ARIZONA WINTER SCHOOL 2013

EXERCISES: WEAK MAASS FORMS, MOCK MODULAR FORMS, AND q-HYPERGEOMETRIC SERIES

AMANDA FOLSOM

The following 54 exercises are grouped by category, divided into the following 5 sections:

1. Weak Maass forms
2. Mock Jacobi forms
3. q-hypergeometric series
4. Partition theory
5. Quantum modular forms

Each problem is labeled to indicate difficulty level:

$$
\begin{aligned}
\star & =\text { less difficult } \\
\star \star & =\text { medium difficulty }, \\
\star \star \star & =\text { more difficult. }
\end{aligned}
$$

Problems are not necessarily meant to be completed in the order presented, although it will be clear by context that some problems are sequential.

1. Weak Maass forms

Let $H_{\kappa}(\Gamma, \chi)\left(\operatorname{resp} . S_{\kappa}(\Gamma, \chi), M_{\kappa}(\Gamma, \chi), M_{\kappa}^{!}(\Gamma, \chi)\right)$ denote the space of harmonic weak Maass forms (resp. cusp forms, holomorphic modular forms, weakly holomorphic modular forms) of weight κ on $\Gamma \subseteq \mathrm{SL}_{2}(\mathbb{Z})$ with character χ, and $q:=e^{2 \pi i \tau}, \tau \in \mathbb{H}$. Note we will typically write $H_{\kappa}(\Gamma):=H_{\kappa}(\Gamma, 1)\left(\operatorname{resp} . S_{\kappa}(\Gamma), M_{\kappa}(\Gamma), M_{\kappa}^{!}(\Gamma)\right)$, and $\left(\Gamma_{0}(N), \chi\right)=(N, \chi)$.
Problem 1. ($* \star$) Suppose $N \in \mathbb{N}$ and $f \in H_{2-k}\left(\Gamma_{1}(N)\right), 1<k \in \frac{1}{2} \mathbb{Z}$. Prove that f has Fourier expansion of the form

$$
f(\tau)=\sum_{n \gg-\infty} c_{f}^{+}(n) q^{n}+\sum_{n<0} c_{f}^{-}(n) \Gamma(k-1,4 \pi|n| y) q^{n},
$$

where $\tau=x+i y \in \mathbb{H}, x, y \in \mathbb{R}$, and $\Gamma(a, x)$ is the incomplete Γ-function.

Problem 2. ($\star \star$) Let $0<a<c$ be integers. Consider the weak Maass form

$$
D(a, c ; \tau):=q^{4 f_{c}^{2} \frac{a}{c}\left(1-\frac{a}{c}\right)} H\left(a, c ; 4 f_{c}^{2} \tau\right)+V\left(a, c ; 2 f_{c}^{2} \tau\right)
$$

where $f_{c}:=2 c / \operatorname{gcd}(2 c, 4)$, and

$$
\begin{aligned}
V(a, c ; \tau) & :=-\frac{1}{2} \int_{-\bar{\tau}}^{i \infty} \frac{(-i z)^{-3 / 2} T(a, c ;-1 / 2 z)}{\sqrt{-i(z+\tau)}} d z \\
T(a, c ; \tau) & :=i \sum_{n \in \mathbb{Z}}(n+1 / 4) \cosh (2 \pi i(n+1 / 4)(2 a / c-1)) e^{2 \pi i \tau\left(n+\frac{1}{4}\right)^{2}} \\
H(a ; c ; \tau) & :=\sum_{n \geq 0} \frac{q^{n(n+1) / 2}(-q ; q)_{n}}{\left(q^{a / c} ; q\right)_{n+1}\left(q^{1-a / c} ; q\right)_{n+1}}
\end{aligned}
$$

where for $n \in \mathbb{N}_{0},(\alpha ; q)_{n}:=(1-\alpha)(1-\alpha q) \cdots\left(1-\alpha q^{n-1}\right)$.
(a) Prove that $D(a, c ; \tau)$ has a Fourier expansion as in Problem 1.
(b) Prove that $D(a, c ; \tau)$ is annihilated by the weight $1 / 2$ Laplacian operator

$$
\Delta_{\frac{1}{2}}:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\frac{i y}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) .
$$

Problem 3. ($\star \star$) Recall that the ξ_{k}-operator is defined by

$$
\xi_{k}:=2 i y^{k} \frac{\bar{\partial}}{\partial \bar{\tau}}
$$

Let $1<k \in \frac{1}{2} \mathbb{Z}$, and prove that for $f \in H_{2-k}(N, \chi)$ (with Fourier expansion as in Problem 1),

$$
\xi_{2-k}: H_{2-k}(N, \chi) \rightarrow S_{k}(N, \bar{\chi})
$$

and

$$
\xi_{2-k}(f)=-(4 \pi)^{k-1} \sum_{n \geq 1} \overline{c_{f}^{-}(-n)} n^{k-1} q^{n} .
$$

Problem 4. (\star) Let $R_{k}=-4 \pi D+\frac{k}{y}$, where $D:=\frac{1}{2 \pi i} \frac{d}{d \tau}$. Prove Bol's identity, that

$$
D^{k-1}=\frac{1}{(-4 \pi)^{k-1}} R_{2-k}^{k-1}
$$

Problem 5. ($\star \star$) Let $2 \leq k \in \mathbb{Z}$. Prove that if $f \in H_{2-k}(N)$ (with Fourier expansion as in Problem 1), then

$$
D^{k-1}(f) \in M_{k}^{!}(N)
$$

and

$$
D^{k-1} f=\sum_{n \gg-\infty} c_{f}^{+}(n) n^{k-1} q^{n} .
$$

Let $k \in \frac{1}{2} \mathbb{Z}$. For primes p, and $F(\tau)=\sum_{n \gg-\infty} a_{F}(n) q^{n} \in M_{k}^{!}(N, \chi)$, the $T_{k}(p)$ Hecke operator is defined by

$$
\begin{aligned}
F \mid T_{k}(p) & \left.:=\sum_{n \gg-\infty}\left(a_{F}(p n)+\chi(p) p^{k-1} a_{F}(n / p)\right)\right) q^{n}, \quad \text { if } k \in \mathbb{Z}, \\
& :=\sum_{n \gg-\infty}\left(a_{F}\left(p^{2} n\right)+\chi(p)\left(\frac{(-1)^{\lambda} n}{p}\right) p^{\lambda-1} a_{F}(n)+\chi\left(p^{2}\right) p^{2 \lambda-1} a_{F}\left(n / p^{2}\right)\right) q^{n}, \quad \text { if } k=\lambda+\frac{1}{2}, \lambda \in \mathbb{Z} .
\end{aligned}
$$

A Hecke action on weak Maass forms is defined analogously.
Problem 6. ($\star \star$) Let $f \in H_{2-k}(N, \chi)$ and $p \nmid N$ a prime for which $\xi_{2-k}(f) \in S_{k}(N, \bar{\chi})$ is an eigenform of $T_{k}(p)$ with eigenvalue $\lambda(p)$. Prove that

$$
f \mid T_{2-k}(p)-p^{h(k)} \lambda(p) f \in M_{2-k}^{!}(N, \chi)
$$

where $h(k):=2-2 k$ if $k \in \frac{1}{2}+\mathbb{Z}$, and $h(k):=1-k$ if $k \in \mathbb{Z}$.

Problem 7. ($\star \star$) Fill in the details of the proof of Theorem 4.5 of the notes, which pertains to periods and weak Maass forms.

Let ρ_{L} denote the Weil representation associated to L^{\prime} / L, where $L \subseteq V$ is an even lattice and L^{\prime} its dual, and let $M_{k, \rho_{L}}^{!}$denote the space of $\mathbb{C}\left[L^{\prime} / L\right]$-valued, weight k, weakly holomorphic functions of type ρ_{L} for $\widetilde{\Gamma}:=\mathrm{Mp}_{2}(\mathbb{Z})$. (Other spaces $M_{k, \rho}, H_{k, \rho}$ etc. are defined analogously.) For $g \in M_{2-k, \bar{\rho}_{L}}$ and $f \in H_{k, \rho_{L}}$, define the bilinear pairing

$$
\{g, f\}=\left(g, \xi_{k}(f)\right)_{2-k}:=\int_{\Gamma \backslash H}\left\langle g, \xi_{k}(f)\right\rangle y^{2-k} \frac{d x d y}{y^{2}}
$$

where $\langle\cdot, \cdot\rangle$ denotes the Petersson scalar product.

Problem 8. $(\star \star \star)$ Prove that $\{g, f\}$ depends only on the principal part of f.

Problem 9. ($\star \star$) Prove that the Hecke operator $T_{k}(\ell)$ is up to scalar self adjoint with respect to the pairing $\{\cdot, \cdot\}$. That is, show that

$$
\left\{g, f \mid T_{k}(\ell)\right\}=\ell^{2 k-2}\left\{g \mid T_{2-k}(\ell), f\right\}
$$

for any $g \in S_{2-k, \bar{\rho}}$ and $f \in H_{k, \rho}$.

Problem 10. (**) Let $g \in S_{2-k, \bar{\rho}}, f \in H_{k, \rho}$, and suppose $\{g, f\}=1$ and $\left\{g^{\prime}, f\right\}=0$ for all $g^{\prime} \in S_{2-k, \bar{\rho}}$ orthogonal to g. Show that $\xi_{k}(f)=\|g\|^{-2} g$, where $\|\cdot\|$ denotes the Petersson norm.

Problem 11. ($\star \star$) Let $F \subset \mathbb{C}$ be a subfield, and $g \in S_{2-k, \bar{\rho}}(F)$ a newform. (Here, $S_{k, \rho}(F)$ denotes those forms with Fourier coefficients in the field F.) Show that there is some $f \in H_{k, \rho}(F)$ such that

$$
\xi_{k}(f)=\|g\|^{-2} g
$$

Problem 12. ($\star \star$)
(a) Let $f(\tau):=\sum_{n=h}^{\infty} a_{f}(n) q^{n}$ be meromorphic in a neighborhood of $q=0$, and suppose $a_{f}(h)=1$. Prove there exist unique numbers $c(n)$ such that

$$
f(\tau)=q^{h} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{c(n)}
$$

where the product converges in a small neighborhood of $q=0$.
(b) Prove that

$$
\frac{\Theta(f)}{f}=h-\sum_{n=1}^{\infty} \sum_{d \mid n} c(d) d q^{n}
$$

where the Ramanujan Θ-operator is defined by

$$
\Theta\left(\sum_{n=m}^{\infty} b(n) q^{n}\right)=\sum_{n=m}^{\infty} n b(n) q^{n} .
$$

(Equivalently, $\Theta=q \frac{d}{d q}=\frac{1}{2 \pi i} \frac{d}{d \tau}$.)

Problem 13. ($\star \star \star$) The Eisenstein series $E_{4}(\tau)$ is defined by

$$
E_{4}(\tau):=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}
$$

where $\sigma_{m}(n):=\sum_{d \mid n} d^{m}$. Without using the previous exercise, prove that $E_{4}(\tau)$ satisfies

$$
E_{4}(\tau)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{c\left(n^{2}\right)},
$$

where

$$
g(\tau)=\sum_{n \geq-3} c(n) q^{n}=q^{-3}+4-240 q+26760 q^{4}-85995 q^{5}+1707264 q^{8} \ldots
$$

Investigate this property with respect to $E_{6}(\tau)$ and $E_{12}(\tau)$ as well.
The next two problems concern Borcherds products and mock theta functions. Consider one of Ramanujan's mock theta functions,

$$
\omega(q)=\sum_{n=0}^{\infty} a_{\omega}(n) q^{n}:=\sum_{n=0}^{\infty} \frac{q^{2 n(n+1)}}{\left(q ; q^{2}\right)_{n+1}^{2}}=\sum_{n=0}^{\infty} \frac{q^{n}}{\left(q ; q^{2}\right)_{n+1}}
$$

where the last equality follows from a q-hypergeometric identity of Fine. Note that by Problem 48, we have a combinatorial interpretation of the coefficients $a_{\omega}(n)$ of the mock theta function $\omega(q)$. Consider the functions

$$
L_{\omega}(q):=\sum_{n \geq 1} \widehat{\sigma}_{\omega}(n) q^{n}, \quad \widetilde{L}_{\omega}(q):=\sum_{\substack{n \geq 1 \\ \operatorname{gcd}(n, 6)=1}} \widehat{\sigma}_{\omega}(n) q^{n}
$$

where the divisor-like function $\widehat{\sigma}_{\omega}$ is defined on \mathbb{N} by

$$
\widehat{\sigma}_{\omega}(n):=\sum_{1 \leq d \mid n}\left(\frac{d}{3}\right) \chi\left(\frac{n}{d}\right) d \cdot a_{\omega}\left(\frac{2 d^{2}-2}{3}\right)
$$

and $\chi(m):=\left(\frac{-8}{m}\right)$ is defined by the Jacobi symbol.

Problem 14. ($\star \star$) Define the "Borcherds product"

$$
B_{\omega}(\tau):=\prod_{m=1}^{\infty}\left(\frac{1+\sqrt{-2} q^{m}-q^{2 m}}{1-\sqrt{-2} q^{m}-q^{2 m}}\right)^{-4\left(\frac{m}{3}\right) a_{\omega}\left(\frac{2 m^{2}-2}{3}\right)}
$$

from the coefficients $a_{\omega}(n)$ of the mock theta function $\omega(q)$. Using results in [4], argue that $B_{\omega}(\tau)$ is a modular form of level 6 and weight 0 .

The next exercises will establish that $L_{\omega}(q)$ and $\widetilde{L}_{\omega}(q)$ are in fact weight 2 modular forms.

Problem 15. ($\star \star$)
(a) Prove that

$$
\frac{\Theta\left(B_{\omega}(\tau)\right)}{B_{\omega}(\tau)}=-8 \sqrt{-2} L_{\omega}(q)
$$

where Θ is the operator defined previously within $\S 1$.
(b) Deduce that $L_{\omega}(q)$ is modular of weight 2.
(c) Using the operators U_{ℓ} and V_{ℓ} defined by

$$
\sum b(n) q^{n}\left|U_{\ell}:=\sum b(\ell n) q^{n}, \quad \sum b(n) q^{n}\right| V_{\ell}:=\sum b(n) q^{\ell n}
$$

deduce that $\widetilde{L}_{\omega}(q)$ is a modular form of weight 2 .

2. Mock Jacobi forms

Problem 16. (\star) Let $e(z):=e^{2 \pi i z}$. For $z \in \mathbb{C}, \tau \in \mathbb{H}$, define the Mordell integral

$$
h(z ; \tau):=\int_{\mathbb{R}} \frac{e\left(\tau x^{2} / 2\right) e^{-2 \pi z x}}{\cosh (\pi x)} d x
$$

Prove that

$$
h(z ; \tau)+e(-z) q^{-1 / 2} h(z+\tau ; \tau)=2 e(-z / 2) q^{-1 / 8} .
$$

Problem 17. (**) Prove that

$$
h(z ; \tau)+h(z+1 ; \tau)=\frac{2}{\sqrt{-i \tau}} e^{\pi i(z+1 / 2)^{2} / \tau}
$$

Problem 18. ($\star \star$) Prove that $h(z ; \tau)$ is the unique holomorphic function (in z) satisfying the properties from the previous two problems.

For $\tau \in \mathbb{H}$, and $u, v \in \mathbb{C} \backslash(\mathbb{Z} \tau+\mathbb{Z})$, define

$$
\mu(u, v ; \tau):=\frac{e(u / 2)}{\vartheta(v ; \tau)} \sum_{n \in \mathbb{Z}} \frac{(-1)^{n} q^{n(n+1) / 2} e(n v)}{1-q^{n} e(u)}
$$

where the Jacobi ϑ-function is defined by

$$
\vartheta(z ; \tau):=\sum_{n \in \mathbb{Z}} q^{\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}} e((n+1 / 2)(z+1 / 2)) .
$$

Problem 19. (\star) Prove that $\mu(u, v ; \tau)+e(v-u) q^{-1 / 2} \mu(u+\tau, v)=-i e((v-u) / 2) q^{-1 / 8}$.

Problem 20. (\star) Prove that $\mu(u, v ; \tau)$ is a meromorphic function in the variable u, with simple poles for $u \in \mathbb{Z} \tau+\mathbb{Z}$, and residue $-1 /(2 \pi i \vartheta(v ; \tau))$ at $u=0$.

Problem 21. ($\star \star$) Prove that

$$
\frac{1}{\sqrt{-i \tau}} e^{\pi i(u-v)^{2} / \tau} \mu\left(\frac{u}{\tau}, \frac{v}{\tau} ;-\frac{1}{\tau}\right)+\mu(u, v ; \tau)=\frac{1}{2 i} h(u-v ; \tau) .
$$

Let
$R(u ; \tau):=\sum_{n \in \mathbb{Z}}\left\{\operatorname{sgn}\left(n+\frac{1}{2}\right)-E\left(\left(n+\frac{\operatorname{Im}(u)}{\operatorname{Im}(\tau)}+\frac{1}{2}\right) \sqrt{2 y}\right)\right\}(-1)^{n} q^{-\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}} e\left(-\left(n+\frac{1}{2}\right) u\right)$,
where

$$
E(z):=2 \int_{0}^{z} e^{-\pi t^{2}} d t, \quad z \in \mathbb{C} .
$$

Problem 22. (\star) Prove that

$$
R(u ; \tau)+e(-u) q^{-\frac{1}{2}} R(u+\tau ; \tau)=2 e(-u / 2) q^{-\frac{1}{8}} .
$$

Problem 23. (**) Prove that

$$
\frac{1}{\sqrt{-i \tau}} e^{\pi i u^{2} / \tau} R\left(\frac{u}{\tau} ;-\frac{1}{\tau}\right)+R(u, \tau)=h(u ; \tau)
$$

Problem 24. (\star) Problem 21 establishes a key property of the function $\mu(u, v ; \tau)$, namely, it shows precisely how $\mu(u, v ; \tau)$ falls short of transforming like a Jacobi form (see [5]). Use the function $R(w ; \tau)$ to construct a new function $\widetilde{\mu}(u, v ; \tau)$ from $\mu(u, v ; \tau)$ that corrects the "error to modularity" exhibited by $\mu(u, v ; \tau)$ in Problem 21. Discuss the analytic properties of the new function $\widetilde{\mu}(u, v ; \tau)$.

Problem 25. ($\star \star$) Prove that under suitable specializations of parameters, the Mordell integral can be expressed in a different manner, i.e. show that for $u=0$,

$$
-h(0 ; \tau)=\int_{0}^{i \infty} \frac{\theta(u)}{\sqrt{-i(u+\tau)}} d u
$$

where the modular theta function

$$
\theta(\tau):=\sum_{v \in \frac{1}{2}+\mathbb{Z}} v q^{v^{2} / 2} e(v / 2) .
$$

Problem 26. ($\star \star$) Similarly, prove that

$$
R\left(\frac{\tau}{4} ; \tau\right)=-\zeta_{4} q^{\frac{1}{32}} \int_{-\bar{\tau}}^{i \infty} \frac{\sum_{n \in \mathbb{Z}}(-1)^{n}\left(n+\frac{3}{4}\right) e\left(\frac{1}{2}\left(n+\frac{3}{4}\right)^{2} z\right)}{\sqrt{-i(z+\tau)}} d z
$$

where $\zeta_{m}:=e^{2 \pi i / m}$.

Let $f(q)$ denote one of Ramanujan's mock theta functions, defined by

$$
f(q):=\sum_{n \geq 0} \frac{q^{n^{2}}}{(-q ; q)_{n}^{2}}
$$

(For the next 5 problems, see also $\S 3$.)

Problem 27. ($* *$)
(a) Prove that

$$
f(q)=\frac{2}{(q ; q)_{\infty}} \sum_{n \in \mathbb{Z}} \frac{(-1)^{n} q^{\frac{3 n^{2}+n}{2}}}{1+q^{n}}
$$

(b) Prove that

$$
\frac{i q^{-1 / 24}}{2} f(q)=\frac{\eta^{3}(3 \tau)}{\eta(\tau) \vartheta(3 / 2 ; 3 \tau)}-\mu(3 / 2 ;-\tau ; 3 \tau)-\mu(3 / 2, \tau ; 3 \tau),
$$

where $\eta(\tau)$ is Dedekind's η-function, and $\vartheta(z ; \tau)$ is defined previously within $\S 2$.

Problem 28. ($\star \star$) Prove that $q^{-1 / 24} f(q)$ is a weight $1 / 2$ mock modular form with shadow proportional to

$$
\sum_{n \in \mathbb{Z}}\left(\frac{12}{n}\right) n \cdot e(n / 4) \cdot q^{n^{2} / 24}
$$

Consider the "universal" mock theta functions of Gordon and McIntosh

$$
\begin{aligned}
& g_{2}(w ; q):=\sum_{n \geq 0} \frac{(-q ; q)_{n} q^{n(n+1) / 2}}{(w ; q)_{n+1}(q / w ; q)_{n+1}}, \\
& g_{3}(w ; q):=\sum_{n \geq 0} \frac{q^{n(n+1)}}{(w ; q)_{n+1}(q / w ; q)_{n+1}} .
\end{aligned}
$$

Problem 29. ($* * *$)
(a) For $\alpha \in \mathbb{C}, \alpha \notin \mathbb{Z} \tau+\frac{1}{2} \mathbb{Z}$, prove that

$$
e(\alpha) g_{2}(w ; q)=\frac{\eta^{4}(2 \tau)}{i \eta^{2}(\tau) \vartheta(2 \alpha ; 2 \tau)}+e(\alpha) q^{-1 / 4} \mu(2 \alpha, \tau ; 2 \tau)
$$

(b) Prove that for $\zeta \neq 1$ a root of unity, $\zeta g_{2}(\zeta ; q)+1 / 2$ is a mock modular form of weight $1 / 2$ with shadow proportional to

$$
\sum_{n \in \mathbb{Z}}(-1)^{n} n \zeta^{-2 n} q^{n^{2}}
$$

Consider another of Ramanujan's mock theta functions

$$
\psi(q):=\sum_{n \geq 1} \frac{q^{n^{2}}}{\left(q ; q^{2}\right)_{n}}
$$

Problem 30. ($\star \star$) Prove that

$$
f(-q)+4 \psi(q)=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{7}}{(q ; q)_{\infty}^{3}\left(q^{4} ; q^{4}\right)_{\infty}^{3}}=: c(q)
$$

and deduce that $q^{-1 / 24}(f(-q)+4 \psi(q))$ is a modular form of weight $1 / 2$ on a congruence subgroup.

Problem 31. ($\star \star$)
(a) Find 3 different mock modular forms of weight $1 / 2$ with the same shadow as $f(q)$.
(b) Use these mock modular forms to create non-trivial, and different, modular forms.

3. q-HYPERGEOMETRIC SERIES

Let $\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{n}:=\prod_{j=1}^{r}\left(a_{j} ; q\right)_{n}$. The q-hypergeometric series are defined by

$$
{ }_{r} \phi_{s}\left(\begin{array}{cccc}
a_{1} & a_{1}, & \ldots & a_{r} \\
b_{1}, & b_{2}, & \ldots & b_{s}
\end{array} ; z\right):=\sum_{n \geq 0} \frac{\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{n}}{\left(b_{1}, b_{2}, \ldots, b_{s}, q ; q\right)_{n}}\left((-1)^{n} q^{\frac{n(n-1)}{2}}\right)^{1+s-r} z^{n}
$$

where $r, s \in \mathbb{N}_{0},|z|<1,|q|<1, b_{j} \neq q^{-m}$ for any $m \in \mathbb{N}_{0}$. The celebrated Watson-Whipple transformation is given by

$$
\begin{aligned}
{ }_{8} \phi_{7} & \left(\begin{array}{cccccc}
a, & q \sqrt{a}, & -q \sqrt{a}, & b, & c, & d, \\
\sqrt{a} & -\sqrt{a}, & a q / b, & a q / c, & a q / d, & a q / e, \\
a q^{N+1} & q^{-N} & ; q ; \frac{a^{2} q^{N+2}}{b c d e}
\end{array}\right) \\
& =\frac{(a q ; q)_{N}(a q / d e ; q)_{N}}{(a q / d ; q)_{N}(a q / e ; q)_{N}}{ }_{4} \phi_{3}\left(\begin{array}{cccc}
a q / b c & d, & e, & q^{-N} \\
d e q^{-N} / a, & a q / b, & a q / c & ; q ; q)
\end{array}\right.
\end{aligned}
$$

The Watson-Whipple q-hypergeometric transformation formula leads to the following identity

$$
\begin{aligned}
\sum_{n \geq 0} & \frac{(\alpha, \beta, \gamma, \delta, \epsilon ; q)_{n}\left(1-\alpha q^{2 n}\right) q^{n(n+3) / 2}}{(\alpha q / \beta, \alpha q / \gamma, \alpha q / \delta, \alpha q / \epsilon, q ; q)_{n}(1-\alpha)}\left(-\frac{\alpha^{2}}{\beta \gamma \delta \epsilon}\right)^{n} \\
& =\frac{(\alpha q, \alpha q /(\delta \epsilon) ; q)_{\infty}}{(\alpha q / \delta, \alpha q / \epsilon ; q)_{\infty}} \sum_{n \geq 0} \frac{(\delta, \epsilon, \alpha q /(\beta \gamma) ; q)_{n}}{(\alpha q / \beta, \alpha q / \gamma, q ; q)_{n}}\left(\frac{\alpha q}{\delta \epsilon}\right)^{n}
\end{aligned}
$$

Problem 32. ($\star \star$) Prove that

$$
\sum_{n \in \mathbb{Z}} \frac{(-1)^{n} q^{n(n+1) / 2}}{1-w q^{n}}=\frac{(q ; q)_{\infty}^{2}}{(w ; q)_{\infty}(q / w ; q)_{\infty}}
$$

For the next two problems, see also $\S 2$.

Problem 33. ($\star \star$) Prove that the q-hypergeometric "universal" mock theta functions defined in §2 satisfy

$$
\begin{aligned}
& g_{2}(w ; q)=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \sum_{n \in \mathbb{Z}} \frac{(-1)^{n} q^{n(n+1)}}{1-w q^{n}} \\
& g_{3}(w ; q)=\frac{1}{(q ; q)_{\infty}} \sum_{n \in \mathbb{Z}} \frac{(-1)^{n} q^{3 n(n+1) / 2}}{1-w q^{n}}
\end{aligned}
$$

Problem 34. ($\star \star)$ Let $\alpha \in \mathbb{C} \backslash\left(\mathbb{Z} \tau+\frac{1}{2} \mathbb{Z}\right)$. Prove that

$$
e(\alpha)\left(g_{2}(e(\alpha) ; q)+g_{2}(-e(\alpha) ; q)\right)=2 \frac{\eta^{4}(2 \tau)}{i \eta^{2}(\tau) \vartheta(2 \alpha ; 2 \tau)}
$$

where $\vartheta(z ; \tau)$ is the Jacobi ϑ-function defined in $\S 2$, and $e(z):=e^{2 \pi i z}$.

Problem 35. ($\star \star \star$) Prove Ramanujan's ${ }_{1} \psi_{1}$ summation formula

$$
{ }_{1} \psi_{1}(\alpha, \beta ; q ; z):=\sum_{n \in \mathbb{Z}} \frac{(\alpha ; q)_{n}}{(\beta ; q)_{n}} z^{n}=\frac{(\beta / \alpha, \alpha z, q /(\alpha z), q ; q)_{\infty}}{(q / \alpha, \beta /(\alpha z), \beta, z ; q)_{\infty}}
$$

for $|\beta / \alpha|<|z|<1$.

Problem 36. ($* *$) Define

$$
{ }_{2} \psi_{2}\left(\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array} q, z\right):=\sum_{n \in \mathbb{Z}} \frac{\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n}}{\left(b_{1} ; q\right)_{n}\left(b_{2} ; q\right)_{n}} z^{n}
$$

Prove Bailey's ${ }_{2} \psi_{2}$ summation formula

$$
{ }_{2} \psi_{2}\left(\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array} q, z\right)=\frac{\left(\frac{b_{2} q}{a_{1} a_{2} z} ; q\right)_{\infty}\left(\frac{b_{1}}{a_{2}} ; q\right)_{\infty}\left(a_{1} z ; q\right)_{\infty}\left(\frac{b_{2}}{a_{1}} ; q\right)_{\infty}}{\left(\frac{q}{a_{2}} ; q\right)_{\infty}\left(\frac{b_{1} b_{2}}{a_{1} a_{2} z} ; q\right)_{\infty}\left(b_{2} ; q\right)_{\infty}(z ; q)_{\infty}} \cdot \psi_{2}\left(\begin{array}{ccc}
\frac{a_{1} a_{2} z}{b_{2}} & a_{1} \\
a_{1} z & b_{1} & q, \frac{b_{2}}{a_{1}}
\end{array}\right) .
$$

4. Partition theory

Problem 37. (\star) Let S be a set of positive integers.
(a) Show that

$$
P_{S}(q):=\sum_{n \geq 0} p_{S}(n) q^{n}=\prod_{n \in S} \frac{1}{1-q^{n}}
$$

for $|q|<1$, where $p_{S}(n):=$ number of partitions of n with parts in S.
(b) Find sets S for which $P_{S}(q)$ is modular (when $q=e(\tau)$).

Problem 38. (\star) Prove for $|z|<1$, that

$$
1+\sum_{n \geq 1} \frac{z^{n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{m \geq 0}\left(1-z q^{m}\right)^{-1}
$$

Problem 39. (**) Show that

$$
\sum_{n \geq 0} p(n) q^{n}=\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}^{2}}=\sum_{n \geq 0} \frac{q^{n}}{(q ; q)_{n}}
$$

where $p(n):=\#\{$ number of partitions of $n\}$.

Problem 40. ($\star \star$)
(a) If $p_{m}(n):=$ number of partitions of n with at most m parts, show that $p_{m}(n) \leq(n+1)^{m}$ for each $m>0$.
(b) Show that $\lim _{n \rightarrow \infty} p(n)^{1 / n}=1$.
(c) Deduce that $\prod_{k \geq 1} \frac{1}{1-q^{k}}$ converges for $|q|<1$.
(d) Prove that $\sum_{n \geq 0} p(n) q^{n}=\prod_{k \geq 1} \frac{1}{1-q^{k}}$.

Problem 41. (\star) Let S be a subset of \mathbb{N}. Prove that

$$
\sum_{n \geq 0} p(n \mid \text { distinct parts in } S) q^{n}=\prod_{m \in S}\left(1+q^{m}\right)
$$

Problem 42. (\star) Prove that

$$
\begin{aligned}
& p(n \mid \text { distinct parts congruent to } 1,2,4 \bmod 7) \\
& \quad=p(n \mid \text { parts congruent to } 1,9,11 \bmod 14)
\end{aligned}
$$

Problem 43. (**) Prove that

$$
1+\sum_{n \geq 1}\left(p_{e}(n)-p_{o}(n)\right) q^{n}=\prod_{m \geq 1}\left(1-q^{m}\right)
$$

where
$p_{e}(n):=p(n \mid$ even number of distinct parts), $p_{o}(n):=p(n \mid$ odd number of distinct parts).

Problem 44. (\star) Prove that

$$
p(n \mid \text { all parts are odd }) \equiv 0 \bmod 2
$$

except when $n=j(3 j \pm 1) / 2, j \in \mathbb{Z}$.

Problem 45. (\star) A partition is self conjugate if it is equal to its conjugate. For example, the two self-conjugate partitions of $8(4+2+1+1$, and $3+3+2)$ are represented as:

By connecting dots lying on successive right angles, we obtain two new partitions of 8 $(7+1$, and $5+3)$ as follows:

Prove that the number of self-conjugate partitions of n equals the number of partitions of n into distinct odd parts.

Problem 46. (\star) This problem is concerned with finding exact expressions for restricted partition numbers. Suppose $T=\{1,2,3\}$, and $\rho:=e^{2 \pi i / 3}$.
(a) Verify the following generating function for $p_{T}(n):=p(n \mid$ parts in T$)$:

$$
\sum_{n \geq 1} p_{T}(n) q^{n}=\frac{1}{6(1-q)^{3}}+\frac{1}{4(1-q)^{2}}+\frac{17}{72(1-q)}+\frac{1}{8(1+q)}+\frac{1}{9(1-\rho q)}+\frac{1}{9\left(1-\rho^{2} q\right)}
$$

(b) Show that this implies

$$
\begin{aligned}
p_{T}(n) & =\frac{(n+2)(n+1)}{12}+\frac{n+1}{4}+\frac{17}{72}+\frac{(-1)^{n}}{8}+\frac{1}{9}\left(\rho^{n}+\rho^{2 n}\right) \\
& =\frac{(n+3)^{2}}{12}+r(n)
\end{aligned}
$$

where $|r(n)|<\frac{1}{2}$.
(c) Deduce that $p_{T}(n)$ is the nearest integer to $\frac{(n+3)^{2}}{12}$.

Problem 47. ($\star \star$) The rank of a partition is defined to be its largest part of the partition minus the number of its parts. Let $N(n, m):=\#\{$ partitions of n with rank $m\}$.
(a) Show that

$$
\sum_{n \geq 0} \sum_{m \in \mathbb{Z}} N(n, m) z^{m} q^{n}=\sum_{n \geq 0} \frac{q^{n^{2}}}{(z q ; q)_{n}(q / z ; q)_{n}}
$$

(b) Determine a combinatorial interpretation for the coefficients of the mock theta function $f(q)$ defined in $\S 2$.

Problem 48. (\star) Determine a combinatorial interpretation for the coefficients $a_{\omega}(n)$ of the mock theta function $\omega(q)$ as defined in $\S 1$. (Check your interpretation by explicitly looking at partitions of a few small integers.)

5. QUANTUM MODULAR FORMS

Consider another of Ramanujan's mock theta functions

$$
\phi(q):=\sum_{n \geq 0} \frac{q^{n^{2}}}{\left(-q^{2} ; q^{2}\right)_{n}}
$$

The functions $c(q)$ and $\psi(q)$ are defined in $\S 2$. Take note of the singularites of the functions ϕ and ψ. The exercises in this section establish the following proposition, studied by Robert C. Rhoades.

Proposition. As $q \rightarrow \zeta$ radially from within the unit disk, where ζ is a primitive $4 k$ th root of unity, we have that

$$
\lim _{q \rightarrow \zeta}(\phi(q)-c(q))=-2 \sum_{n \geq 0} \zeta^{n+1}\left(-\zeta^{2} ; \zeta^{2}\right)_{n}=-\psi(\zeta)
$$

Moreover, as $q \rightarrow \rho$ radially from within the unit disk, where ρ is a primitive odd order root of unity, we have that and

$$
\lim _{q \rightarrow \rho}(\psi(q)-c(q) / 2)=-\frac{1}{2}\left(1+\sum_{n \geq 0}(-1)^{n} \rho^{2 n+1}\left(\rho ; \rho^{2}\right)_{n}\right) .
$$

Problem 49. ($\star \star$) Prove that

$$
\psi(q)=\sum_{n=0}^{\infty} q^{n+1}\left(-q^{2} ; q^{2}\right)_{n}
$$

Problem 50. ($\star \star$) Prove that

$$
\phi(q)+2 \psi(q)=c(q) .
$$

Problem 51. ($\star \star$) Prove for any primitive $4 k$ th root of unity ζ, we have

$$
\lim _{q \rightarrow \zeta}(\phi(q)-c(q))=-2 \sum_{n \geq 0} \zeta^{n+1}\left(-\zeta^{2} ; \zeta^{2}\right)_{n} .
$$

Problem 52. ($\star \star$) Prove that

$$
\phi(q)=1+\sum_{n \geq 0}(-1)^{n} q^{2 n+1}\left(q ; q^{2}\right)_{n}
$$

Problem 53. ($\star \star$) Prove for any primitive odd order root of unity ρ, we have

$$
\lim _{q \rightarrow \rho}(\psi(q)-c(q) / 2)=-\frac{1}{2}\left(1+\sum_{n \geq 0}(-1)^{n} \rho^{2 n+1}\left(\rho ; \rho^{2}\right)_{n}\right)
$$

Problem 54. ($* *$) What can you say about the series

$$
\sum_{n \in \mathbb{Z}}\left(-q^{2}\right)^{n}\left(q ; q^{2}\right)_{n} ?
$$

References

[1] G.E. Andrews and K. Eriksson, Integer partitions, Cambridge University Press, Cambridge, (2004).
[2] R.E. Borcherds, Automorphic forms on $O_{s+2,2}(R)$ and infinite products, Invent. Math. 120 (1995), 161-213.
[3] J. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), 45-90.
[4] J.H. Bruinier and K. Ono, Heegner divisors, L-functions, and Maass forms, Ann. of Math., 172 (2010), 2135-2181.
[5] M. Eichler and D. Zagier, The theory of Jacobi forms, Progress in Mathematics, 55. Birkhäuser Boston, Boston, MA, (1985).
[6] B. Gordon and R.J. McIntosh, A survey of the classical mock theta functions, Dev. Math. 23 (2012), Springer, 95-144.
[7] K. Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, Proceedings of the 2008 Harvard-MIT Current Developments in Mathematics Conference, International Press, Somerville, MA, 2009, 347-454.
[8] D. Zagier, Ramanujan's mock theta functions and their applications (after Zwegers and Ono-Bringmann), Séminaire Bourbaki, Vol. 2007/2008. Astérisque No. 326 (2009), Exp. No. 986, vii-viii, 143-164 (2010).
[9] S. Zwegers, Mock theta functions, Ph.D. Thesis, Universiteit Utrecht, (2002).

Department of Mathematics, Yale University, P.O. Box 208283, New Haven, CT 06520-8283 E-mail address: amanda.folsom@yale.edu

