgain and Lindenstrauss [2] for establishing
positive entropy in the following much simpler (in comparison, a toy) situation.
This simple exposition of the idea is taken from work of Einsiedler and Fish [7].

Let S ⊆ Nr{0} be a multiplicative semigroup. If S ⊆ aN for some a > 1,
then S is called lacunary and in this case there is a multitude of S-invariant
probability measures (under the natural action of multiplication by elements
of S on T = R/Z) and S-invariant closed infinite subsets of X = R/Z (a
set A ⊆ T is S-invariant if sA ⊆ A for all s ∈ S). On the other hand, if S 6⊆ aN

for any a > 1, then S is called non-lacunary and in this case Furstenberg [13]
showed that there are only very few different S-invariant closed subsets.

The simplest non-lacunary semigroup in N is S = 2N3N, and the next
result raises the problem of classifying the S-invariant probability measures.

Theorem 4.4 (Furstenberg). If S is non-lacunary, then an S-invariant
closed subset A ⊆ T is either finite (consisting of rational points) or equal
to T.

Furstenberg also asked the question of whether the ergodic theoretic analog
of Theorem 4.4 holds as well: that is, must a probability measure that is
invariant and ergodic∗ for a non-lacunary semigroup be of finite support or
be Lebesgue measure? It is straightforward† to see that for S = N>0 there are
only two possible S-invariant and ergodic probability measures, namely the
Dirac measure δ0 and the Lebesgue measure mT. However, for general non-
lacunary semigroups the conjecture is still open. There have been some partial
results towards the conjecture, the strongest of which is due to Rudolph [25]
and Johnson [15].

∗ A measure µ on T is ergodic for the action of S if µ(B△s−1B) = 0 for all s ∈ S
implies that µ(B) ∈ {0, 1}. If S = aN is generated by a single element a, then a
measure is ergodic for S if and only if it is ergodic for multiplication by a.

† For example, by seeing that the invariance forces the Fourier transform of the
invariant measure to coincide with the Fourier transform of Lebesgue measure if
it is not the point measure at 0.



4.2 An Abelian Case 71

Theorem 4.5. Let S be a non-lacunary semigroup in N>0, and let µ be an S-
invariant ergodic probability measure on T. If hµ(s) > 0 for some s ∈ S,
then µ = mT is Lebesgue measure.

One may ask whether it is possible to give stronger conditions on S
which would allow a complete classification of S-invariant ergodic probabil-
ity measures without the entropy hypothesis (as done above in the trivial
case S = N>0). This can indeed be done for the following class of semigroups.

Definition 4.6. A semigroup S ⊆ N>0 has polynomial density with expo-
nent α > 0 if

|S ∩ [1,M ]| > Mα (4.6)

for all sufficiently large M .

Theorem 4.7. Let S be a semigroup of polynomial density. Then any S-
invariant and ergodic probability measure on T is either supported on a finite
set of rational points, or is the Lebesgue measure.

We will prove Theorem 4.7 by establishing, under this stronger assumption
on S, the entropy hypothesis in Theorem 4.5. This is similar to the proof of
Theorem 1.2, where information about the Hecke operators will be used to
prove the positive entropy hypothesis in Theorem 1.3.

Proof of Theorem 4.7. Fix some s0 ∈ Sr{1}, write T (x) = s0x, and let µ
be an S-invariant ergodic probability measure. Then we will show below that
either µ is supported on a finite set, or hµ(s0) > δ = α log s0

5 . This will imply
the theorem by the work of Rudolph and Johnson. Let

ξ = {[0, 1
s0

), [ 1
s0

), . . . , [ s0−1
s0

, 1)}

be the partition corresponding to fixing the first digit in the s0-ary expan-
sion of real numbers x ∈ [0, 1) ∼= T. Notice that

∨n−1
i=0 T

−iξ is the partition
corresponding to the first n digits in the s0-ary expansion, and so comprises
intervals of length 1

sn
0
.

If µ(Q∩ [0, 1)) > 0 then by ergodicity we must have µ(Q∩ [0, 1)) = 1, and
so µ must be supported on a finite set since each point in Q∩ [0, 1) has a finite
orbit under S. Suppose therefore that µ is an S-invariant ergodic probability
measure on T with µ(Q ∩ [0, 1)) = 0.

Now assume that x ∈ T satisfies (4.5), with limit

hµE
x
(T, ξ) < δ.

Then for large enough n > n0 we would have

− 1

n
logµ

(
[x]∨n−1

i=0 T−iξ

)
< δ,

and so
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µ
(
B(x, s−n0 )

)
> e−nδ,

where
B(x, s−n0 ) = (x− s−n0 , x+ s−n0 ) ⊇ [x]∨n−1

i=0 T−iξ.

We define M = M(n) by
M = 2enδ/α, (4.7)

and we may assume that (4.6) holds whenever n > n0. Recall that s ∈ S
preserves the measure µ, so µ ({x | sx ∈ B}) = µ(B) for any Borel set B ⊆ T.
This clearly implies that µ(sB) > µ(B), and applying this to the interval B =
B(x, s−n0 ) gives

µ
(
sB(x, s−n0 )

)
> e−nδ,

and so ∑

s∈S∩[1,M ]

µ
(
sB(x, s−n0 )

)
> 2Mαe−nδ > 1.

Therefore, there must be distinct elements s, s′ ∈ S ∩ [1,M ] with

sB(x, s−n0 ) ∩ s′B(x, s−n0 ) 6= ∅.

Of course, this overlapping must be understood in T = R/Z, so if we iden-
tify x ∈ T with the corresponding element x ∈ [0, 1) ⊆ R, then we have

s(x+ v) = s′(x+ v′) + k,

where |v|, |v′| < s−n0 , and k ∈ Z. Thus

x =
s′v′ − sv

s− s′
+

k

s− s′
,

so by (4.7) and the definition of δ = α log s0
5 ,

∣∣∣∣
s′v′ − sv

s− s′

∣∣∣∣ 6 Ms−n0 = Me−n log s0 ≪MM−α
δ log s0 = M1−5 = M−4

and
|s− s′| < M.

This already should be surprising – the real number x (about which we only
assumed (4.5) with hµE

x
(T, ξ) < δ) has a rational approximation of the shape

∣∣∣∣x− p1

q1

∣∣∣∣≪M−4

with denominator q1 < M .
We now apply the argument above to 2n in place of n; the quantity M =

M(n) is then squared, and we find a rational approximation
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∣∣∣∣x− p2

q2

∣∣∣∣≪M−8

with q2 < M2. Together these two approximations give

∣∣∣∣
p1

q1
− p2

q2

∣∣∣∣≪M−4 +M−8 ≪M−4. (4.8)

On the other hand, the left-hand side of (4.8) is either zero, or has

∣∣∣∣
p1

q1
− p2

q2

∣∣∣∣ >
1

q1q2
> M−3.

Assuming n0 is large enough (which we may), the latter gives a contradiction,
so we must have p1

q1
= p2

q2
, and therefore

∣∣∣∣x− p1

q1

∣∣∣∣ < M−8.

Repeating this observation for 2n, for 4n, for 8n and so on, the same argument
gives better and better approximation of x by p1

q1
, and so we must have

x =
p1

q1
∈ Q ∩ [0, 1).

We have shown that hµE
x
(T, ξ) < δ implies that x ∈ Q ∩ [0, 1). Since

µ(Q ∩ [0, 1)) = 0

we deduce that almost every ergodic component of µ has hµE
x
(T, ξ) > δ > 0

as required. �

4.3 The Partition ξ

As discussed in Section 4.1 in general, and in Section 4.2 for a particular
abelian example, we would like to find a partition ξ (either finite, or at least
with finite entropy), for which the measure of elements of the common refine-
ment

n∨

i=−n
T−iξ

can be estimated. This then leads to positive entropy of almost all ergodic
components for the time-one map T of the geodesic flow.
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4.3.1 The Compact Case

If X = Γ\ SL2(R) is compact, then it is quite straightforward to construct a
finite partition ξ which captures all the entropy in the sense that

hµ(T ) = hµ(T, ξ)

for any T -invariant probability measure µ onX . We will not need this equality,
only properties of the partition ξ.

Recall that if a =

(
e1/2

e−1/2

)
, then

T (x) = xa

for x ∈ X . Also recall (for example, from [12]) that, since X is compact, there
exists a uniform injectivity radius r > 0 for which

BSL2(R)
r (I) ∋ h 7−→ xh ∈ BXr (x)

is an isometry (and, in particular, is a bijection) for any x ∈ X . We may

assume that r > 0 is small enough to ensure that B
SL2(R)
r (I) is the injective

image of some small open neighborhood of 0 ∈ sl2(R) under the exponential
map. Let δ ∈ (0, r) be such that

aB
SL2(R)
δ (I)a−1 ⊆ BSL2(R)

r (I) (4.9)

and
a−1B

SL2(R)
δ (I)a ⊆ BSL2(R)

r (I). (4.10)

Lemma 4.8. Any partition ξ of X consisting of sets with diameter less than δ
has the property that any element

A ∈
n∨

i=−n
T−iξ (4.11)

is contained in a Bowen n-ball,

A ⊆ x

(
n⋂

i=−n
aiB

SL2(R)
δ a−i

)

for any x ∈ A.

In some sense the particular shape of the sets in the refinement in (4.11)
is likely to be quite complicated, as it depends on a non-canonical choice of
the partition ξ. The Bowen n-ball

x

(
n⋂

i=−n
aiB

SL2(R)
δ a−i

)
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at x, on the other hand, by definition consists of all displacements xh of x by
elements h small enough to have

d(hai, Iai) = d(a−ihai, I) < δ

for i = −n, . . . , n, and is therefore a relatively concretely described set. Notice
that if y = xh belongs to the Bowen n-ball, then

d(yai, xai) < δ

for i = −n, . . . , n. This does not imply that y ∈ A, but will nonetheless prove
useful.

Proof of Lemma 4.8. Let ξ, A be as in the lemma, and let x, y = xh ∈ A.

Here we may assume that h ∈ B
SL2(R)
δ (I) as x and y belong to the same

element of the partition ξ. Applying the map T , we get

T (x), T (y) = xha = T (x)(a−1ha).

Here a−1ha ∈ B
SL2(R)
r (I) by the choice of δ > 0. Notice that T (x), T (y)

belong to the same partition element of ξ, and the diameter of this set is less

than δ 6 r. It follows that T (y) = T (x)h1 for some h1 ∈ B
SL2(R)
δ . By choice

of r, this shows that h1 = a−1ha.
Iterating this argument shows that

h ∈
n⋂

i=−n
aiB

SL2(R)
δ a−i,

as claimed in the lemma. �

4.3.2 The Non-compact Case

If X = Γ\ SL2(R) is non-compact but of finite volume, then there exists
a compact set Ω ⊆ X such that every A-orbit intersects Ω non-trivially.
This may be seen geometrically for SL2(Z)\ SL2(R) since A-orbits can be
represented in SL2(Z)\T1H by vertical lines or half-circles intersecting the
real axis normally, and both types of orbit intersect the line ℑ(z) = 1, which
is mapped to a compact set Ω in SL2(Z)\ SL2(R). More generally, this follows
from the structure of the cusps of finite volume quotients Γ\ SL2(R) (see,
for example, [12, Lem. 11.29]). Enlarging Ω if necessary to a bigger compact
subset, we may also assume that the time-one map T of the geodesic flow has
the property that for any x ∈ X there exists at least one n ∈ Z with T nx ∈ Ω.
Let r be the injectivity radius on Ω.

Proposition 4.9. Let X = Γ\ SL2(R) be a non-compact, finite volume, quo-
tient. Then there exists a countable partition ξ of X containing XrΩ as one
of its element, such that x ∈ Ω, and
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x ∈ A ∈
n∨

i=−n
T−iξ

implies that A is contained in the Bowen n-ball

A ⊆ x

n⋂

i=−n
a−iBSL2(R)

δ ai,

where we choose δ small enough to satisfy (4.9) and (4.10). Furthermore, ξ
has finite entropy for any T -invariant probability measure on X.

We refer to [6] for a proof, and note that this construction is very similar
to a particular portion of the proof [19] by Margulis and Tomanov of Ratner’s
measure classification theorem (see [21] and [22]).

4.4 Proving Positive Entropy

In Section 4.2 we assumed invariance under a large multiplicative subset of N,
but then only used the invariance in a very weak way to prove that images
of certain intervals are big in measure, forcing there to be overlaps. Our dis-
cussion of the Hecke-operators in Chapter 3 does not give any invariance
properties under PGL2(Qp), but we will see that it can give the result that
certain images of Bowen n-balls are big in measure, which will again force
overlaps.

4.4.1 Mass of Distance 6 2 Neighbors

We start with the following corollary to Lemma 3.20.

Corollary 4.10. If Sp (and Sp2) denote the operators that sum functions on
a (p+1)-regular tree T over the neighbors (and over the distance-two neighbors,
respectively), then for any eigenfunction of Sp on T we have either

|λp| ≫
√
p

or
|λp2 | ≫ p,

where λpi is the eigenvalue for Spi for i = 1, 2.

Proof. Notice that

S2
p(f)(v) =

∑

w∼v
Sp(f)(w)

=
∑

w∼v

∑

w′∼w
f(w′)

=
∑

w′∼2v

f(w′) + (p+ 1)f(v),
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so S2
p = Sp2 + (p+ 1)I and therefore

λ2
p = λp2 + p+ 1,

giving the corollary. �

Applying the Cauchy–Schwartz inequality (as in the proof of Theorem 3.12)
gives another corollary.

Corollary 4.11. If φ is an eigenfunction of Sp on the (p+1)-regular tree with
real eigenvalue, then

∑

w∼v
|φ(w)|2 +

∑

w∼2v

|φ(w)|2 ≫ |φ(v)|2

for any vertex v in T .

Proof. Suppose that |λp| ≫ √
p. Then by Cauchy–Schwartz,

√
p|φ(v)| ≪ |λpφ(v)| = |

∑

w∼v
φ(w)| 6

(
∑

w∼v
|φ(w)|2

)1/2

(p+ 1)1/2,

which gives the corollary in this case. If |λp2 | ≫ p the same argument applies.
�

For arithmetic quantum limits this gives the following.

Corollary 4.12. Let X = SL2(Z)\ SL2(R), and suppose that φi ∈ L2
mX

sat-
isfies ‖φi‖2 = 1 for all i > 1, and µ is a weak*-limit of the measures defined
by |φ2

i | dmX . Then for any non-negative measurable function f we have
∫ (

Sp(f) + Sp2(f)
)

dµ≫
∫
f dµ

for any prime p, and so∗

∫ ( ∑

p6Q

Sp(f) + Sp2(f)
)

dµ≫ Q1/2

∫
f dµ,

where the sum is taken over all primes p 6 Q, for any Q.

Proof. The proof is similar to the proof of Theorem 3.12. If φ is a bounded
eigenfunction in L2(X) for Sp, then

∫ (
Sp(f) + Sp2(f)

)
|φ|2 dmX =

〈
Sp(f) + Sp2(f), |φ|2

〉

=
〈
f, Sp(|φ|2) + Sp2(|φ|2)

〉

≫
〈
f, |φ|2

〉

∗ The exponent 1

2
of Q on the right-hand side could also be replaced by 1 − o(1).
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by Corollary 4.11. If f ∈ Cc(X), then this implies that
∫ (

Sp(f) + Sp2(f)
)

dµ≫
∫
f dµ.

Using dominated and monotone convergence, this then extends to any mea-
surable non-negative f as in the proof of Theorem 3.12.

The final claim follows from the argument above and the prime number
theorem, which implies in particular that there are ≫ Q1/2 primes p 6 Q. �

If f = 1B is the characteristic function of a set B ⊆ X , then the result
above implies that either the measure of B is small (in comparison to Q), or
that ∑

p6Q

Sp(f) + Sp2(f) > 1

at some points of X , which roughly speaking implies overlaps of the Hecke
images of B.

4.4.2 The Volume of Bowen n-balls

Theorem 4.13. If µ is a micro-local lift of an arithmetic quantum limit
on SL2(Z)\ SL2(R), then the entropy of the time-one map T of the geodesic
flow is positive on almost every ergodic component.

By our discussion of entropy of ergodic components in Proposition 4.1 and
the choice of the partition in Proposition 4.9, it follows that in order to prove
Theorem 4.13 it is sufficient to show that for almost every x ∈ Ω there are
infinitely many n > 1 for which

µ

(
x

n⋂

i=−n
aiB

SL2(R)
δ a−i

)
6 e−nh (4.12)

for some positive constant h. Indeed, if we have shown this, then for almost
every x ∈ X there is some T n(x) ∈ Ω for which hµE

x
(T, ξ) = hµE

T nx
(T, ξ) >

h > 0 by Theorem 4.3.

Proof of Theorem 4.13. We fix some x = PGL2(Z)g ∈ Ω and set

Bn = x

n⋂

i=−n
aiB

SL2(R)
δ a−i.

Fix some h < 1
16 , and assume that

µ(Bn) > e−hn (4.13)

for all n > n0. Our goal is to show that this forces x to belong to some concrete
null set. Let c > 0 be the implicit constant appearing in Corollary 4.12, so
that
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∫ ( ∑

p6Q

Sp(f) + Sp2(f)
)

dµ > cQ1/2

∫
f dµ, (4.14)

for all f > 0. We define Q(n) = c−2e2hn. Combining (4.14) with f = 1Bn

with (4.13) gives

∫ ( ∑

p6Q(n)

Sp(1Bn) + Sp2(1Bn)
)

dµ > 1,

so that ∑

p6Q

(
Sp(1Bn) + Sp2(1Bn)

)
(yn) > 1 (4.15)

for some yn ∈ X and all n > n0. We wish to rephrase this to give a more
intrinsic property of the center x of the Bowen ball Bn.

Clearly (4.15) means that there are primes p1, p2 6 Q(n) (possibly the
same prime) and qi ∈ {pi, p2

i } (again, possibly the same) with

Sq1(1Bn)(yn) > 1

if q1 = q2, or
Sq1(1Bn)(yn) + Sq2(1Bn)(yn) > 1

if q1 6= q2. We claim that, in either case, there exists xi = xbi (which depends
on n > n0) with

bi ∈
n⋂

i=−n
aiB

SL2(R)
δ a−i,

some γi ∈ Mat22(Z) (not divisible by pi) with det γi = qi,

PGL2(Z)γ1 6= PGL(Z)γ2, (4.16)

finally yn = PGL2(Z)γ1gb1 = PGL2(Z)γ2gb2 and

γ1gb1 = γ2gb2 (4.17)

in PGL2(R). Indeed, by Section 3.2.2, the fact that Sqi(1Bn)(yn) > 1 means
that xi = xbi and γi ∈ Mat22(Z) not divisible by pi exists as claimed. In the
case of q1 = q2, (4.16) is also guaranteed by the discussion in Section 3.2.2.
Assume therefore that q1 6= q2 but PGL2(Z)γ1 = PGL2(Z)γ2, or equiva-
lently γ1 = cηγ2 for some c ∈ Q× and η ∈ PGL2(Z). Taking determinants,
this implies that

q1 = det γ1 = c2 det γ2 = c2q2

and so c = p1
p2

and qi = p2
2 for i = 1, 2. As we assume for the moment

that q1 6= q2, γ1 = cηγ2 and γ2 ∈ Mat22(Z) implies that γi is divisible by pi
for i = 1, 2, which is a contradiction to the construction of γi. This proves the
claim.
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The claim may be further reformulated as follows: For every n > n0 there
exists some ηn ∈ Mat22(Z)rQ GL2(Z) with det(ηn) 6 Q(n)4 such that

1

det(ηn)1/2
g−1ηng ∈

n⋂

i=−n
aiB

SL2(R)
2δ a−1. (4.18)

Indeed, for any n > n0 we can define

ηn = q2γ
−1
2 γ1

with determinant q1q2 6 Q(n)4, and then (4.17) implies that

g−1ηng = b2b1

in PGL2(R), which shows (4.18) in SL2(R). This is the desired property of x =
PGL2(Z)g.

We now proceed to analyze the set on the right-hand side of (4.18). As-

suming (as we may) that δ is sufficiently small, B
SL2(R)
2δ is in the injective

image of a small neighborhood of 0 ∈ sl2(R) under the exponential map. Note
that a exp(v)a−1 = exp(Ada(v)) and that Ada has the eigenvectors H,U−,
and U+ with eigenvalues 1, e−1 and e respectively (see Proposition 2.3). From
this one sees quickly (much as in the argument in Section 4.3.1) that

n⋂

i=−n
aiB

SL2(R)
2δ a−1 ⊆ exp

(
[−κ, κ]H + [−κe−n, κe−n]U− + [−κe−n, κe−n]U+

)

(4.19)
for some κ ≪ δ. In other words, we should think of this set as an e−n-small
neighborhood of a bounded segment of the diagonal subgroup. Notice that any
element of the set in (4.19) can also be written as exp(tH) exp(v) with |t| ≪ δ
and ‖v‖ ≪ δe−n.

Now recall the usual definition

[g, h] = g−1h−1gh

of the commutator of group elements g and h. Applying the commutator
operation to ηn, ηn+1 as in (4.18) for some n > n0, we should get a very small
element. Indeed

g−1[ηn, ηn+1]g = [exp(tnH) exp(vn), exp(tn+1H) exp(vn+1)]

= exp(−vn) exp(−tnH) exp(−vn+1) exp ((−tn+1 + tn)H)

exp(vn) exp(tn+1) exp(vn+1)

= exp(−vn) (exp(−tnH) exp(−vn+1) exp(tnH))

(exp(−tn+1H) exp(vn) exp(tn+1H)) exp(vn+1)

is the product of four terms each of distance ≪ e−n from the identity. As Ω ⊆
X is some fixed compact set, we may assume that g ∈ SL2(R) also belongs
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to some fixed compact set, which shows that [ηn, ηn+1] is of distance ≪ e−n

from the identity.
On the other hand,

[ηn, ηn+1] ∈ Mat22(Q),

has numerator 6 Q(n)8, and has determinant 1. This implies that ei-
ther [ηn, ηn+1] is the identity, or the distance to the identity is ≫ 1

Q(n)8 .

In the latter case,

e−16hn ≪ 1

Q(n)8
≪ e−n.

However, as h < 1
16 by our choice of h, this inequality only holds for finitely

many values of n, say for n < n0. It follows that ηn and ηn+1 commute
for n > n0.

Notice that (up to conjugation) SL2(R) contains three types of elements
close to the identity:

• elements of A (defined in (2.2) with y small);
• elements of SO(2)(R) (as defined in (2.1), with θ small); or

• elements of the unipotent subgroup U =

{
us =

(
1 s

1

)
| s ∈ R

}
(with |s|

small).

In each case, the commutator of any of its non-central elements coincides with
the subgroup. Also notice that the ηn are non-central since they are close to
the identity but non-trivial. Thus the centralizer of ηn is the equal to the
centralizer of ηn+1, respectively ηn+2 and so on, and they all belong to the
same centralizer subgroup.

We now consider the three cases of A, SO(2), and U , where the latter two
are easier to rule out using purely geometric arguments. The union of the set
of SL2(R)-conjugates of SO(2)(R) forms a compact set, uniformly transverse
to A. One way to make this precise is to describe the set of Lie algebras that
are conjugated to LieU = RU+ or to Lie SO(2)(R) = RW , as illustrated in
Figure 4.1.

Assuming this description, we can rule out the cases where ηn is conju-
gated to an element of SO(2)(R) or of U quickly: In this case (4.18), (4.19)
and Figure 4.1 together show that 1

det(ηn)1/2 g
−1ηng has distance ≪ e−n

from the identity. However, det(ηn)1/2 6 Q(n) and ηn ∈ Mat22(Z). As ηn

is not of the form

(
a
a

)
, dividing by det(ηn)1/2 shows that the distance

from 1
det(ηn)1/2 g

−1ηng to the identity is ≫ 1
Q(n) . These inequalities together

are similar to, but much stronger than, what we knew before about [ηn, ηn+1].
Therefore, this gives a contradiction to the assumption that ηn is conjugated
to an element of SO(2)(R) ∪ U .
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RW

U+

RH

Fig. 4.1. The closed filled cone consists of all elements of sl2(R) that are conjugated
to an element of RW ∪ RU+.

Instead of justifying the geometrical picture in Figure 4.1, we now give
an alternative more formal argument leading to (almost) the same estimates,
and the same conclusion. Assume once again that

1

det(ηn)1/2
g−1ηng = exp(tnH) exp(vn)

with ‖vn‖ ≪ e−n as in the discussion after (4.19) is conjugated to an element
of SO(2)(R) ∪U . This implies that its trace must belong to [−2, 2]. However,

exp(vn) = I + w

for some w = w(n) ∈ Mat22(R), and so

tr

[(
etn/2

e−tn/2

)(
1 + w11 w12

w21 1 + w22

)]
=
(
etn/2 + e−tn/2

)
+ O(e−n).

Thus
etn/2 + e−tn/2 = 2 cosh(tn/2) 6 2 + O(e−n),

which implies that |tn| ≪ e−n/2. Therefore, the distance of 1
det(ηn)1/2 g

−1ηng

to the identity is ≪ e−n/2. As before, this leads to a contradiction and leaves
only one case open.

Assume now that ηn, ηn+1, . . . are all conjugated to A. We claim that in
fact

1

det(ηn)1/2
g−1ηng ∈ A

for all n > n0. Fix some m > n0. Then, by (4.19),
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1

det(ηn)1/2
g−1ηng = exp(tnH + wn),

where |tn| ≪ δ and ‖wn‖ ≪ e−n. We must have |tn| > e−n/2, for otherwise
we have the same estimates on tn and wn as in the case of SO(2)(R)∪U . We
now normalize the direction in the Lie algebra to have norm one and get

1

det(ηn)1/2
g−1ηng = exp(snw̃n)

with |sn| ≫ e−n/2 and ‖w̃n‖ = 1. Moreover, this implies that

w̃n =
1

sn
(tnH + wn)

satisfies ‖w̃n − tn
sn
H‖ ≪ e−n/2. Also recall that the centralizer of any non-

central element is one-dimensional. This implies that w̃n+1 = ±w̃n ∈ RH,
and so proves the claim.

To summarize, we have shown that if x = Γg ∈ Ω satisfies (4.13) for
all n > n0 and some fixed h < 1

16 , then there exists some element

η ∈ Mat22(Z)rQ GL2(Z)

with g−1ηg ∈ A. We consider now two cases, depending on whether or not η
is diagonalizable over Q.

Assume first that gQ ∈ GL2(Q) also satisfies

g−1
Q ηgQ ∈ A,

so that gg−1
Q conjugates this element of A to A, and so normalizes A. This

implies that g ∈ 1
det(gQ)gQA or g ∈ 1

det(gQ)gQ

(
−1

1

)
A, and so

x ∈ SL2(Z) 1
det(gQ)gQA ∪ SL2(Z) 1

det(gQ)gQ

(
−1

+1

)
A

belongs to a fixed set associated to η. The orbit SL2(Z) 1
det(gQ)A, and sim-

ilarly also SL2(Z) 1
det(gQ)

(
−1

+1

)
A, is divergent, and so is a null set for

any A-invariant probability measure µ on X = SL2(Z)\ SL2(R) by Poincaré
recurrence (see [12, Th. 2.11]). To see that this orbit is divergent, notice that
the endpoints gQ(0) and gQ(∞) of the geodesic line in H associated to the
orbit SL2(Z)gQA belong to Q.

Assume now that η ∈ GL2(Q) is not diagonalizable over Q but is over R.
Given η, we may choose some gR ∈ SL2(R) with

g−1
R ηgR ∈ A.
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As above, this implies that g ∈ gRA or g ∈ gR

(
−1

+1

)
A. In this case the

field K = Q[η] is a real quadratic field over Q and the two orbits

SL2(Z)gRA

and

SL2(Z)gR

(
−1

+1

)
A

are periodic A-orbits (since the orderK∩Mat22(Z) in K contains a non-trivial
unit). By Theorem 3.25, any arithmetic quantum limit gives zero mass to such
an orbit.

We summarize again: To any R-diagonalizable η ∈ GL2(Q)rQ GL2(Z) we
may associate a µ-null set Nη so that N =

⋃
ηNη has the property that

any x ∈ Ω which satisfies (4.13) for all n > n0 belongs to N . Therefore, for µ-
almost every x ∈ Ω we have (4.12) for infinitely many n. As discussed there,
this implies that almost every ergodic component has positive entropy. �
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