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1 Modular curves as moduli of elliptic curves

1.1 No level structure
Exercise 1.1. Let H be the upper half plane given by {⌧ 2 C |Im ⌧ > 0} .
Check that we have a bijection between points of H/SL

2

(Z) and lattices ⇤ ⇢ C
up to homothety.

Exercise 1.2. Let ⇤ ⇢ C be a lattice and set E = C/⇤. Weierstrass’s theorem
says that E has the structure of an elliptic curve over C, given by the equation

y2

= 4x3 � 60G
4

x� 140G
6

,

where
G

4

=

X

�2⇤\{0}

1

�4

, G
6

=

X

�2⇤\{0}

1

�6

.

Check that scaling the lattice ⇤ by µ 2 C⇤ gives an isomorphic elliptic curve.

Exercise 1.3. Let p � 5. Let Ep�1

be given by the formula

Ep�1

(⌧) =

X

(m,n)2Z
(m,n) 6=(0,0)

1

(m⌧ + n)

p�1

Prove that it is a modular form of weight p � 1 and level 1 using Version 1 of
the definition in [C].

Exercise 1.4. An orbifold is a Hausdorff space X which is covered by charts
(V,G, U,⇡), where V is an open subset in Rn,U is an open subset of X, G
is finite group action on V and preserving linear maps, and ⇡ : V ! U is a
G-invariant map for which the induced map V/G ! U is a homeomorphism.

Check that the only cone points of the orbifold H/SL
2

(Z) are i with angle
2⇡
2

(i.e. group Gi = Z/2Z) and ⇢ = e
2⇡i
3 with angle 2⇡

3

(i.e. group G⇢ = Z/3Z).
All other points in H/SL

2

(Z) have neighbourhoods homeomorphic to R2.
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1.2 Level structure �0(N), �1(N) and �(N)

Let N � 1 be an integer. Recall that the congruence subgroups �

0

(N),�
1

(N)

and �(N) are defined as follows:

1. �

0

(N) =

⇢
� =

✓
a b
c d

◆
|� 2 SL

2

(Z) � ⌘
✓
⇤ ⇤
0 ⇤

◆
(mod N)

�

(a) �

1

(N) =

⇢
� =

✓
a b
c d

◆
|� 2 SL

2

(Z) � ⌘
✓

1 ⇤
0 1

◆
(mod N)

�

(b) �(N) =

⇢
� =

✓
a b
c d

◆
|� 2 SL

2

(Z) � ⌘
✓

1 0

0 1

◆
(mod N)

�

Exercise 1.5. These act naturally on H via the action of SL
2

(Z). Prove that
we have the following natural bijections between sets:

1. H/�

0

(N) is naturally in bijection with pairs (⇤,⌃) taken up to homothety,
consisting of a lattice ⇤ together with a cyclic subgroup ⌃ ⇢ C/⇤ of order
N .

2. H/�

1

(N) is naturally in bijection with pairs (⇤, P ) taken up to homothety,
consisting of a lattice ⇤ together with a point P 2 C/⇤ of order N .

(Hint: for the first bijection, define a natural surjective map H ! {(⇤,⌃)}/ ⇠
, where ⇠ denotes homothety, in such a way that it factors through H/�

0

(N)

and you get a commutative diagram

H/�

0

(N)

//

✏✏

{(⇤,⌃)}/ ⇠

✏✏
H/SL

2

(Z)

⇠ // {⇤}/ ⇠

.

The vertical maps should be easy to analyze.)

Exercise 1.6. (From [S]) Let E = C/⇤ be the elliptic curve associated to the
lattice ⇤ = Zw

1

� Zw
2

. Recall the Weil pairing

^ : E[N ]⇥ E[N ] ! µN ,

where µN ⇢ C⇥ is the group of Nth roots of unity. The Weil pairing is bilinear,
alternating and non-degenerate. Prove that on E[N ] =

1

N ⇤/⇤ ⇢ C/⇤, the Weil
pairing is given by the formula

✓
aw

1

+ bw
2

N

◆
^

✓
cw

1

+ dw
2

N

◆
= e2⇡i(ad�bc)/N .

(Hint: first prove it for e2⇡ik(ad�bc)/N for some k prime to N . Then compute
w

1

^ w
2

using the definition of ^ and Prop 5.5 of [S])
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Exercise 1.7. Prove that H/�(N) is naturally in bijection with pairs up to
homothety consisting of lattices ⇤ together with a commutative diagram

E[N ] =

1

N ⇤/⇤

^
✏✏

' //
(Z/NZ)

2

^
✏✏

µN
' // Z/NZ

,

where ^ is the Weil pairing on the left hand side and the symplectic pairing
(a, b) ^ (c, d) = ad� bc on the right hand side.

Exercise 1.8. Check that the image of the map

GL
2

(Z) ! GL
2

(Z/NZ)

consists of the matrices in GL
2

(Z/NZ) with determinant ±1.

Exercise 1.9. Understand the argument on pages 7,8 of [C], which shows that
if we define Y/C to be the moduli space of elliptic curves E/C together with an
isomorphism E[N ] ' (Z/NZ)

2 then Y is a disjoint union of '(N) copies of the
modular curve Y (N) = H/�(N). (Here '(N) is the Euler '-function.)

Exercise 1.10. The modular curve X(1) has only one cusp, which we call 1.
How many cusps does the modular curve X

0

(p) of level �

0

(p) have? What is
the degree of ramification of the map X

0

(p) ! X(1) at each cusp? (Hint: for
the second question, use the moduli interpretation to compute the degree of the
map X

0

(p) ! X(1), then show that the cusp of X
0

(p) in the �

0

(p)-orbit of
1 2 P1

(Q) is unramified.)

Let f : X ! Y be a complex analytic map between Riemann surfaces. Then
the Riemann-Hurwitz formula computes the genus gX of X in terms of the genus
gY of Y together with some extra information on the map f :

2� 2gX = (deg f)(2� 2gY )�
X

P

(eP � 1),

where the sum is over points P 2 X where f is ramified with ramification index
eP .

Exercise 1.11. Let p � 5 be a prime number. Compute the genus of X
0

(p)

using the Riemann-Hurwitz formula and Exercise 1.10. (Hint: use example
1.2.10 of [C] as a model.)

Exercise 1.12. (From [C]) Let � ✓ SL
2

(Z) be a congruence subgroup. The
curves X(�) = H⇤/� are compact Riemann surfaces and so, they are algebraic
curves. Why are compact complex manifolds of dimension one algebraic? Un-
derstand why the key point is the existence on X of a meromorphic differential
!. Also understand why the result fails in higher dimensions.
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Exercise 1.13. Recall that a modular form of weight 2 and level �

1

(p) over C
can be defined as a global section of the sheaf !⌦2

X1(p)

on X
1

(p). Use Example
1.2.10 of [C] to compute the dimension of the space of cusp forms of weight 2

and level �

1

(p) over C.
(Hint: use the Kodaira-Spencer isomorphism to reinterpret modular forms

as sections of the sheaf of differentials ⌦

1

X1(p)

(1). Which sections do cusp forms
correspond to?).

Can you compute the dimension of the space of cusp forms of weight 2 and
level �

0

(p) in the same way? What is the dimension for level �

0

(p)?

2 Tate curves and the q-expansion principle

2.1 Tate curves
Exercise 2.1. Let ⌧ be a point on the upper half plane, which defines an elliptic
curve E⌧ . Let q = e2⇡i⌧ Show that we have a uniformization

Gm(C)/qZ ' E⌧ (C)

given by the exponential map.

Recall the definition of the Tate curve T (q), which is an elliptic curve over
the ring of Laurent series Z((q)). Its equation is

y2

+ xy = x3

+ a
4

(q)x + a
6

(q),

where
a
4

= �
X

n�1

n3qn

1� qn
, a

6

= �
X

n�1

(5n3

+ 7n5

)qn

12(1� qn
)

Exercise 2.2. (From [C]) In what context does the definition of Gm/qZ make
sense?

Exercise 2.3. Check that the power series

x(u, q) =

X

n2Z

qnu

(1� qnu)

2

�2

X

n�1

qn

(1� qn
)

2

, y(u, q) =

X

n2Z

qnu2

(1� qnu)

3

+

X

n�1

qn

(1� qn
)

2

formally define points on T (q).
Let K be a local field that is complete with respect to a discrete valuation v.

Check that x(u, q), y(u, q) converge for u, q 2 K⇥ whenever |q|v < 1 and u 62 qZ.
Conclude that in this case we have a map

Gm(K)/qZ ! T (q)(K)

given by u 7! (x(u, q), y(u, q)), and sending 1 to the point at infinity. This map
is an isomorphism.

Exercise 2.4. Use the map you defined in Exercise 1.5 to see which subgroups
of order p in T (q)[p] the different cusps of �

0

(p) correspond to.
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2.2 The q-expansion principle
Recall that the q-expansion principle says that if a modular form (on a connected
modular curve X(�)) has its q-expansion at one cusp vanish, then that modular
form must be identically 0.

Exercise 2.5. Prove Corollary 1.3.2 of [C]. More precisely, let R ,! S be an
inclusion of rings. Let f be a modular form of weight k and level � = �(N)

and assume that N is invertible in R. Suppose that f is a modular form over S
whose q-expansion at one cusp lies in R[[q]] ⇢ S[[q]]. Prove that f is a modular
form with coefficients in R.

(Hint: use one of the equivalent definitions of a modular form to try to come
up with an exact sequence that will help you detect whether f is defined over
R.)

2.3 Hecke operators
Exercise 2.6. Let � = �(N) with (p, N) = 1. Let R be a ring in which p is
invertible. We’ve seen two definitions of the Hecke operator Tp on modular forms
of weight k, level �(N), in addition to the classical one involving q-expansions.
The first is as a correspondence

X
0

(p)

wp //

⇡

✏✏

X
0

(p)

⇡

✏✏
X

Cp // X

,

where wp is an involution sending the �

0

(p)-level structure � : E ! D to the
one given by the dual isogeny b� : E ! D. This correspondence Cp gives rise to
the map

pTp = ⇡⇤(⇡ � wp)
⇤

: H0

(X(�), !k
) ! H0

(X(�), !k
).

The second is the “rule” definition

Tp(E,!, ↵) = pk�1

X

�:D!E

f(D,�⇤(!), �⇤(↵)).

Check that these definitions of Tp coincide.

Exercise 2.7. (From [C]) Consider the following alternative definition of Tp:

Tpf(E,!, ↵) = pk�1

X

�:E/P!E

f(E/P, �⇤(!), �⇤(↵)),

where E is an elliptic curve over R (with p 2 R invertible) and the sum is over
all p + 1 etale subgroup schemes P of order p in E[p]. Understand why the
above definition is sloppy. (Hint: why is Tpf a modular form over R if the maps
� or the subgroup schemes P are not necessarily defined over R. Show that
everything is OK using the q-expansion principle.

5



Exercise 2.8. Let f be a modular form of weight k, level � = �(N, p) (level
�

0

(p) at p) and with coefficients in R, such that p 2 R is invertible. Then f is a
rule assigning a section of !k

E to each triple (E,↵, � : D ! E), where E/R is an
elliptic curve, ↵ is a �(N)-level structure and � is a p-isogeny. The Up operator
is defined as follows:

Upf(E,!, ↵, � : D ! E) = pk�1

X

⌘:B!E

f(B,�⇤(!), �⇤(↵)),

where the sum is over p-isogenies which are distinct from ↵.
Show that this definition is equivalent to the usual one on q-expansions:

Upf = pk�1

1X

n=0

p|n

an/pq
n.

Exercise 2.9. (From [C]) Recall that Mk(�, R, 0) is the space of p-adic modular
forms, which are functions which are non-zero at all points of ordinary reduction.
If f =

P
anqn 2 Mk(�, R, 0), show that

Vpf =

X
anqnp 2 Mk(�, R, 0)

and that UpVp is the identity. Prove it by defining Vp in the correct way.

3 The Hasse invariant and the ordinary and su-
persingular locus

Exercise 3.1. (From [C]) Let E/R be an elliptic curve given by the equation

y2

+ a
1

xy + a
3

y = x3

+ a
2

x2

+ a
4

x + a
6

,

and let ! be the differential

! =

dx

2y + a
1

x + a
3

2 H0

(E/R, ⌦1

).

Let S = R/2. Prove that a
1

(mod 2) = A(ES , !S) is the Hasse invariant.

Exercise 3.2. (From [C]) Let E/R be the same elliptic curve as in Exercise
3.1.

1. Let K be the fraction field of R. Compute the 3-adic valuations of the
x-coordinates of the 3-torsion points of E over ¯K, using the same method
as for 2-torsion in the begining of Section 3 of [C]. Show that there exists
a canonical subgroup of order 3 if the valuation of a

2

is less than 3

4

.

2. Identify a
2

(mod 3) with the Hasse invariant A(ES , !S), where S =

R
3

.
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If we study an elliptic curve E/R in an infinitesimal neighborhood of the
origin, the completed local ring is just R[[x]] (since the curve is smooth), the
meromorphic differentials are of the form R[[x]]dx and the group law can be
written as a power series in two variables G(x, y) 2 R[[x, y]]. The kind of object
we get is a formal group over R.

Definition 3.3. A formal group (law) over R is a power series G(x, y) 2 R[[x, y]]

such that
G(x, y) = x + y + higher order terms

and which satisfies the usual properties of addition (commutativity, associativity
etc.)

For example, the additive group Ga is described by the law G(x, y) = x + y
and the multiplicative group is described by the law G(x, y) = x + y + xy.

Using the addition law, we can define multiplication by any integer. For
example, [p](X) = pX + higher terms, which, in the case when G is obtained
from E, reflects the fact that the isogeny [p] induces multiplication by p on the
tangent space of E.

Exercise 3.4. What is the formula for multiplication by p on Ga and Gm?

An isogeny f : E0 ! E induces a map of formal groups GE0 ! GE0 , which
is a power series f(x) 2 R[[x]] such that f(GE0

(x, y)) = GE(f(x), f(y)).

Exercise 3.5. Let E/R be an elliptic curve with G(x, y) 2 R[[x, y]] its associ-
ated formal group law. Prove that

[p]G(x) ⌘ axp
+ higher terms (mod p)

for some a 2 R/p. (Hint: in characteristic p, the map on the formal group law
of E induced by the Frobenius isogeny is x 7! xp.)

Exercise 3.6. (Adapted from [S]) Let E/¯Fp be an elliptic curve. Show that
the following are equivalent:

1. E[p](

¯Fp) = {0}.

2. The isogeny F_ : E(p) ! E dual to the relative Frobenius is purely
inseparable.

3. The map [p] : E ! E is purely inseparable and j(E) 2 Fp2 .

4. In the formal group G of E, the map [p]G(x) = axp
+ higher terms has

a = 0. (Hint: what does the property of being purely inseparable say
about the map an isogeny induces on tangent spaces?)

If any of these properties hold, we call the elliptic curve E supersingular. Oth-
erwise, we say E is ordinary.
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Exercise 3.7. Let E/R be the same elliptic curve as in Exercise. The differ-
ential

! =

dx

2y + a
1

x + a
3

2 H0

(E/R, ⌦1

)

turns out to be invariant under translation by any point on the elliptic curve
(Prop. 5.1 of [S]). As in [C], in the completion of a local ring of E, the differ-
ential ! can be identified with f(x)dx, for some f(x) 2 R[[x]]. In this infinitesi-
mal neighborhood, the invariance under the formal group law G translates into
f(G(x, y))d(G(x, y)) = f(x)dx.

1. For the invariant differential !, justify the identity f([p]Gx)d([p]G(x)) =

pf(x)dx.

2. From Exercise 3.5, we may assume that:

[p]G(x) ⌘ axp
+ higher terms (mod p)

and we can also set

! = (1 + a
1

x + · · ·+ anxn
+ . . . )dx.

Use the identity above to prove that ap�1

⌘ a (mod p).

Exercise 3.8. Let E/R be an elliptic curve with invariant differential equal to

! = (1 + a
1

x + · · ·+ anxn
+ . . . )dx.

In the same way as in Exercises 3.1,3.2, prove that ap�1

⌘ A(E,!) (mod p).

Exercise 3.9. Putting together Exercises 3.5.3.6.3.7 and 3.8, conclude that an
elliptic curve E over ¯Fp is supersingular if and only if A(E,!) = 0. Equivalently,
E is ordinary if and only if A(E,!) is invertible.

3.1 The geometry of X0(p)/F̄p and Xrig
0 (p)

Exercise 3.10. Which cusp of X(rig)

0

(p) does the canonical subgroup of the
Tate curve T (q) correspond to?

Exercise 3.11. Let p be a prime. We can defne the modular curve X
0

(p)

of level �

0

(p) over ¯Fp as a moduli space of elliptic curves E/¯Fp together with
an isogeny E0 ! E of degree p. Show that over Z[

1

p ], this is equivalent to a
considering pairs (E,C) where C is a subgroup of order p of E[p].

1. Why can’t we define X
0

(p)/¯Fp as a moduli for pairs (E,C), where C ⇢
E[p](

¯Fp) is a subgroup of order p?

2. Use the moduli-theoretic interpretation to prove that the modular curve
X

0

(p) over ¯Fp is a union of two copies of the modular curve X(1) of level 1,
which intersect at the supersingular points. (Hint: what the other possible
isogenies of degree p in characteristic p, in the ordinary case and in the
supersingular case?)
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Exercise 3.12. Let w : X
0

(p) ! X
0

(p) be the involution which sends (E,� :

E0 ! E) to (E0, �_ : E ! E0), where �_ is the dual isogeny to �. We can also
think if w as an involution of Xrig

0

(p).
Describe the rigid-analytic space Xrig

0

(p) with its ordinary and supersingular
loci. Does ! preserve the ordinary and supersingular loci in Xrig

0

(p)? How many
connected components does the ordinary locus have? What does the right side
of the picture on page 31 of [C] look like?

4 The Langlands correspondence for GL
1

Our goal is to reformulate class field theory, in order to illustrate the n =

1 case of the Langlands correspondence, namely the bijection between alge-
braic grossencharacters of a number field K and characters of the Galois group
Gal( ¯K/K). The correspondence between modular forms and Galois represen-
tations will fit in with the n = 2 case.

Definition 4.1. A grossencharacter is a continuous character � : A⇥K/K⇥ !
C⇥, and it is algebraic if for each embedding ⌧ : K ,! C there exists an integer
n⌧ such that �(↵) =

Q
⌧ (⌧(↵))

�n⌧ for every ↵ 2 (K⇥
1)

�. (Here (K⇥
1)

� denotes
the connected component of the identity in K⇥

1.)

Exercise 4.2. Show that a grossencharacter A⇥Q/Q⇥ ! C⇥ which is trivial
on (R⇥)

�
= R>0

is the same thing as a Dirichlet character. (Hint: show that
A⇥ = Q⇥bZR>0

, where bZ is the profinite completion of Z.)

Exercise 4.3. Consider the character � : A⇥K ! C⇥ defined by the product
formula:

�((↵v)v) =

Y

v

|↵v|nv
v ,

where v runs over places of K and | |v denotes valuation, and nv = 2 if v is
complex and nv = 1 otherwise. Show that � is an algebraic grossencharacter.
(Hint: to show that � is trivial on K⇥, first prove the result for K = Q,
then relate the product formula for ↵ 2 K⇥ with the product formula for
NK/Q(↵) 2 Q⇥.)

Definition 4.4. Let p be a prime number. An algebraic character �
0

: A⇥K !
¯Qp is a character with open kernel and such that for each ⌧ : K ,! ¯Qp there is
an integer n⌧ such that �

0

(↵) =

Q
⌧ (⌧(↵))

n⌧ .

Exercise 4.5. (From [G]) Show that if �
0

is an algebraic character, then �
0

takes values in some number field. (Hint: show that A⇥K/(K⇥
ker�

0

) is finite
and that �

0

(K⇥
ker�

0

) is contained in a number field)

Exercise 4.6. (From [G]) Let ◆p :

¯Qp
⇠! C be an isomorphism. Prove that

◆p induces a bijection between p-adic algebraic characters of K and algebraic
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grossencharacters of K. (Hint: Show that �
0

maps to �, defined by

�(↵) = ◆p

0

@�
0

(↵)

Y

⌧ :K,!¯Qp

⌧(↵1)

�n⌧

1

A

where ↵ 2 A⇥K .)

Exercise 4.7. (From [G]) Use the Artin reciprocity map

ArtK : A⇥K/K⇥
(K⇥1)

� ⇠! Gal(Kab/K)

to show that algebraic characters �
0

: A⇥K ! ¯Q⇥p are in bijection with Galois
characters ⇢ : Gal( ¯K/K) ! ¯Q⇥p which are de Rham at all v|p. (Hint: Show
that �

0

maps to ⇢, defined by

(⇢ �ArtK)(↵) = ◆p

0

@�
0

(↵)

Y

⌧ :K,!¯Qp

⌧(↵1)

�n⌧

1

A

where ↵ 2 A⇥K .)

Exercise 4.8. Putting together Exercises 4.5,4.6 and 4.7, we get a bijection
� $ ⇢� between algebraic grossencharacters of K and characters of Gal( ¯K/K)

which are de Rham at p. We’ll call this the global Langlands correspondence
for n = 1.

Let v be a finite place of K. Then �|K⇥
v

corresponds to the character � �
(ArtKv )

�1 of WKv via the local reciprocity map ArtKv : K⇥
v

⇠! W ab

Kv
. State

what the compatibility between local and global Langlands should be for n = 1

and check that it holds.

Exercise 4.9. Let � : A⇥Q/Q⇥ ! C⇥ be the algebraic grossencharacter defined
in Exercise 4.3 (taking K = Q). Can you describe the p-adic character ⇢� of
Gal( ¯Q/Q) corresponding to �?

5 Modular curves and modular forms from the
adelic point of view

The goal of this section is to make explicit the connection between the classical
definition of modular forms and modular curves and the adelic definition, in
order to motivate the definitions in Chapter 4 of [G]. We will work in the case
F = Q, S(D) = ;, so that the quaternion algebra D is just M

2

(Q). We have
one infinite place and so k1 = k and set ⌘1 = 0.

The space SD,k,0 is defined in Chapter 4 of [G]. It has an action of GD(A1)

by right-translation.
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Exercise 5.1. The group GL
2

(R)

+ acts on the upper half plane H via

� =

✓
a b
c d

◆
: ⌧ ! a⌧ + b

c⌧ + d
.

Check that the stabilizer of i 2 H is R>0

SO(2).

Exercise 5.2. Let GL
2

(Q)

+ consist of matrices in GL
2

(Q) with positive de-
terminant. Use strong approximation for SL

2

(essentially the fact that

SL
2

(A1) = SL
2

(Q)SL
2

(

bZ)

to prove that
GL

2

(A1) = GL
2

(Q)

+GL
2

(

bZ).

Now also prove that GL
2

(A) = GL
2

(Q)UGL
2

(R)

+ for any open subgroup U ⇢
GL

2

(

bZ) with detU =

bZ. Can the result still hold for a subgroup U ⇢ GL
2

(

bZ)
with detU 6= bZ?

Exercise 5.3. Let E/C be such an elliptic curve. Then its homology with Q-
coefficients, H := H

1

(E, Q) is a 2-dimensional vector space over Q and H⌦QR '
R2 is naturally equipped with a complex structure (this follows from Hodge
theory). Show that H±

:= C\R parametrizes complex structures h : C ! R2.

Exercise 5.4. Use its moduli interpretation to show that modular curve X(N) =

H/�(N) can be identified with the double coset space GL
2

(Q)\H±⇥GL
2

(A1)/U(N),
where

U(N) = {g 2 GL
2

(

bZ)|g ⌘
✓
⇤ 0

0 1

◆
(mod N)}

and it acts on the right on GL
2

(A1) and GL
2

(Q) acts diagonally on the two
factors.

1. First prove that GL
2

(Q)\H± ⇥ GL
2

(A1)/GL
2

(

bZ) parametrizes elliptic
curves E/C, in the following two steps.

2. Let V = Q2. Show that (⌧, g) 2 H± ⇥GL
2

(A1) determines the following
data: an elliptic curve E⌧/C together with isomorphisms ⌘ : H

1

(E, Q) '
V and ⌘1 : H

1

(E, Q) ⌦ A1 ' V ⌦ A1, in such a way that the GL
2

(Q)-
action on (⌧, g) sends (E, ⌘, ⌘1) to (E, g �⌘, ⌘1). Conclude that you have
a bijection between the points of GL

2

(Q)\H± ⇥ GL
2

(A1) and the pairs
(E, ⌘1).

3. Now let ⇤ = Z2 ⇢ Q2. Consider the triples (E, ⌘, ⌘1). Use Exercise to
ensure that ⌘1 sends H

1

(E, bZ) isomorphically to ⇤ ⌦ bZ, up to possibly
changing ⌘ by some element in GL

2

(Q)

+. Does this depend on the choice
of element in GL

2

(Q)

+? What are the bZ-automorphisms of ⇤⌦ bZ? Con-
clude that GL

2

(Q)\H± ⇥GL
2

(A1)/GL
2

(

bZ) is a moduli space for elliptic
curves E with no extra structure.
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4. Now think about GL
2

(Q)\H±⇥GL
2

(A1)/U(N). How are H
1

(E, Z/NZ)

and E[N ] related?

Exercise 5.5. Use Exercise 5.4 to check that the forms SD,0,0 which are invari-
ant under U(N) are modular functions on X(N).

Exercise 5.6. (Adapted from [G]) Define

U
1

(N) = {g 2 GL
2

(

bZ)|q ⌘
✓
⇤ ⇤
0 1

◆
(mod N)}

1. Let GL
2

(Q)

+ be the subgroup of GL
2

(Q) consisting of matrices with
positive determinant. Show that the intersection of GL

2

(Q)

+ and U
1

(N)

inside Gl
2

(A1) is �

1

(N). (Hint: what is bZ⇥ \Q⇥?)

2. Show that SU1(N)

D,k,0 (the U
1

(N)-invariants in SD,k,0) can be naturally iden-
tified with a space of functions

' : �

1

(N)\GL
2

(R)

+ ! C

satisfying
'(gu1) = j(u1, i)'(g)

for all g 2 GL
2

(R)

+, u1 2 R>0

SO(2).

3. Deduce that there is a natural isomorphism between SU1(N)

D,k,0 and Sk(�

1

(N)),
which takes a function ' as above to the function (gi 7! j(g, i)k'(g)), g 2
GL

2

(R). Why is the latter function well-defined?

Exercise 5.7. Spell out what the role of condition (4) in the definition of SD,k,⌘

is. Why do we need it only in the case when S(D) = ;?

5.1 Hecke operators revisited
Let K/Qp be finite, with ring of integers OK and uniformizer $K .

Exercise 5.8. Let H be the ring generated by comactly supported C-valued
functions on GL

2

(OK)\GL
2

(K)/GL
2

(OK), with multiplication given by con-
volution. Show that H ' C[Tp, S±1

p ], where Tp is the characteristic function
of

GL
2

(OK)

✓
$K 0

0 1

◆
GL

2

(OK)

and Sp is the characteristic function of

GL
2

(OK)

✓
$K 0

0 $K

◆
GL

2

(OK).
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Exercise 5.9. (From [G]) Show that we have decompositions

GL
2

(OK)

✓
$K 0

0 $K

◆
GL

2

(OK) =

✓
$K 0

0 $K

◆
GL

2

(OK).

and

GL
2

(OK)

✓
$K 0

0 1

◆
GL

2

(OK) =

=

0

@
G

↵2OK (mod $K)

✓
$K ↵
0 1

◆
GL

2

(OK)

1

A
G ✓

1 0

0 $K

◆
GL

2

(OK).

Exercise 5.10. Let Sk(�

1

(N)) be the space of cusp forms of weight k and level
�

1

(N) with p - N . Show that the definition of the Hecke operator Tp as the

characteristic function of GL
2

(Zp)

✓
p 0

0 1

◆
GL

2

(Zp) acting on Sk(�

1

(N)) via

its identification with SU1(N)

M2(Q),k,0 (which has an action of GL
2

(A1) by right-
translation) coincides with the rule-based definition

Tpf(E,!, ↵) = pk�1

X

�:E/P!E

f(E/P, �⇤(!), �⇤(↵))

that was introduced in Exercise 2.6.
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