ARIZONA WINTER SCHOOL 2013

EXERCISES: WEAK MAASS FORMS, MOCK MODULAR FORMS, AND *q*-HYPERGEOMETRIC SERIES

AMANDA FOLSOM

The following 54 exercises are grouped by category, divided into the following 5 sections:

- 1. Weak Maass forms
- 2. Mock Jacobi forms
- 3. q-hypergeometric series
- 4. Partition theory
- 5. Quantum modular forms

Each problem is labeled to indicate difficulty level:

* = less difficult,
** = medium difficulty,
* * * = more difficult.

Problems are not necessarily meant to be completed in the order presented, although it will be clear by context that some problems are sequential.

1. Weak Maass forms

Let $H_{\kappa}(\Gamma, \chi)$ (resp. $S_{\kappa}(\Gamma, \chi), M_{\kappa}(\Gamma, \chi), M_{\kappa}^{!}(\Gamma, \chi)$) denote the space of harmonic weak Maass forms (resp. cusp forms, holomorphic modular forms, weakly holomorphic modular forms) of weight κ on $\Gamma \subseteq SL_2(\mathbb{Z})$ with character χ , and $q := e^{2\pi i \tau}, \tau \in \mathbb{H}$. Note we will typically write $H_{\kappa}(\Gamma) := H_{\kappa}(\Gamma, 1)$ (resp. $S_{\kappa}(\Gamma), M_{\kappa}(\Gamma), M_{\kappa}^{!}(\Gamma)$), and $(\Gamma_0(N), \chi) = (N, \chi)$.

Problem 1. $(\star\star)$ Suppose $N \in \mathbb{N}$ and $f \in H_{2-k}(\Gamma_1(N))$, $1 < k \in \frac{1}{2}\mathbb{Z}$. Prove that f has Fourier expansion of the form

$$f(\tau) = \sum_{n \gg -\infty} c_f^+(n) q^n + \sum_{n < 0} c_f^-(n) \Gamma(k - 1, 4\pi |n|y) q^n,$$

where $\tau = x + iy \in \mathbb{H}, x, y \in \mathbb{R}$, and $\Gamma(a, x)$ is the incomplete Γ -function.

Problem 2. $(\star\star)$ Let 0 < a < c be integers. Consider the weak Maass form

$$D(a,c;\tau) := q^{4f_c^2 \frac{a}{c} \left(1 - \frac{a}{c}\right)} H(a,c;4f_c^2 \tau) + V(a,c;2f_c^2 \tau),$$

where $f_c := 2c/\gcd(2c, 4)$, and

$$\begin{split} V(a,c;\tau) &:= -\frac{1}{2} \int_{-\tau}^{i\infty} \frac{(-iz)^{-3/2} T(a,c;-1/2z)}{\sqrt{-i(z+\tau)}} dz, \\ T(a,c;\tau) &:= i \sum_{n \in \mathbb{Z}} (n+1/4) \cosh(2\pi i (n+1/4)(2a/c-1)) e^{2\pi i \tau \left(n+\frac{1}{4}\right)^2}, \\ H(a;c;\tau) &:= \sum_{n \ge 0} \frac{q^{n(n+1)/2} (-q;q)_n}{(q^{a/c};q)_{n+1} (q^{1-a/c};q)_{n+1}}, \end{split}$$

where for $n \in \mathbb{N}_0$, $(\alpha; q)_n := (1 - \alpha)(1 - \alpha q) \cdots (1 - \alpha q^{n-1}).$

- (a) Prove that $D(a, c; \tau)$ has a Fourier expansion as in Problem 1.
- (b) Prove that $D(a, c; \tau)$ is annihilated by the weight 1/2 Laplacian operator

$$\Delta_{\frac{1}{2}} := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + \frac{iy}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

Problem 3. $(\star\star)$ Recall that the ξ_k -operator is defined by

$$\xi_k := 2iy^k \overline{\frac{\partial}{\partial \overline{\tau}}}.$$

Let $1 < k \in \frac{1}{2}\mathbb{Z}$, and prove that for $f \in H_{2-k}(N,\chi)$ (with Fourier expansion as in Problem 1),

$$\xi_{2-k}: H_{2-k}(N,\chi) \to S_k(N,\overline{\chi}),$$

and

$$\xi_{2-k}(f) = -(4\pi)^{k-1} \sum_{n \ge 1} \overline{c_f(-n)} n^{k-1} q^n.$$

Problem 4. (*) Let
$$R_k = -4\pi D + \frac{k}{y}$$
, where $D := \frac{1}{2\pi i} \frac{d}{d\tau}$. Prove Bol's identity, that
$$D^{k-1} = \frac{1}{(-4\pi)^{k-1}} R^{k-1}_{2-k}.$$

Problem 5. $(\star\star)$ Let $2 \leq k \in \mathbb{Z}$. Prove that if $f \in H_{2-k}(N)$ (with Fourier expansion as in Problem 1), then

$$D^{k-1}(f) \in M_k^!(N),$$

and

$$D^{k-1}f = \sum_{n \gg -\infty} c_f^+(n) n^{k-1} q^n.$$

Let $k \in \frac{1}{2}\mathbb{Z}$. For primes p, and $F(\tau) = \sum_{n \gg -\infty} a_F(n)q^n \in M_k^!(N,\chi)$, the $T_k(p)$ Hecke operator is defined by

$$\begin{split} F|T_k(p) &:= \sum_{n \gg -\infty} \left(a_F(pn) + \chi(p) p^{k-1} a_F(n/p) \right) \right) q^n, \quad \text{if } k \in \mathbb{Z}, \\ &:= \sum_{n \gg -\infty} \left(a_F(p^2n) + \chi(p) \left(\frac{(-1)^{\lambda}n}{p} \right) p^{\lambda - 1} a_F(n) + \chi(p^2) p^{2\lambda - 1} a_F(n/p^2) \right) q^n, \quad \text{if } k = \lambda + \frac{1}{2}, \lambda \in \mathbb{Z}. \end{split}$$

A Hecke action on weak Maass forms is defined analogously.

Problem 6. $(\star\star)$ Let $f \in H_{2-k}(N,\chi)$ and $p \nmid N$ a prime for which $\xi_{2-k}(f) \in S_k(N,\overline{\chi})$ is an eigenform of $T_k(p)$ with eigenvalue $\lambda(p)$. Prove that

$$f|_{T_{2-k}(p)} - p^{h(k)}\lambda(p)f \in M^!_{2-k}(N,\chi),$$

where $h(k) := 2 - 2k$ if $k \in \frac{1}{2} + \mathbb{Z}$, and $h(k) := 1 - k$ if $k \in \mathbb{Z}$.

Problem 7. $(\star\star)$ Fill in the details of the proof of Theorem 4.5 of the notes, which pertains to periods and weak Maass forms.

Let ρ_L denote the Weil representation associated to L'/L, where $L \subseteq V$ is an even lattice and L' its dual, and let $M_{k,\rho_L}^!$ denote the space of $\mathbb{C}[L'/L]$ -valued, weight k, weakly holomorphic functions of type ρ_L for $\widetilde{\Gamma} := Mp_2(\mathbb{Z})$. (Other spaces $M_{k,\rho}, H_{k,\rho}$ etc. are defined analogously.) For $g \in M_{2-k,\overline{\rho}_L}$ and $f \in H_{k,\rho_L}$, define the bilinear pairing

$$\{g,f\} = (g,\xi_k(f))_{2-k} := \int_{\Gamma \setminus H} \langle g,\xi_k(f) \rangle y^{2-k} \frac{dxdy}{y^2}$$

where $\langle \cdot, \cdot \rangle$ denotes the Petersson scalar product.

Problem 8. $(\star\star\star)$ Prove that $\{g, f\}$ depends only on the principal part of f.

Problem 9. $(\star\star)$ Prove that the Hecke operator $T_k(\ell)$ is up to scalar self adjoint with respect to the pairing $\{\cdot, \cdot\}$. That is, show that

$$\{g, f | T_k(\ell)\} = \ell^{2k-2} \{g | T_{2-k}(\ell), f\}$$
for any $g \in S_{2-k,\overline{\rho}}$ and $f \in H_{k,\rho}$.

Problem 10. $(\star\star)$ Let $g \in S_{2-k,\bar{\rho}}$, $f \in H_{k,\rho}$, and suppose $\{g, f\} = 1$ and $\{g', f\} = 0$ for all $g' \in S_{2-k,\bar{\rho}}$ orthogonal to g. Show that $\xi_k(f) = ||g||^{-2}g$, where $\|\cdot\|$ denotes the Petersson norm.

AMANDA FOLSOM

Problem 11. $(\star\star)$ Let $F \subset \mathbb{C}$ be a subfield, and $g \in S_{2-k,\overline{\rho}}(F)$ a newform. (Here, $S_{k,\rho}(F)$ denotes those forms with Fourier coefficients in the field F.) Show that there is some $f \in H_{k,\rho}(F)$ such that

$$\xi_k(f) = \|g\|^{-2}g$$

Problem 12. $(\star\star)$

(a) Let $f(\tau) := \sum_{n=h}^{\infty} a_f(n)q^n$ be meromorphic in a neighborhood of q = 0, and suppose $a_f(h) = 1$. Prove there exist unique numbers c(n) such that

$$f(\tau) = q^h \prod_{n=1}^{\infty} (1 - q^n)^{c(n)},$$

where the product converges in a small neighborhood of q = 0.

(b) Prove that

$$\frac{\Theta(f)}{f} = h - \sum_{n=1}^{\infty} \sum_{d|n} c(d) dq^n,$$

where the Ramanujan Θ -operator is defined by

$$\Theta\left(\sum_{n=m}^{\infty} b(n)q^n\right) = \sum_{n=m}^{\infty} nb(n)q^n.$$
(Equivalently, $\Theta = q\frac{d}{dq} = \frac{1}{2\pi i}\frac{d}{d\tau}.$)

Problem 13. $(\star\star\star)$ The Eisenstein series $E_4(\tau)$ is defined by

$$E_4(\tau) := 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n,$$

where $\sigma_m(n) := \sum_{d|n} d^m$. Without using the previous exercise, prove that $E_4(\tau)$ satisfies

$$E_4(\tau) = \prod_{n=1}^{\infty} (1 - q^n)^{c(n^2)},$$

where

$$g(\tau) = \sum_{n \ge -3} c(n)q^n = q^{-3} + 4 - 240q + 26760q^4 - 85995q^5 + 1707264q^8 \dots$$

Investigate this property with respect to $E_6(\tau)$ and $E_{12}(\tau)$ as well.

The next two problems concern Borcherds products and mock theta functions. Consider one of Ramanujan's mock theta functions,

$$\omega(q) = \sum_{n=0}^{\infty} a_{\omega}(n)q^n := \sum_{n=0}^{\infty} \frac{q^{2n(n+1)}}{(q;q^2)_{n+1}^2} = \sum_{n=0}^{\infty} \frac{q^n}{(q;q^2)_{n+1}},$$

4

where the last equality follows from a q-hypergeometric identity of Fine. Note that by Problem 48, we have a combinatorial interpretation of the coefficients $a_{\omega}(n)$ of the mock theta function $\omega(q)$. Consider the functions

$$L_{\omega}(q) := \sum_{n \ge 1} \widehat{\sigma}_{\omega}(n) q^n, \qquad \widetilde{L}_{\omega}(q) := \sum_{\substack{n \ge 1\\ \gcd(n, 6) = 1}} \widehat{\sigma}_{\omega}(n) q^n,$$

where the divisor-like function $\widehat{\sigma}_{\omega}$ is defined on \mathbb{N} by

$$\widehat{\sigma}_{\omega}(n) := \sum_{1 \le d|n} \left(\frac{d}{3}\right) \chi\left(\frac{n}{d}\right) d \cdot a_{\omega}\left(\frac{2d^2 - 2}{3}\right),$$

and $\chi(m) := \left(\frac{-8}{m}\right)$ is defined by the Jacobi symbol.

Problem 14. $(\star\star)$ Define the "Borcherds product"

$$B_{\omega}(\tau) := \prod_{m=1}^{\infty} \left(\frac{1 + \sqrt{-2}q^m - q^{2m}}{1 - \sqrt{-2}q^m - q^{2m}} \right)^{-4\left(\frac{m}{3}\right)a_{\omega}\left(\frac{2m^2 - 2}{3}\right)}$$

from the coefficients $a_{\omega}(n)$ of the mock theta function $\omega(q)$. Using results in [4], argue that $B_{\omega}(\tau)$ is a modular form of level 6 and weight 0.

The next exercises will establish that $L_{\omega}(q)$ and $\widetilde{L}_{\omega}(q)$ are in fact weight 2 modular forms.

Problem 15. $(\star\star)$

(a) Prove that

$$\frac{\Theta(B_{\omega}(\tau))}{B_{\omega}(\tau)} = -8\sqrt{-2}L_{\omega}(q),$$

where Θ is the operator defined previously within §1.

- (b) Deduce that $L_{\omega}(q)$ is modular of weight 2.
- (c) Using the operators U_{ℓ} and V_{ℓ} defined by

$$\sum b(n)q^n | U_\ell := \sum b(\ell n)q^n, \qquad \sum b(n)q^n | V_\ell := \sum b(n)q^{\ell n},$$

deduce that $\widetilde{L}_{\omega}(q)$ is a modular form of weight 2.

AMANDA FOLSOM

2. Mock Jacobi forms

Problem 16. (*) Let $e(z) := e^{2\pi i z}$. For $z \in \mathbb{C}$, $\tau \in \mathbb{H}$, define the Mordell integral

$$h(z;\tau) := \int_{\mathbb{R}} \frac{e(\tau x^2/2)e^{-2\pi zx}}{\cosh(\pi x)} dx.$$

Prove that

$$h(z;\tau) + e(-z)q^{-1/2}h(z+\tau;\tau) = 2e(-z/2)q^{-1/8}.$$

Problem 17. $(\star\star)$ Prove that

$$h(z;\tau) + h(z+1;\tau) = \frac{2}{\sqrt{-i\tau}}e^{\pi i(z+1/2)^2/\tau}.$$

Problem 18. $(\star\star)$ Prove that $h(z;\tau)$ is the unique holomorphic function (in z) satisfying the properties from the previous two problems.

For $\tau \in \mathbb{H}$, and $u, v \in \mathbb{C} \setminus (\mathbb{Z}\tau + \mathbb{Z})$, define

$$\mu(u, v; \tau) := \frac{e(u/2)}{\vartheta(v; \tau)} \sum_{n \in \mathbb{Z}} \frac{(-1)^n q^{n(n+1)/2} e(nv)}{1 - q^n e(u)},$$

where the Jacobi ϑ -function is defined by

$$\vartheta(z;\tau) := \sum_{n \in \mathbb{Z}} q^{\frac{1}{2}\left(n + \frac{1}{2}\right)^2} e\left(\left(n + \frac{1}{2}\right)(z + \frac{1}{2})\right).$$

Problem 19. (*) Prove that $\mu(u, v; \tau) + e(v - u)q^{-1/2}\mu(u + \tau, v) = -ie((v - u)/2)q^{-1/8}$.

Problem 20. (*) Prove that $\mu(u, v; \tau)$ is a meromorphic function in the variable u, with simple poles for $u \in \mathbb{Z}\tau + \mathbb{Z}$, and residue $-1/(2\pi i \vartheta(v; \tau))$ at u = 0.

Problem 21. $(\star\star)$ Prove that

$$\frac{1}{\sqrt{-i\tau}}e^{\pi i(u-v)^2/\tau}\mu\left(\frac{u}{\tau},\frac{v}{\tau};-\frac{1}{\tau}\right)+\mu(u,v;\tau)=\frac{1}{2i}h(u-v;\tau).$$

Let

$$R(u;\tau) := \sum_{n \in \mathbb{Z}} \left\{ \operatorname{sgn}\left(n + \frac{1}{2}\right) - E\left(\left(n + \frac{\operatorname{Im}(u)}{\operatorname{Im}(\tau)} + \frac{1}{2}\right)\sqrt{2y}\right) \right\} (-1)^n q^{-\frac{1}{2}\left(n + \frac{1}{2}\right)^2} e\left(-\left(n + \frac{1}{2}\right)u\right),$$

 $\mathbf{6}$

where

$$E(z) := 2 \int_0^z e^{-\pi t^2} dt, \quad z \in \mathbb{C}.$$

Problem 22. (\star) Prove that

$$R(u;\tau) + e(-u)q^{-\frac{1}{2}}R(u+\tau;\tau) = 2e(-u/2)q^{-\frac{1}{8}}.$$

Problem 23. $(\star\star)$ Prove that

$$\frac{1}{\sqrt{-i\tau}}e^{\pi i u^2/\tau}R\left(\frac{u}{\tau};-\frac{1}{\tau}\right) + R(u,\tau) = h(u;\tau).$$

- **Problem 24.** (*) Problem 21 establishes a key property of the function $\mu(u, v; \tau)$, namely, it shows precisely how $\mu(u, v; \tau)$ falls short of transforming like a Jacobi form (see [5]). Use the function $R(w; \tau)$ to construct a new function $\tilde{\mu}(u, v; \tau)$ from $\mu(u, v; \tau)$ that corrects the "error to modularity" exhibited by $\mu(u, v; \tau)$ in Problem 21. Discuss the analytic properties of the new function $\tilde{\mu}(u, v; \tau)$.
- **Problem 25.** $(\star\star)$ Prove that under suitable specializations of parameters, the Mordell integral can be expressed in a different manner, i.e. show that for u = 0,

$$-h(0;\tau) = \int_0^{i\infty} \frac{\theta(u)}{\sqrt{-i(u+\tau)}} du,$$

where the modular theta function

$$\theta(\tau) := \sum_{v \in \frac{1}{2} + \mathbb{Z}} v q^{v^2/2} e(v/2).$$

Problem 26. $(\star\star)$ Similarly, prove that

$$R\left(\frac{\tau}{4};\tau\right) = -\zeta_4 q^{\frac{1}{32}} \int_{-\overline{\tau}}^{i\infty} \frac{\sum_{n\in\mathbb{Z}} (-1)^n \left(n+\frac{3}{4}\right) e\left(\frac{1}{2} \left(n+\frac{3}{4}\right)^2 z\right)}{\sqrt{-i(z+\tau)}} dz,$$

where $\zeta_m := e^{2\pi i/m}$.

Let f(q) denote one of Ramanujan's mock theta functions, defined by

$$f(q) := \sum_{n \ge 0} \frac{q^{n^2}}{(-q;q)_n^2}.$$

(For the next 5 problems, see also $\S3$.)

Problem 27. $(\star\star)$

(a) Prove that

$$f(q) = \frac{2}{(q;q)_{\infty}} \sum_{n \in \mathbb{Z}} \frac{(-1)^n q^{\frac{3n^2 + n}{2}}}{1 + q^n}.$$

(b) Prove that

$$\frac{iq^{-1/24}}{2}f(q) = \frac{\eta^3(3\tau)}{\eta(\tau)\vartheta(3/2;3\tau)} - \mu(3/2;-\tau;3\tau) - \mu(3/2,\tau;3\tau),$$

where $\eta(\tau)$ is Dedekind's η -function, and $\vartheta(z;\tau)$ is defined previously within §2.

Problem 28. $(\star\star)$ Prove that $q^{-1/24}f(q)$ is a weight 1/2 mock modular form with shadow proportional to

$$\sum_{n \in \mathbb{Z}} \left(\frac{12}{n}\right) n \cdot e(n/4) \cdot q^{n^2/24}.$$

Consider the "universal" mock theta functions of Gordon and McIntosh

$$g_2(w;q) := \sum_{n \ge 0} \frac{(-q;q)_n q^{n(n+1)/2}}{(w;q)_{n+1}(q/w;q)_{n+1}},$$
$$g_3(w;q) := \sum_{n \ge 0} \frac{q^{n(n+1)}}{(w;q)_{n+1}(q/w;q)_{n+1}}.$$

Problem 29. $(\star\star\star)$ (a) For $\alpha \in \mathbb{C}$, $\alpha \notin \mathbb{Z}\tau + \frac{1}{2}\mathbb{Z}$, prove that

$$e(\alpha)g_{2}(w;q) = \frac{\eta^{4}(2\tau)}{i\eta^{2}(\tau)\vartheta(2\alpha;2\tau)} + e(\alpha)q^{-1/4}\mu(2\alpha,\tau;2\tau).$$

(b) Prove that for $\zeta \neq 1$ a root of unity, $\zeta g_2(\zeta; q) + 1/2$ is a mock modular form of weight 1/2 with shadow proportional to

$$\sum_{n\in\mathbb{Z}}(-1)^n n\zeta^{-2n}q^{n^2}.$$

Consider another of Ramanujan's mock theta functions

$$\psi(q) := \sum_{n \ge 1} \frac{q^{n^2}}{(q; q^2)_n}.$$

Problem 30. $(\star\star)$ Prove that

$$f(-q) + 4\psi(q) = \frac{(q^2; q^2)_{\infty}^7}{(q; q)_{\infty}^3 (q^4; q^4)_{\infty}^3} =: c(q),$$

and deduce that $q^{-1/24}(f(-q) + 4\psi(q))$ is a modular form of weight 1/2 on a congruence subgroup.

Problem 31. $(\star\star)$

(a) Find 3 different mock modular forms of weight 1/2 with the same shadow as f(q).

(b) Use these mock modular forms to create non-trivial, and different, modular forms.

3. q-hypergeometric series

Let $(a_1, a_2, \ldots, a_r; q)_n := \prod_{j=1}^r (a_j; q)_n$. The q-hypergeometric series are defined by

$${}_{r}\phi_{s}\left(\begin{array}{ccc}a_{1}, & a_{1}, & \dots & a_{r}\\b_{1}, & b_{2}, & \dots & b_{s}\end{array} q; z\right) := \sum_{n\geq 0} \frac{(a_{1}, a_{2}, \dots, a_{r}; q)_{n}}{(b_{1}, b_{2}, \dots, b_{s}, q; q)_{n}} ((-1)^{n} q^{\frac{n(n-1)}{2}})^{1+s-r} z^{n}$$

where $r, s \in \mathbb{N}_0$, |z| < 1, |q| < 1, $b_j \neq q^{-m}$ for any $m \in \mathbb{N}_0$. The celebrated Watson-Whipple transformation is given by

$${}^{8\phi_{7}}\left(\begin{array}{cccc}a, & q\sqrt{a}, & -q\sqrt{a}, & b, & c, & d, & e, & q^{-N}\\\sqrt{a}, & -\sqrt{a}, & aq/b, & aq/c, & aq/d, & aq/e, & aq^{N+1}\end{array}; q; \frac{a^{2}q^{N+2}}{bcde}\right)$$
$$= \frac{(aq;q)_{N}(aq/de;q)_{N}}{(aq/d;q)_{N}(aq/e;q)_{N}}{}_{4}\phi_{3}\left(\begin{array}{ccc}aq/bc, & d, & e, & q^{-N}\\deq^{-N}/a, & aq/b, & aq/c\end{array}; q;q\right)$$

The Watson-Whipple q-hypergeometric transformation formula leads to the following identity

$$\sum_{n\geq 0} \frac{(\alpha,\beta,\gamma,\delta,\epsilon;q)_n(1-\alpha q^{2n})q^{n(n+3)/2}}{(\alpha q/\beta,\alpha q/\gamma,\alpha q/\delta,\alpha q/\epsilon,q;q)_n(1-\alpha)} \left(-\frac{\alpha^2}{\beta\gamma\delta\epsilon}\right)^n \cdot \\ = \frac{(\alpha q,\alpha q/(\delta\epsilon);q)_\infty}{(\alpha q/\delta,\alpha q/\epsilon;q)_\infty} \sum_{n\geq 0} \frac{(\delta,\epsilon,\alpha q/(\beta\gamma);q)_n}{(\alpha q/\beta,\alpha q/\gamma,q;q)_n} \left(\frac{\alpha q}{\delta\epsilon}\right)^n \cdot$$

Problem 32. $(\star\star)$ Prove that

$$\sum_{n \in \mathbb{Z}} \frac{(-1)^n q^{n(n+1)/2}}{1 - wq^n} = \frac{(q;q)_\infty^2}{(w;q)_\infty (q/w;q)_\infty}.$$

For the next two problems, see also §2.

Problem 33. $(\star\star)$ Prove that the *q*-hypergeometric "universal" mock theta functions defined in §2 satisfy

$$g_2(w;q) = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}} \sum_{n \in \mathbb{Z}} \frac{(-1)^n q^{n(n+1)}}{1 - wq^n},$$
$$g_3(w;q) = \frac{1}{(q;q)_{\infty}} \sum_{n \in \mathbb{Z}} \frac{(-1)^n q^{3n(n+1)/2}}{1 - wq^n}$$

Problem 34. $(\star\star)$ Let $\alpha \in \mathbb{C} \setminus (\mathbb{Z}\tau + \frac{1}{2}\mathbb{Z})$. Prove that

$$e(\alpha)(g_2(e(\alpha);q) + g_2(-e(\alpha);q)) = 2\frac{\eta^4(2\tau)}{i\eta^2(\tau)\vartheta(2\alpha;2\tau)},$$

where $\vartheta(z;\tau)$ is the Jacobi ϑ -function defined in §2, and $e(z) := e^{2\pi i z}$.

Problem 35. (***) Prove Ramanujan's $_1\psi_1$ summation formula

$${}_{1}\psi_{1}(\alpha,\beta;q;z) := \sum_{n \in \mathbb{Z}} \frac{(\alpha;q)_{n}}{(\beta;q)_{n}} z^{n} = \frac{(\beta/\alpha,\alpha z,q/(\alpha z),q;q)_{\infty}}{(q/\alpha,\beta/(\alpha z),\beta,z;q)_{\infty}}$$
for $|\beta/\alpha| < |z| < 1$.

Problem 36. $(\star\star)$ Define

$$_{2}\psi_{2}\left(\begin{array}{cc}a_{1}&a_{2}\\b_{1}&b_{2}\end{array} q,\ z
ight):=\sum_{n\in\mathbb{Z}}rac{(a_{1};q)_{n}(a_{2};q)_{n}}{(b_{1};q)_{n}(b_{2};q)_{n}}z^{n}.$$

Prove Bailey's $_2\psi_2$ summation formula

$${}_{2}\psi_{2}\left(\begin{array}{cc}a_{1}&a_{2}\\b_{1}&b_{2}\end{array},q,z\right)=\frac{\left(\frac{b_{2}q}{a_{1}a_{2}z};q\right)_{\infty}\left(\frac{b_{1}}{a_{2}};q\right)_{\infty}(a_{1}z;q)_{\infty}\left(\frac{b_{2}}{a_{1}};q\right)_{\infty}}{\left(\frac{q}{a_{2}};q\right)_{\infty}\left(\frac{b_{1}b_{2}}{a_{1}a_{2}z};q\right)_{\infty}(b_{2};q)_{\infty}(z;q)_{\infty}}\cdot{}_{2}\psi_{2}\left(\begin{array}{cc}\frac{a_{1}a_{2}z}{b_{2}}&a_{1}\\a_{1}z&b_{1}\end{array},q,\frac{b_{2}}{a_{1}}\right).$$

10

4. PARTITION THEORY

Problem 37. (\star) Let S be a set of positive integers.

(a) Show that

$$P_S(q) := \sum_{n \ge 0} p_S(n) q^n = \prod_{n \in S} \frac{1}{1 - q^n}$$

for |q| < 1, where $p_S(n) :=$ number of partitions of n with parts in S.

(b) Find sets S for which $P_S(q)$ is modular (when $q = e(\tau)$).

Problem 38. (*) Prove for |z| < 1, that

$$1 + \sum_{n \ge 1} \frac{z^n}{(1-q)(1-q^2)\cdots(1-q^n)} = \prod_{m \ge 0} (1-zq^m)^{-1}.$$

Problem 39. $(\star\star)$ Show that

$$\sum_{n \ge 0} p(n)q^n = \sum_{n \ge 0} \frac{q^{n^2}}{(q;q)_n^2} = \sum_{n \ge 0} \frac{q^n}{(q;q)_n},$$

where $p(n) := \#\{\text{number of partitions of } n\}$.

Problem 40. $(\star\star)$

- (a) If $p_m(n) :=$ number of partitions of n with at most m parts, show that $p_m(n) \leq (n+1)^m$ for each m > 0.
- (b) Show that $\lim_{n\to\infty} p(n)^{1/n} = 1$.

(c) Deduce that
$$\prod_{k \ge 1} \frac{1}{1 - q^k}$$
 converges for $|q| < 1$.

(d) Prove that
$$\sum_{n\geq 0} p(n)q^n = \prod_{k\geq 1} \frac{1}{1-q^k}$$
.

Problem 41. (\star) Let S be a subset of N. Prove that

$$\sum_{n \ge 0} p(n \mid \text{distinct parts in } S)q^n = \prod_{m \in S} (1+q^m).$$

Problem 42. (\star) Prove that

 $p(n \mid \text{distinct parts congruent to } 1,2,4 \mod 7)$ = $p(n \mid \text{parts congruent to } 1,9,11 \mod 14).$

Problem 43. $(\star\star)$ Prove that

$$1 + \sum_{n \ge 1} (p_e(n) - p_o(n))q^n = \prod_{m \ge 1} (1 - q^m),$$

where

 $p_e(n) := p(n \mid \text{even number of distinct parts}),$ $p_o(n) := p(n \mid \text{odd number of distinct parts}).$

Problem 44. (\star) Prove that

 $p(n \mid \text{all parts are odd}) \equiv 0 \mod 2$ except when $n = j(3j \pm 1)/2, \ j \in \mathbb{Z}$.

Problem 45. (\star) A partition is self conjugate if it is equal to its conjugate. For example, the two self-conjugate partitions of 8 (4+2+1+1, and 3+3+2) are represented as:

By connecting dots lying on successive right angles, we obtain two new partitions of 8 (7 + 1, and 5 + 3) as follows:

Prove that the number of self-conjugate partitions of n equals the number of partitions of n into distinct odd parts.

Problem 46. (*) This problem is concerned with finding exact expressions for restricted partition numbers. Suppose $T = \{1, 2, 3\}$, and $\rho := e^{2\pi i/3}$.

(a) Verify the following generating function for
$$p_T(n) := p(n \mid \text{parts in T}):$$

$$\sum_{n \ge 1} p_T(n)q^n = \frac{1}{6(1-q)^3} + \frac{1}{4(1-q)^2} + \frac{17}{72(1-q)} + \frac{1}{8(1+q)} + \frac{1}{9(1-\rho q)} + \frac{1}{9(1-\rho^2 q)}$$

12

(b) Show that this implies

$$p_T(n) = \frac{(n+2)(n+1)}{12} + \frac{n+1}{4} + \frac{17}{72} + \frac{(-1)^n}{8} + \frac{1}{9}(\rho^n + \rho^{2n})$$
$$= \frac{(n+3)^2}{12} + r(n),$$
where $|r(n)| < \frac{1}{2}.$
Deduce that $p_T(n)$ is the nearest integer to $\frac{(n+3)^2}{12}.$

- **Problem 47.** $(\star\star)$ The rank of a partition is defined to be its largest part of the partition minus the number of its parts. Let $N(n,m) := \#\{\text{partitions of } n \text{ with rank } m\}$.
 - (a) Show that

(c)

$$\sum_{n \ge 0} \sum_{m \in \mathbb{Z}} N(n,m) z^m q^n = \sum_{n \ge 0} \frac{q^{n^2}}{(zq;q)_n (q/z;q)_n}.$$

- (b) Determine a combinatorial interpretation for the coefficients of the mock theta function f(q) defined in §2.
- **Problem 48.** (*) Determine a combinatorial interpretation for the coefficients $a_{\omega}(n)$ of the mock theta function $\omega(q)$ as defined in §1. (Check your interpretation by explicitly looking at partitions of a few small integers.)

5. QUANTUM MODULAR FORMS

Consider another of Ramanujan's mock theta functions

$$\phi(q) := \sum_{n \ge 0} \frac{q^{n^2}}{(-q^2; q^2)_n}.$$

The functions c(q) and $\psi(q)$ are defined in §2. Take note of the singularities of the functions ϕ and ψ . The exercises in this section establish the following proposition, studied by Robert C. Rhoades.

Proposition. As $q \to \zeta$ radially from within the unit disk, where ζ is a primitive 4kth root of unity, we have that

$$\lim_{q \to \zeta} (\phi(q) - c(q)) = -2 \sum_{n \ge 0} \zeta^{n+1} (-\zeta^2; \zeta^2)_n = -\psi(\zeta).$$

Moreover, as $q \rightarrow \rho$ radially from within the unit disk, where ρ is a primitive odd order root of unity, we have that and

/

$$\lim_{q \to \rho} (\psi(q) - c(q)/2) = -\frac{1}{2} \left(1 + \sum_{n \ge 0} (-1)^n \rho^{2n+1} \left(\rho; \rho^2\right)_n \right).$$

Problem 49. $(\star\star)$ Prove that

$$\psi(q) = \sum_{n=0}^{\infty} q^{n+1} (-q^2; q^2)_n$$

Problem 50. $(\star\star)$ Prove that

$$\phi(q) + 2\psi(q) = c(q).$$

Problem 51. $(\star\star)$ Prove for any primitive 4kth root of unity ζ , we have

$$\lim_{q \to \zeta} (\phi(q) - c(q)) = -2 \sum_{n \ge 0} \zeta^{n+1} (-\zeta^2; \zeta^2)_n$$

Problem 52. $(\star\star)$ Prove that

$$\phi(q) = 1 + \sum_{n \ge 0} (-1)^n q^{2n+1} (q; q^2)_n.$$

Problem 53. $(\star\star)$ Prove for any primitive odd order root of unity ρ , we have

$$\lim_{q \to \rho} (\psi(q) - c(q)/2) = -\frac{1}{2} \left(1 + \sum_{n \ge 0} (-1)^n \rho^{2n+1}(\rho; \rho^2)_n \right).$$

Problem 54. $(\star\star)$ What can you say about the series

$$\sum_{n\in\mathbb{Z}}(-q^2)^n(q;q^2)_n?$$

References

- [1] G.E. Andrews and K. Eriksson, Integer partitions, Cambridge University Press, Cambridge, (2004).
- [2] R.E. Borcherds, Automorphic forms on $O_{s+2,2}(R)$ and infinite products, Invent. Math. 120 (1995), 161-213.
- [3] J. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), 45-90.
- [4] J.H. Bruinier and K. Ono, Heegner divisors, L-functions, and Maass forms, Ann. of Math., 172 (2010), 2135-2181.
- [5] M. Eichler and D. Zagier, *The theory of Jacobi forms*, Progress in Mathematics, 55. Birkhäuser Boston, Boston, MA, (1985).
- [6] B. Gordon and R.J. McIntosh, A survey of the classical mock theta functions, Dev. Math. 23 (2012), Springer, 95-144.

- K. Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, Proceedings of the 2008 Harvard-MIT Current Developments in Mathematics Conference, International Press, Somerville, MA, 2009, 347-454.
- [8] D. Zagier, Ramanujan's mock theta functions and their applications (after Zwegers and Ono-Bringmann), Séminaire Bourbaki, Vol. 2007/2008. Astérisque No. 326 (2009), Exp. No. 986, vii-viii, 143-164 (2010).
- [9] S. Zwegers, *Mock theta functions*, Ph.D. Thesis, Universiteit Utrecht, (2002).

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, P.O. BOX 208283, NEW HAVEN, CT 06520-8283 *E-mail address*: amanda.folsom@yale.edu