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Abstract. This short course is an introduction to the theory of harmonic Maass forms,
mock modular forms, and quantum modular forms. These objects have many applications:
black holes, Donaldson invariants, partitions and q-series, modular forms, probability theory,
singular moduli, Borcherds products, central values and derivatives of modular L-functions,
generalized Gross-Zagier formulae, to name a few. Here we discuss the essential facts in
the theory, and consider some applications in number theory. This mathematics has an
unlikely beginning: the mystery of Ramanujan’s enigmatic “last letter” to Hardy written
three months before his untimely death. Section 15 gives examples of projects which arise
naturally from the mathematics described here.

Modular forms are key objects in modern mathematics. Indeed, modular forms play cru-
cial roles in algebraic number theory, algebraic topology, arithmetic geometry, combinatorics,
number theory, representation theory, and mathematical physics. The recent history of the
subject includes (to name a few) great successes on the Birch and Swinnerton-Dyer Con-
jecture, Mirror Symmetry, Monstrous Moonshine, and the proof of Fermat’s Last Theorem.
These celebrated works are dramatic examples of the evolution of mathematics.

Here we tell a different story, the mathematics of harmonic Maass forms, mock modular
forms, and quantum modular forms. This story has an unlikely beginning, the mysterious
last letter of the Ramanujan.

1. Ramanujan

The story begins with the legend of Ramanujan, the amateur Indian genius who discovered
formulas and identities without any rigorous training1 in mathematics. He recorded his
findings in mysterious notebooks without providing any indication of proofs. Some say he
did not see the need to provide proofs; indeed, it is said that his findings came to him as
visions from Goddess Namagiri. As is well known, in 1913 Ramanujan wrote G. H. Hardy, a
celebrated English analytic number theorist, a famous letter which included pages of formulas
and claims (without proof). Some of his claims were well known, some were false, but many
were so strange that Hardy (and his colleague Littlewood) were unable to evaluate them.
Impressed by the creativity exhibited in this letter, Hardy invited Ramanujan to Cambridge.
Ramanujan accepted the invitation, and he spent much of 1914-1919 in Cambridge where
he wrote about 30 papers on an exceptionally wide variety of subjects in analytic number

These notes are an edited and expanded version of the author’s expository paper for the 2008 Harvard-
MIT Current Developments in Mathematics [194] Conference Proceedings. The author thanks the National
Science Foundation and the Asa Griggs Candler Trust for their generous support.

1Ramanujan flunked out of two different colleges.
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theory and combinatorics. Despite his young age, heritage, and background, he was honored
with his election as Fellow of the Royal Society.

This tale ends tragically. The enigmatic master of formulas returned to south India in the
spring of 1919 seeking a return to good health and a forgiving climate. Unfortunately, his
health steadily declined over the course of the ensuing year, and he died on April 26, 1920
in Madras. He was thirty two years old. Amazingly, despite his illness, he spent the last
year of his life, again in mathematical isolation, conjuring a beautiful theory, one which was
nearly lost. This is his “theory” of the mock theta functions.

1.1. Ramanujan’s motivation. To properly understand the context of Ramanujan’s last
work, we must first recall his work on Euler’s partition function p(n). This research under-
scores the fact that the theory of partitions has historically served as a “testing ground” for
some deep developments in the theory of modular forms. Indeed, Ramanujan’s work with
Hardy on asymptotics was the first triumph of the circle method, while the general theory of
partition congruences exhibits the tight interplay between the Deligne-Serre theory of `-adic
Galois representations and Shimura’s theory of half-integral weight modular forms.

To make this connection between partitions and modular forms, we simply require Euler’s
combinatorial generating function

(1.1)
∞∑

n=0

p(n)qn =
∞∏

n=1

1

1− qn
= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + · · · .

This formal power series is essentially a “weakly holomorphic modular form”.
To make this a bit more precise, let Γ ⊂ SL2(Z) be a subgroup. An element γ = ( a b

c d ) ∈
SL2(Z) acts on H, the upper-half of the complex plane, by the linear fractional transformation
γz := az+b

cz+d
. Loosely speaking, a weight k modular form on Γ is a holomorphic function f on

H which satisfies

(1.2) f(γz) = (cz + d)kf(z)

for all γ ∈ Γ, which in addition is holomorphic “at the cusps”. A weakly holomorphic modular
form satisfies this definition but is permitted to have poles at cusps.

At the heart of the matter is Dedekind’s weight 1/2 modular form, the eta-function:

η(z) := q1/24

∞∏
n=1

(1− qn),

where q := e2πiz. For z ∈ H, it turns out that

η(z + 1) = e
πi
12η(z) and η(−1/z) = (−iz)

1
2η(z).

Since SL2(Z) is generated by

T :=

(
1 1
0 1

)
and S :=

(
0 −1
1 0

)
,
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it follows that η(z) is a weight 1/2 modular form on SL2(Z) with a “multiplier system”.
Since η(z) is nonvanishing on H, (1.1) then implies that

(1.3)
1

η(z)
=

∞∑
n=0

p(n)qn− 1
24

is a weight −1/2 weakly holomorphic modular form.

1.2. How did Ramanujan think of modular forms? Since we view Ramanujan’s results
on the partition function, and the research it inspired, as a testing ground for the theory
of modular forms, we are compelled to ask how Ramanujan thought of modular forms. A
brief inspection of most of his works (for example, see [44, 203]) suggests that his view was
consistent with the classical treatment found in most textbooks (for example, see [84, 100,
151, 160, 169, 182, 191, 205, 216, 224, 228]) on modular forms. Indeed, the bulk of his work
on modular forms depends on the properties of the q-series

P (q) := 1− 24
∞∑

n=1

σ1(n)qn,

Q(q) := 1 + 240
∞∑

n=1

σ3(n)qn,

R(q) := 1− 504
∞∑

n=1

σ5(n)qn,

(where σν(n) :=
∑

d|n d
ν), which are the classical Eisenstein series E2(z), E4(z) and E6(z)

from the theory of modular forms. Therefore, much of his work followed classical lines.
This assessment, however, ignores Ramanujan’s extensive work on combinatorial q-series,

which at first glance has nothing to do with the theory of modular forms. Ramanujan, a
master manipulator of power series, thought deeply about combinatorial power series such
as infinite products, which are often modular like Dedekind’s eta-function η(z), and Jacobi’s
identity

∞∏
n=1

(1− q2n)(1 + t2q2n−1)(1 + t−2q2n−1) =
∑
n∈Z

t2nqn2

.

He also thought deeply about power series he referred to as Eulerian series, such as

(1.4) Ω(t; q) := 1 +
∞∑

n=1

qn2

(1− tq)2(1− tq2)2 · · · (1− tqn)2
,

which seems to have nothing to do with modular forms. However, in some rare cases such
series turn out to coincide with modular forms.

We now give one such coincidence, an identity which is particularly relevant for Ramanu-
jan’s work on partitions. We first recall some elementary combinatorial notions. One may
visualize a partition λ1 + λ2 + · · · + λk as a Ferrers diagram, a left justified array of dots
consisting of k rows in which there are λi dots in the ith row:
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• • · · · • λ1 nodes

• • · · · • λ2 nodes

...
...

• · · · • λk nodes.

The Durfee square of such a Ferrers diagram is the largest square of nodes in the upper
left hand corner of the diagram. The boundary of a Durfee square naturally then divides a
partition into a perfect square and two partitions whose parts do not exceed the side length
of the Durfee square.

Example. The Ferrers diagram of the partition 5 + 5 + 3 + 3 + 2 + 1 is:

• • • ... • •

• • • ... • •

• • • ...
· · · · · · · · ·
• • •

• •

•
Therefore, this partition decomposes as the Durfee square of size 9, and the two partitions

2+2, and 3+2+1.

Armed with these notions, we have the following q-series identity for the generating func-
tion for p(n).

Proposition 1.1. The following combinatorial identity is true:

∞∑
n=0

p(n)qn =
∞∏

n=1

1

1− qn
= 1 +

∞∑
m=1

qm2

(1− q)2(1− q2)2 · · · (1− qm)2
= Ω(1; q).

In particular, we have that

1

η(z)
= q−

1
24

∞∏
n=1

1

1− qn
= q−

1
24 +

∞∑
m=1

qm2− 1
24

(1− q)2(1− q2)2 · · · (1− qm)2
.
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Proof. For every positive integer m, the q-series

1

(1− q)(1− q2) · · · (1− qm)
=

∞∑
n=0

am(n)qn

is the generating function for am(n), the number of partitions of n whose summands do not
exceed m. Therefore by the discussion above, the q-series

qm2

(1− q)2(1− q2)2 · · · (1− qm)2
=

∞∑
n=0

bm(n)qn

is the generating function for bm(n), the number of partitions of n whose Ferrers diagram
has a Durfee square of size m2. The theorem follows by summing in m. �

Although they are quite rare, there are further examples of such q-series identities in which
an Eulerian series is essentially a modular form. Among them, perhaps the most famous are
the Rogers-Ramanujan identities [199, 212, 213, 214]:

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
= 1 +

∞∑
n=1

qn2

(1− q)(1− q2) · · · (1− qn)
,

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
= 1 +

∞∑
n=1

qn2+n

(1− q)(1− q2) · · · (1− qn)
.

(1.5)

These infinite products are essentially the Fourier expansions of weight 0 weakly holomorphic
modular forms of the type studied classically by Jacobi, Klein, and Siegel, and again more
recently by Kubert and Lang in their work on modular units (for example, see [165, 217]).

Remark. The literature on such identities is extensive (for example, see works by Andrews,
Gordon, Göllnitz, and Slater [9, 125, 124, 226] to name a few), and the pursuit of further
identities and their interpretations remains an active area of research largely due to applica-
tions in combinatorics, Lie theory, number theory and physics (for example, see [14], [155]
and [172] to name a few). In this direction, W. Nahm [186] has very interesting work related
to the question of when a basic hypergeometric-type series is automorphic.

These identities stand out since there is no reason to believe, for function theoretic rea-
sons, that an Eulerian series should ever be modular. Indeed, there is no general theory of
transformation laws for Eulerian series.

It is not difficult to imagine Ramanujan’s mindset. Understanding this quandary, it seems
that Ramanujan, largely motivated by his work on partitions and the Rogers-Ramanujan
identities, spent the last year of his life thinking deeply about the “near” modularity of Euler-
ian series. He understood the importance of developing a new theory, one which overlaps in
spots with the classical theory of modular forms.

He discovered the mock theta functions.

1.3. Ramanujan’s last letter to Hardy. The mathematics described here begins with
Ramanujan’s last letter to Hardy, dated January 12, 1920, just three months before his
death. We quote (see pages 220-224 of [45]):
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“I am extremely sorry for not writing you a single letter up to now.. . . I discovered very
interesting functions recently which I call “Mock” ϑ-functions. Unlike the “False” ϑ-functions
(studied partially by Prof. Rogers in his interesting paper) they enter into mathematics as
beautifully as the ordinary theta functions. I am sending you with this letter some examples.”

This letter contained 17 examples including:

f(q) := 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

ω(q) :=
∞∑

n=0

q2n2+2n

(1− q)2(1− q3)2 · · · (1− q2n+1)2
,

λ(q) :=
∞∑

n=0

(−1)n(1− q)(1− q3) · · · (1− q2n−1)qn

(1 + q)(1 + q2) · · · (1 + qn−1)
.

(1.6)

At first glance, these series indeed seem to resemble the Eulerian series in Proposition 1.1
and (1.5). For example, in terms of (1.4), we have that both

f(q) = Ω(−1; q) and
1

η(z)
= q−

1
24 · Ω(1; q).

However, as Ramanujan asserts, series such as f(q), ω(q) and λ(q) are not modular. He
conjectures that they are examples of functions he refers to as mock theta functions. His
definition is quite vague, and he admits that he does not have a proof that his examples
satisfy his definition.

To make this definition, he first recalls the asymptotic properties of certain modular forms
which are given as Eulerian series. He refers to such properties as (A) and (B). These
asymptotics are analogous to those he employed with Hardy in their work on the asymptotic
properties of the partition function p(n). Ramanujan then uses this discussion to give his
definition. He writes:

“...Suppose there is a function in the Eulerian form and suppose that all or an infinity
of points q = e2iπm/n are exponential singularities and also suppose that at these points
the asymptotic form of the function closes as neatly as in the cases of (A) and (B). The
question is: - is the function taken the sum of two functions one of which is an ordinary
theta function and the other a (trivial) function which is O(1) at all the points e2iπm/n? The
answer is it is not necessarily so. When it is not so I call the function Mock ϑ-function. I
have not proved rigorously that it is not necessarily so. But I have constructed a number of
examples in which it is inconceivable to construct a ϑ-function to cut out the singularities of
the original function.”

Remark. By ordinary theta function, Ramanujan meant a weakly holomorphic modular form
with weight k ∈ 1

2
Z on some Γ1(N).

Ramanujan does not have a proof that his examples, such as those in (1.6), satisfy his
definition. However, after giving his vague definition of a mock theta function, he then gives
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a surprising “near miss” which pertains to the Eulerian series

Ω(−1; q) = f(q) := 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ . . . .

He claims that a certain weight 1/2 modular form cuts out “half” of the exponential singu-
larities, while its negative cuts out the other “half”.

To be precise, we first note that f(q) is convergent for |q| < 1 and those roots of unity
q with odd order. For even order roots of unity, f(q) has exponential singularities. For
example, as q → −1, we have

f(−0.994) ∼ −1.08 · 1031, f(−0.996) ∼ −1.02 · 1046, f(−0.998) ∼ −6.41 · 1090.

To cancel the exponential singularity at q = −1, Ramanujan found the function b(q), which

is modular2 up to multiplication by q−
1
24 , defined by

(1.7) b(q) := (1− q)(1− q3)(1− q5) · · ·
(
1− 2q + 2q4 − · · ·

)
.

The exponential behavior illustrated above is canceled in the numerics below.

q −0.990 −0.992 −0.994 −0.996 −0.998
f(q) + b(q) 3.961 . . . 3.969 . . . 3.976 . . . 3.984 . . . 3.992 . . .

.

It appears that limq→−1(f(q) + b(q)) = 4. More generally, as q approaches an even order 2k
root of unity, Ramanujan claimed that

f(q)− (−1)kb(q) = O(1).

Ramanujan’s claim is true. Indeed, recent work [118] by Folsom, Rhoades, and the au-
thor gives a simple closed formula for the suggested O(1) constants as finite sums of q-
hypergeometric-type series.

Theorem 1.2. If ζ is a primitive even order 2k root of unity, then, as q approaches ζ
radially within the unit disk, we have that

lim
q→ζ

(
f(q)− (−1)kb(q)

)
= −4 ·

k−1∑
n=0

(1 + ζ)2(1 + ζ2)2 · · · (1 + ζn)2ζn+1.

Remark. We shall relate such finite hypergeometric sums to quantum modular forms later
in this paper. For now, the reader should simply view these formulas as strange finite
expressions for Ramanujan’s O(1) numbers.

Example. Since empty products equal 1, Theorem 1.2 shows that

lim
q→−1

(f(q) + b(q)) = 4.

Example. For k = 2, Theorem 1.2 gives limq→i (f(q)− b(q)) = 4i. The table below nicely
illustrates this fact:

2Here q−
1
24 b(q) is modular with respect to z where q := e2πiz.
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q 0.992i 0.994i 0.996i
f(q) ∼ 1.9 · 106 − 4.6 · 106i ∼ 1.6 · 108 − 3.9 · 108i ∼ 1.0 · 1012 − 2.5 · 1012i

f(q)− b(q) ∼ 0.0577 + 3.855i ∼ 0.0443 + 3.889i ∼ 0.0303 + 3.924i

Theorem 1.2 follows from a deeper understanding of Ramanujan’s examples. As we shall
explain, recent work by Zwegers shows that Ramanujan’s examples are related to harmonic
Maass forms, functions which will be defined in Section 4.1. Ramanujan’s functions are the
holomorphic parts of special weight 1/2 harmonic Maass forms. This realization makes it
possible to now prove theorems such as Theorem 1.2. We shall give the proof in Section 13.

The connection between Ramanujan’s mock theta functions and harmonic Maass forms
does not immediately shed light on Ramanujan’s vague definition. Moreover, Ramanujan’s
strange example concerning f(q) and b(q) shows that modular forms can almost exactly cut
out the exponential singularities of his so-called mock theta functions. These facts prompted
Berndt to remark [43] recently that

“it has not been proved that any of Ramanujan’s mock theta functions are really mock theta
functions according to his definition.”

Griffin, Rolen, and the author [131] have recently filled in this gap by proving the following
theorem.

Theorem 1.3. Suppose that M(z) is one of Ramanujan’s mock theta functions, and let γ
and δ be integers for which qγM(δz) is the holomorphic part of a weight 1/2 harmonic weak
Maass form. Then there does not exist a weakly holomorphic modular form g(z) of any
weight k ∈ 1

2
Z on any congruence subgroup Γ1(N

′) such that for every root of unity ζ we
have

lim
q→ζ

(qγM(δz)− g(z)) = O(1).

Remark. The limits in Theorem 1.3 are radial limits taken from within the unit disk.

Remark. In a recent paper [209], Rhoades proves that Ramanujan’s vague definition of a mock
theta function is not equivalent to the definition of the holomorphic part of a weight 1/2
harmonic Maass form. He shows how to construct functions with modular-like asymptotics
which are not holomorphic parts of weight 1/2 harmonic Maass forms up to a “trivial”
function.

In Section 13 we shall prove Theorems 1.2 and 1.3. This shall be done after we develop
some of the critical features of the theory of harmonic Maass forms. Before we give basic
facts about the theory, we continue to recall the history which preceded the recent realization
that Ramanujan’s mock theta functions are related to harmonic Maass forms.

1.4. Mock theta functions from 1920-1976. Most of the surviving text of Ramanujan’s
last letter, which amounts to roughly 4 typewritten pages, consists of explicit formulas for
his 17 strange formal power series. The theoretical content is rather obtuse, and he gives no
indication of how he derived his 17 examples. He even divides these examples into groups
based on their “order”, a term he never defines. With such flimsy clues, how could one
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rederive Ramanujan’s theory? How could one proceed with his vague definition of a mock
theta function?

Despite these formidable challenges, a few mathematicians such as G. E. Andrews, L. Drag-
onette3, A. Selberg, and G. N. Watson [8, 101, 221, 239, 240] investigated Ramanujan’s mock
theta functions for what they were, a list of enigmatic power series. For example, Andrews
and Dragonette [8, 101] investigated Ramanujan’s claimed asymptotic formula for the mock
theta function

f(q) = Ω(−1; q) =
∞∑

n=0

α(n)qn := 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

They proved, for positive n, that

α(n) ∼ (−1)n−1

2
√
n− 1

24

· eπ
√

n
6
− 1

144 .

Remark. Strictly speaking, Dragonette first proved the asymptotic [101], while Andrews
refined her work to obtain [8] the asymptotic with an improved error term.

Despite the absence of a theory, or much less, just a simple useful definition of a mock
theta function, these few early works bolstered the belief that Ramanujan had discovered
something important. Watson, in his own words4, proclaimed [239]:

“Ramanujan’s discovery of the mock theta functions makes it obvious that his skill and inge-
nuity did not desert him at the oncoming of his untimely end. As much as any of his earlier
work, the mock theta functions are an achievement sufficient to cause his name to be held in
lasting remembrance. To his students such discoveries will be a source of delight and wonder
until the time shall come when we too shall make our journey to that Garden of Proserpine
(a.k.a. Persephone)...”

1.5. The “lost notebook” and Dyson’s “challenge for the future”. By the mid 1970s,
little progress had been made on the mock theta functions. They remained a list of enigmatic
power series, without any apparent connection to the theory of modular forms, or any other
comprehensive theory for that matter.

Then in the spring of 1976, Andrews discovered Ramanujan’s “lost notebook” in an old
box of papers hidden away in the Trinity College Library at Cambridge University. This
notebook, consisting of over 100 pages of mathematical scrawl [204], was archived among
papers from Watson’s estate. Miraculously, the “lost notebook” had somehow survived
a circuitous journey from India in the early 1920s to lie forgotten in the Trinity College
Library archives. The journey was indeed miraculous, for the contents of the box almost
met a catastrophic end in 1968 when Rankin saved them just a few days before they were
scheduled to be burned. Although the manuscript was never truly lost, it was long forgotten,
and buried among Watson’s random papers. Andrews proclaimed [10]:

3Leila Dragonette is better known under her married name, Leila Bram.
4This text is from Watson’s 1936 Presidential Address to the London Mathematical Society
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“. . . the fact that its existence was never mentioned by anyone for over 55 years leads me to
call it “lost”.

The discovery of the “lost notebook” was the catalyst which made it possible to begin
chipping away at the puzzle of Ramanujan’s mock theta functions. On top of giving 2
further mock theta functions, adding to the 17 from the last letter and 3 defined by Watson
[239], the pages contained many clues: striking identities and relations. As usual, these were
given without proof.

To illustrate the value of these clues, we consider some examples of Ramanujan’s claimed
identities, the famous “mock theta conjectures.” To state them, we first fix notation. For
non-negative integers n, let

(1.8) (x)n := (x; q)n :=
n−1∏
j=0

(1− xqj),

and let

(1.9) (x)∞ := (x; q)∞ :=
∞∏

j=0

(1− xqj),

where an empty product equals 1. Let f0(q), f1(q),Φ(q), and Ψ(q) be the mock theta func-
tions

f0(q) :=
∞∑

n=0

qn2

(−q)n

,

Φ(q) := −1 +
∞∑

n=0

q5n2

(q; q5)n+1(q4; q5)n

f1(q) :=
∞∑

n=0

qn2+n

(−q)n

,

Ψ(q) := −1 +
∞∑

n=0

q5n2

(q2; q5)n+1(q3; q5)n

.

(1.10)

These q-series resemble (1.4), the Eulerian series in the Rogers-Ramanujan identities (1.5),
and the series in (1.6). The mock theta conjectures are a list of ten identities involving these
4 functions. Thanks to work of Andrews and F. Garvan [29], these ten identities follow from
the truth of the following pair of identities.

Conjecture (Mock Theta Conjectures). The following identities are true:

(q5; q5)∞(q5; q10)∞
(q; q5)∞(q4; q5)∞

= f0(q) + 2Φ(q2),

(q5; q5)∞(q5; q10)∞
(q2; q5)∞(q3; q5)∞

= f1(q) + 2q−1Ψ(q2).

These surprising identities equate simple infinite products to linear combinations of mock
theta functions. These infinite products, like those in Proposition 1.1 and (1.5), are well



HARMONIC MAASS FORMS, MOCK MODULAR FORMS AND QUANTUM MODULAR FORMS 11

known to essentially coincide with the Fourier expansions of certain weakly holomorphic
modular forms. Therefore, the truth of these identities directly related mock theta functions
to modular forms. These clues from the “lost notebook” finally placed Ramanujan’s mock
theta functions in the vicinity of the theory of modular forms.

Unfortunately, these clues would not prove to be enough to rederive Ramanujan’s theory.
Indeed, mathematicians even had to wait 10 years, until the work of D. Hickerson [144], just
for a proof of these particularly vicious q-series identities.

Nonetheless, Andrews’s discovery of the “lost notebook” in 1976 almost immediately
sparked an explosion of research on the mock theta functions, largely spearheaded by An-
drews. By the late 1990s, works by Andrews, Y.-S. Choi, H. Cohen, F. Dyson, Garvan, B.
Gordon, Hickerson, R. McIntosh, M. Wakimoto [10, 12, 13, 15, 16, 23, 29, 30, 86, 87, 88,
89, 90, 95, 126, 127, 144, 145, 237], among numerous others, revealed many of the deeper
properties of the mock theta functions. Thanks to these works, and too many others to list,
Ramanujan’s 22 mock theta functions had been related to a surprising collection of subjects:

• Artin L-functions in number theory
• Hypergeometric functions
• Partitions
• Lie theory
• Mordell integrals
• Modular forms
• Polymer chemistry
• . . .

Despite this flurry of activity, the essence of Ramanujan’s theory remained a mystery.
The puzzle of his last letter to Hardy, thanks to the “lost notebook,” had morphed into the
enigmatic web of Ramanujan’s 22 mock theta functions. The presence of this web strongly
suggested the existence of a theory, and it also demanded a solution. In his plenary address
at the Ramanujan Centenary Conference at the University of Illinois in 1987, Freeman Dyson
beautifully summed up the situation [109]:

“The mock theta-functions give us tantalizing hints of a grand synthesis still to be discov-
ered. Somehow it should be possible to build them into a coherent group-theoretical structure,
analogous to the structure of modular forms which Hecke built around the old theta-functions
of Jacobi. This remains a challenge for the future. My dream is that I will live to see the
day when our young physicists, struggling to bring the predictions of superstring theory into
correspondence with the facts of nature, will be led to enlarge their analytic machinery to in-
clude mock theta-functions...But before this can happen, the purely mathematical exploration
of the mock-modular forms and their mock-symmetries must be carried a great deal further.”

2. Back to the future

By the late 1990s, the vast literature on Ramanujan’s mock theta functions contained
many important clues for Dyson’s “challenge for the future”. In addition to the identities
comprising the mock theta conjectures, there were further clues such as q-series identities
relating mock theta functions to Lambert-type series and indefinite theta series. We recall
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two such identities involving the mock theta functions f(q) and f0(q) (see (1.6) and (1.10)).
In 1936, Watson [239] proved that

f(q) = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
=

2

(q)∞
·
∑
n∈Z

(−1)nq(3n2+n)/2

1 + qn
,

and in 1986 Andrews [13] proved that

f0(q) =
∞∑

n=0

qn2

(−q)n
=

1

(q)∞
·

 ∑
n+j≥0
n−j≥0

−
∑

n+j<0
n−j<0

 (−1)jq
5
2
n2+ 1

2
n−j2

.

Such identities served as motivation for the 2002 Ph.D. thesis, written under the direction
of D. Zagier, of S. Zwegers [252, 253]. Indeed, Zwegers researched the following two questions
of Zagier (see page 2 of [253]):

(1) How do the mock ϑ-functions fit in the theory of modular forms?
(2) Is there a theory of indefinite theta functions?

His thesis brilliantly addressed these questions by combining and extending ideas from a
number of sources such as works of Lerch [173, 174] on the functions

(2.1)
∑
n∈Z

(−1)neπi(n2+n)τ+2πinν

1− e2πinτ+2πiu
,

where τ ∈ H, ν ∈ C, u ∈ C/(Zτ+Z), work of L. Göttsche and Zagier on indefinite ϑ-functions
[129], the theory of Jacobi forms [112], Mordell integrals [184, 185], and works of Andrews
[11, 13, 15, 16].

Zwegers related Ramanujan’s mock theta functions to real analytic vector-valued modular
forms. Loosely speaking, he “completed” Ramanujan’s mock theta functions by adding a
non-holomorphic function, a so-called period integral, to obtain real analytic functions which
obey desired modular transformation laws. We shall recount some of his work5 in Section 3.
The real analytic modular forms of Zwegers are examples of harmonic Maass forms (see
Section 4.1 for the definition) which were defined about the same time by Bruinier and
Funke [73], a coincidence which catalyzed much of the research described here.

These developments sparked an immediate explosion in a wide number of new directions.
Indeed, recent works by the author, Andrews, Bringmann, Eguchi, Folsom, Griffin, Hikami,
Kac, Lawrence, Malmendier, Mellit, Okada, Wakimoto, and Zagier [16, 19, 23, 29, 55, 56,
98, 110, 130, 146, 147, 148, 156, 157, 171, 179, 180, 244] apply this theory to:

• Black holes
• Donaldson invariants
• Gauge theory
• Representation theory of Lie superalgebras
• Moonshine

5Zagier delivered a Séminaire Bourbaki lecture on these recent works on Ramanujan’s mock theta functions
in 2007 [246].
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• Knot theory
• Mathematical physics
• Probability theory
• Topology.

The author and his collaborators have aimed to employ this new perspective to answer deep
questions about many of the number theoretic topics captured by the web of Ramanujan’s
mock theta functions. Here we describe the implications of this theory to:

• Partitions and q-series
• Modular forms
• Traces of singular moduli
• Borcherds products
• Modular L-functions à la Kohnen-Waldspurger and Kohnen-Zagier.
• Ramanujan’s last letter
• Quantum modular forms

Remark. This paper is not a comprehensive treatise; instead, it is only meant to serve as an
overview.

The remainder of the paper is organized as follows. In Section 3, we give one beautiful
example of Zwegers’s work, as it pertains to Ramanujan’s mock theta functions f(q) and
ω(q), and we briefly describe his important construction of a weight 1/2 non-holomorphic
Jacobi form. In Section 4 we give the formal definition of a harmonic Maass form, and
we present their basic properties. In Section 5 we give various examples of such forms.
Section 15 includes a list of sample projects which arise naturally from the work here. In
the remaining sections we summarize our results on the following topics:

(Partition congruences aprés Dyson)
In an effort to provide a combinatorial explanation of Ramanujan’s congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

Dyson introduced [108] the so-called rank of a partition, a delightfully simple statistic. The
rank of a partition is defined to be its largest part minus the number of its parts.

For example, the table below includes the ranks of the partitions of 4.

Partition Rank Rank mod 5

4 4− 1 = 3 3
3 + 1 3− 2 = 1 1
2 + 2 2− 2 = 0 0

2 + 1 + 1 2− 3 = −1 4
1 + 1 + 1 + 1 1− 4 = −3 2
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One observes that each residue class modulo 5 occurs exactly once in the last column above.
Based on further numerics, Dyson made the following conjecture whose truth provides a
combinatorial explanation of Ramanujan’s congruences modulo 5 and 7.

Conjecture (1944, Dyson). The partitions of 5n+ 4 (resp. 7n+ 5) form 5 (resp. 7) groups
of equal size when sorted by their ranks modulo 5 (resp. 7).

In 1954, Atkin and H. P. F. Swinnerton-Dyer proved [36] Dyson’s conjecture6. In view of
the more general theory of partition congruences, which includes examples such as

p(4063467631n+ 30064597) ≡ 0 (mod 31),

it is natural to investigate the role that Dyson’s rank plays in the general theory of par-
tition congruences. Using a new class of harmonic Maass forms, which will be described
in Section 5.4, the author and K. Bringmann [53, 64] have obtained general results in this
direction. These works will be described in in Section 6.

(Eulerian series as modular forms).

The Rogers-Ramanujan identities

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
= 1 +

∞∑
n=1

qn2

(1− q)(1− q2) · · · (1− qn)
,

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
= 1 +

∞∑
n=1

qn2+n

(1− q)(1− q2) · · · (1− qn)
,

and the mock theta conjectures provide examples of Eulerian series as modular forms.
Thanks to the framework of the theory of harmonic Maass forms, we have a better under-
standing of the modular transformation properties of certain Eulerian series. In Section 7 we
discuss work by the author, Bringmann, and R. Rhoades [66] on Eulerian series as modular
forms. This work immediately gives many new identities such as∑

n≥0

qn(n+1)(−q2; q2)n

(q; q2)2
n+1

+
∑
n≥0

qn(n+1)(−q2; q2)n

(−q; q2)2
n+1

= 2
(q4; q4)5

∞
(q2; q2)4

∞
.

(Analytic Exact formulas)

As described earlier, Rademacher perfected the Hardy-Ramanujan asymptotic to obtain
an exact formula for p(n) (for example, see [196, 197]). To state his formula, let Is(x) be the
usual I-Bessel function of order s, and let e(x) := e2πix. Furthermore, if k ≥ 1 and n are
integers, then let

(2.2) Ak(n) :=
1

2

√
k

12

∑
x (mod 24k)

x2≡−24n+1 (mod 24k)

χ12(x) · e
( x

12k

)
,

6A short calculation reveals that the obvious generalization of the conjecture cannot hold for 11.
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where the sum runs over the residue classes modulo 24k, and where

χ12(x) :=

(
12

x

)
.(2.3)

If n is a positive integer, then one version of Rademacher’s formula reads [196]

(2.4) p(n) = 2π(24n− 1)−
3
4

∞∑
k=1

Ak(n)

k
· I 3

2

(
π
√

24n− 1

6k

)
.

We address the following classical partition problem.

Problem. Determine exact formulas for Ne(n) (resp. No(n)), the number of partitions of n
with even (resp. odd) Dyson rank.

Thanks to Rademacher’s formula, and the obvious fact that

p(n) = Ne(n) +No(n),

it turns out that this question is equivalent to the problem of deriving exact formulas for the
coefficients

α(n) = Ne(n)−No(n)

of the mock theta function f(q). This deduction is a simple modification of the proof of
Proposition 1.1.

As mentioned earlier, Andrews and Dragonette had already proved that

α(n) ∼ (−1)n−1

2
√
n− 1

24

· eπ
√

n
6
− 1

144 .

This result falls short of the problem of obtaining an exact formula, and as a consequence
represents the obstruction to obtaining formulas for Ne(n) and No(n). In his plenary address
“Partitions: At the interface of q-series and modular forms”, delivered at the Millenial
Number Theory Conference at the University of Illinois in 2000, Andrews highlighted this
classical problem by promoting his conjecture7 of 1966 (see page 456 of [8], and Section 5 of
[18]) for the coefficients α(n).

Conjecture. (Andrews-Dragonette)
If n is a positive integer, then

α(n) = π(24n− 1)−
1
4

∞∑
k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

· I 1
2

(
π
√

24n− 1

12k

)
.

The author and Bringmann [62] proved this conjecture using work of Zwegers and the
theory of Maass-Poincaré series. Since Ne(n) = (p(n)+α(n))/2 and No(n) = (p(n)−α(n))/2,
the proof of the conjecture, combined with Rademacher’s exact formula (2.4), provides the
desired formulas for Ne(n) and No(n).

The proof of the Andrews-Dragonette Conjecture is a special case of a more general prob-
lem.

7This conjecture is suggested as a speculation by Dragonette in [101].
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Problem. Determine exact formulas for the coefficients of holomorphic parts of harmonic
Maass forms.

We shall also give general theorems which provide such exact formulas for harmonic Maass
forms with weight ≤ 1/2. These new results include the classic results of Rademacher and
Zuckerman [197, 198, 250, 251] which give exact formulas for the Fourier coefficients of
negative weight weakly holomorphic modular forms. Indeed, these results follow since weakly
holomorphic modular forms are harmonic Maass forms. They also recover some results of
Bruinier, Hejhal, and Niebur [71, 143, 187, 188] for harmonic Maass forms of non-positive
weight.

(Applications to classical modular forms)

Using the properties of various differential operators, it is possible to address classical
problems about modular forms. For example, we address the classification of linear relations
among cuspidal Poincaré series, and we obtain a theorem which detects the vanishing of
Hecke eigenvalues for integer weight newforms. We also show that Lehmer’s Conjecture,
which asserts that none of the coefficients of the discriminant function

∆(z) =
∞∑

n=1

τ(n)qn := q
∞∏

n=1

(1− qn)24 = q − 24q + 252q3 − · · ·

vanish, is implied by the irrationality of the coefficients of the “holomorphic part” of a certain
Maass-Poincaré series.

The work on linear relations among cuspidal Poincaré series is contained in [113] and
Rhoades’s Ph.D. thesis [208] (also see [206]). The theorem which detects vanishing Fourier
coefficients is in a recent paper by J. H. Bruinier, Rhoades, and the author [79]. These results
are described in Section 9.

(Generating functions for singular moduli)

Let j(z) be the usual modular function for SL2(Z)

j(z) = q−1 + 744 + 196884q + 21493760q2 + · · · .

The values of modular functions such as j(z) at imaginary quadratic arguments in H are
known as singular moduli. Singular moduli are algebraic integers which play many roles in
number theory. For example, they generate class fields of imaginary quadratic fields, and
they parameterize isomorphism classes of elliptic curves with complex multiplication.

In an important paper [245], Zagier gave a new proof of Borcherds’s famous theorem on the
infinite product expansions of integer weight modular forms on SL2(Z) with Heegner divisor.
This proof, as well as all of the results of [245], are connected to his beautiful observation
that the generating functions for traces of singular moduli are essentially weight 3/2 weakly
holomorphic modular forms.

Zagier’s paper has inspired an extraordinary number of research papers with generaliza-
tions in a variety of directions in works by the author, Bringmann, Bruinier, D. Choi, W.
Duke, A. Folsom, J. Funke, O. Imamoḡlu, P. Jenkins, D. Jeon, S.-Y. Kang, C. Kim, R. Masri,
A. Miller, A. Pixton, J. Rouse, and A. Toth [63, 67, 74, 75, 92, 93, 103, 104, 105, 106, 116, 181].
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In Section 10 we describe two general theorems which gives typical examples of such gener-
ating functions. In addition to giving further generating functions for singular moduli, we
shall also describe a beautiful theorem of Duke [103] related to the classical observation that

eπ
√

163 = 262537412640768743.9999999999992 . . . .

is nearly an integer.

Remark. The recent work by Duke, O. Imamoḡlu and A. Toth [104, 105] is very interesting.
Although we will not describe them here, we encourage the interested reader to read these
papers. These nice papers consider “real quadratic” traces. Recent work by Ehlen [111],
Duke and Li [107], and Viazovska [236] give deep arithmetic information in a another direc-
tion related to weight one harmonic weak Maass forms. In their work they consider weight
one mock modular forms, and they relate them to singular moduli, and complex Galois
representations.

The second general theorem pertains to traces of singular moduli for nonholomorphic
modular functions obtained by applying differential operators to certain weight −2 weakly
holomorphic modular (also see [78]). As a special case of this result, we obtain a finite
“algebraic” formula for p(n). Similar formulas have been obtained by Alfes in [7].

Here we recall this special result. We first recall the setting of Heegner points on modular
curves (see [133]). Let N > 1, and let D < 0 be a quadratic discriminant coprime to N . The
group Γ0(N) acts on the discriminant D positive definite integral binary quadratic forms

Q(X, Y ) = [a, b, c] := aX2 + bXY + cY 2

with N | a. This action preserves b (mod 2N). Therefore, if β2 ≡ D (mod 4N), then
it is natural to consider QN,D,β, the set of those discriminant D forms Q = [a, b, c] for
which 0 < a ≡ 0 (mod N) and b ≡ β (mod 2N), and we may also consider the subset

Qprim
N,D,β obtained by restricting to primitive forms. The number of Γ0(N) equivalence classes

in QN,D,β is the Hurwitz-Kronecker class number H(D), and the natural map defines a
bijection

QN,D,β/Γ0(N) −→ QD/SL2(Z),

where QD is the set of discriminant D positive definite integral binary quadratic forms (see
the proposition on p. 505 of [133]). This bijection also holds when restricting to primitive
forms, in which case the number of Γ0(N) equivalence classes in QN,D,β, and the number of

SL2(Z) equivalence classes in Qprim
D , is given by the class number h(D).

As a special case of a general theorem, we shall study the “class polynomial” of the Γ0(6)
nonholomorphic modular function

(2.5) Fp(z) := −∂−2(P (z)) =

(
1− 1

2πIm(z)

)
q−1 +

5

πIm(z)
+

(
29 +

29

2πIm(z)

)
q + . . . ,

where P (z) is the weight −2 weakly holomorphic modular form

P (z) :=
1

2
· E2(z)− 2E2(2z)− 3E2(3z) + 6E2(6z)

η(z)2η(2z)2η(3z)2η(6z)2
= q−1 − 10− 29q + . . . ,
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and where

(2.6) ∂h :=
1

2πi
· ∂
∂z

− h

4πIm(z)
.

These polynomials are defined as

(2.7) Hpart
n (x) :=

∏
Q∈Q6,1−24n,1

(x− P (αQ)).

We then have the following finite algebraic formula for the partition numbers p(n).

Theorem 2.1. If n is a positive integer, then

Hpart
n (x) = xh(1−24n) − (24n− 1)p(n)xh(1−24n)−1 + . . . ,

where p(n) is the partition function. In particular, we have that

p(n) =
1

24n− 1

∑
Q∈Q6,1−24n,1

P (αQ),

and we have that each (24n− 1)P (αQ) is an algebraic integer.

We shall discuss the modular generating functions for traces of singular moduli in Sec-
tion 10.

(Borcherds Products)

Recently, Borcherds [48, 49, 50] provided a striking description for the exponents in the
naive infinite product expansion of many modular forms, those forms with a Heegner divisor.
He proved that the exponents in these infinite product expansions are certain coefficients of
modular forms of weight 1/2. For example, let c(n) denote the integer exponents one obtains
by expressing the classical Eisenstein series E4(z) as an infinite product:

E4(z) = 1 + 240
∞∑

n=1

σ3(n)qn = (1− q)−240(1− q2)26760 · · · =
∞∏

n=1

(1− qn)c(n).

Borcherds proved that there is a weight 1/2 meromorphic modular form

G(z) =
∑
n≥−3

b(n)qn = q−3 + 4− 240q + 26760q4 + · · · − 4096240q9 + . . .

with the property that c(n) = b(n2) for every positive integer n.
These results may be generalized where the Borcherds exponents are given by certain

Fourier coefficients of weight 1/2 harmonic Maass forms. As a nice example, consider Ra-
manujan’s mock theta function (see (1.6))

ω(q) =
∞∑

n=0

q2n2+2n

(q; q2)2
n+1

=
1

(1− q)2
+

q4

(1− q)2(1− q3)2
+

q12

(1− q)2(1− q3)2(1− q5)2
+ · · · .
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Define integers a(n) by the expression∑
n∈Z+1/3

a(n)qn := −2q1/3
(
ω(q1/2) + ω(−q1/2)

)
= −4 q1/3 − 12 q4/3 − 24 q7/3 − 40 q10/3 − . . . .

These new results on generalized Borcherds products imply that

∞∏
n=1

(
1 +

√
−2qn − q2n

1−
√
−2qn − q2n

)(n
3 )a(n2/3)

= 1− 8
√
−2q − (64− 24

√
−2)q2 + (384 + 168

√
−2)q3 + (64− 1768

√
−2)q4 + . . .

(2.8)

is a modular form on the congruence subgroup Γ0(6).
A brief indication of these results is given in Section 11.

(Derivatives and values of L-functions)

Once armed with a generalized Borcherds-type theorem, one is then able to construct
modular forms with a prescribed divisor, a twisted Heegner divisor, with the additional
property that one can determine the field of definition of the product Fourier expansion. For
example, the modular form in (2.8) clearly has Fourier coefficients in Z[

√
−2], thanks to the

fact that Ramanujan’s mock theta function ω(q) has integer coefficients. This phenomenon
is extremely useful in arithmetic geometry since it allows us to determine whether certain
divisors vanish in the Jacobian of a modular curve, a condition which plays a central role
in the work of Gross and Zagier on the Birch and Swinnerton-Dyer Conjecture. Here we
explain how to make use of these generalized Borcherds products to extend deep theorems
of Waldspurger and Kohnen.

In the 1980s, Waldspurger [238], and Kohnen and Zagier [161, 162, 163] established that
certain half-integral weight modular forms serve as generating functions of a new type. Using
the Shimura correspondence [223], they proved that certain coefficients of half-integral weight
cusp forms essentially are square-roots of central values of quadratic twists of modular L-
functions.

When the weight is 3/2, these results appear prominently in works related to the Birch and
Swinnerton-Dyer Conjecture. For example, Tunnell [234] made great use of explicit examples
of these results in his work on the ancient “Congruent Number Problem”: the determination
of those positive integers which are areas of right triangles with rational sidelengths. More
generally, these results of Kohnen, Waldspurger and Zagier play central roles in the deep
works of Gross, Zagier and Kohnen [134, 133] on the Birch and Swinnerton-Dyer Conjecture.

The author and Bruinier [77] have generalized this theorem of Waldspurger and Kohnen to
prove that the Fourier coefficients of weight 1/2 harmonic Maass forms encode the vanishing
and nonvanishing of both the central values and derivatives of quadratic twists of weight 2
modular L-functions.

Here we describe a special case of the main theorem. Suppose that

(2.9) G(z) =
∞∑

n=1

BG(n)qn ∈ S2(p)
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is a weight 2 newform with prime level p. As usual, we let

(2.10) L(G, s) =
∞∑

n=1

BG(n)

ns

denote its Hecke L-function. If ∆ is a fundamental discriminant of a quadratic field coprime
to p, then we let L(G,χ∆, s) be the quadratic twist Hecke L-function

(2.11) L(G,χ∆, s) =
∞∑

n=1

BG(n)χ∆(n)

ns
,

where χ∆(•) :=
(

∆
•

)
denotes the Kronecker character for Q(

√
∆). It is well known that

L(G, s) and L(G,χ∆, s) have functional equations relating their values at s and 2− s.
Here is a special case of the main result in [77].

Theorem 2.2. Assume the hypotheses and notation above. In addition, suppose that the
sign of the functional equation of L(G, s) is ε(G) = −1. Then there is a weight 1/2 harmonic
Maass form f(z) on Γ0(4p) with Fourier expansion

f(z) =
∑

n�−∞

c+g (n)qn +
∑
n<0

c−g (n)Γ(1/2; 4π|n|y)qn,

where y = Im(z) and Γ(α; t) is the usual incomplete Gamma-function (see (4.5)), satisfying
the following:

(1) If ∆ < 0 is a fundamental discriminant for which
(

∆
p

)
= 1, then

L(G,χ∆, 1) = αG ·
√
|∆| · c−g (∆)2,

where αG is an explicit non-zero constant.

(2) If ∆ > 0 is a fundamental discriminant for which
(

∆
p

)
= 1, then L′(G,χ∆, 1) = 0 if

and only if c+g (∆) is algebraic.

Remark. Theorem 2.2 is a special case of the general result which holds for all levels, and
any arbitrary sign.

Remark. Bruinier [72] has recently obtained a nice formula for many of the coefficients c+g (∆)
in terms of periods of algebraic differentials of the third kind on modular and elliptic curves.

Example. Here we present an example which numerically illustrates the most general form
of Theorem 2.2 for the weight 2 newform G which corresponds to the conductor 37 elliptic
curve

E : y2 = x3 + 10x2 − 20x+ 8.

The table below includes some of the coefficients of a suitable f which were numerically
computed by F. Strömberg (also see [81]).
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∆ c+g (−∆) L′(E(∆), 1) = L′(G,χ∆, 1)

−3 1.0267149116 . . . 1.4792994920 . . .
−4 1.2205364009 . . . 1.8129978972 . . .
−7 1.6900297463 . . . 2.1107189801 . . .
...

...
...

−136 −4.8392675993 . . . 5.7382407649 . . .
−139 −6 0
−151 −0.8313568817 . . . 6.6975085515 . . .

...
...

...
−815 121.1944103120 . . . 4.7492583693 . . .
−823 312 0

Strictly speaking, the cases where ∆ = −139 and −823 were not obtained numerically.
We have that L′(E(−139), 1) = L′(E(−823), 1) = 0 by the Gross-Zagier formula. The
evaluations c+g (139) = −6 and c+g (823) = 312 arise from explicit generalized Borcherds
products (for example, see Example 8.3 of [77]). The rank 3 elliptic curve E(−139) is quite
famous, for it was used as input data for Goldfeld’s celebrated effective solution to Gauss’s
“Class Number Problem”. For the other ∆ in the table, the derivatives are non-vanishing
and the coefficients c+g (−∆) are transcendental.

Theorem 2.2 relates the algebraicity of coefficients of harmonic Maass forms to the vanish-
ing of derivatives of modular L-functions. It is then natural to ask whether these ideas can
be used to exactly compute these derivatives. In other words, can the theory of harmonic
Maass forms be used to obtain the deep formulas (as well as generalizations) of Gross and
Zagier which relate heights of Heegner points to such derivatives? Bruinier and T. Yang
have used these results, combined with their theory of Green’s functions and theta lifts for
harmonic Maass forms, to show that this is indeed the case. In addition to formulating a
deep conjecture about derivatives of L-functions and heights (see Section 12.2), they have
proved the following striking theorem (see [82]).

Theorem 2.3. If G ∈ S2(N) is a weight 2 newform with the property that the sign of the
functional equation of L(G, s) is ε(G) = −1, then there is a weight 1/2 harmonic Maass
form f , a weight 3/2 cusp form g, and a Heegner divisor Z(f) whose Neron-Tate height
pairing is given by

〈Z(f), Z(f)〉NT =
2
√
N

π‖g‖2
L′
(
G, 1).

Remark. To ease notation in Theorem 2.3, we did not describe the relationship between G,
g, f and Z(f). Loosely speaking, they are related as follows. We let g be a weight 3/2 cusp
form whose image under the Shimura correspondence is G. The harmonic Maass form f in
Theorems 2.2 and 2.3 is selected so that its principal part (see Section 4.1 for the definition)
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is defined over the number field generated by the coefficients of G, and also satisfies

ξ 1
2
(f) = ‖g‖−2g.

Here ξ 1
2

is the differential operator considered in Lemma 4.4. The Heegner divisor Z(f) is

then defined using the principal part of f .

These works shall be described in Section 12.

(Ramanujan’s last letter revisited)

We return to the enigmatic last letter of Ramanujan. Ramanujan conjectured that his
examples of the so-called mock theta functions have asymptotics which resemble those which
arise in the theory of modular forms, but do not have the property that there are any weakly
holomorphic modular forms which exactly cut out their exponential singularities. However,
Ramanujan also found examples where modular forms very nearly cut out the singularities.

We recall Theorem 1.2 which gives formulas for Ramanujan’s mysterious O(1) numbers
for his mock theta function f(q).

Theorem 2.4. If ζ is a primitive even order 2k root of unity, then, as q approaches ζ
radially within the unit disk, we have that

lim
q→ζ

(
f(q)− (−1)kb(q)

)
= −4 ·

k−1∑
n=0

(1 + ζ)2(1 + ζ2)2 · · · (1 + ζn)2ζn+1.

Remark. Since empty products equal 1, Theorem 1.2 shows that

lim
q→−1

(f(q) + b(q)) = 4.

It turns out that this theorem is a special case of a much more general theorem, one which
surprisingly relates two well known q-series in the theory of partitions. To make it precise,
we require Dyson’s rank function R(w; q), the Andrews-Garvan crank function C(w; q), and
the recently studied q-hypergeometric series U(w; q). The q-series R(w; q) and C(w; q) are
among the most important generating functions in the theory of partitions. These famous
series play a prominent role in the study of integer partition congruences (for example, see
[28, 36, 64, 108, 178]).

The Andrews-Garvan crank function is defined by

(2.12) C(w; q) =
∞∑

n=0

∑
m∈Z

M(m,n)wmqn :=
(q; q)∞

(wq; q)∞ · (w−1q; q)∞
.

Here M(m,n) is the number of partitions of n with crank m [28]. For roots of unity w,
C(w; q) is (up to a power of q) a modular form. The series U(w; q) has recently been
studied by several authors [21, 32, 83, 207] in work related to unimodal sequences. This
q-hypergeometric series is defined by

(2.13) U(w; q) =
∞∑

n=0

∑
m∈Z

u(m,n)(−w)mqn :=
∞∑

n=0

(wq; q)n · (w−1q; q)nq
n+1.

Here u(m,n) is the number of strongly unimodal sequences of size n with rank m [83].
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Remark. In terms of the standard notation for q-hypergeometric series (for example, see p.4
of [122]), it turns out that U(w; q) is a 3φ2 q-hypergeometric series. Namely, we have that

q−1U(w; q) = 3φ2(wq,w
−1q, q; 0, 0; q, q).

Theorem 1.2 is a special case of the following general theorem which relates the asymptotic
behavior of these three q-series. For roots of unity w 6= 1, we then have the mock theta
function R(w; q), the modular form C(w; q), and the basic hypergeometric series U(w; q).
Throughout, we let ζn := e2πi/n.

Theorem 2.5. Let 1 ≤ a < b and 1 ≤ h < k be integers with gcd(a, b) = gcd(h, k) = 1
and b | k. If h′ is an integer satisfying hh′ ≡ −1 (mod k), then, as q approaches ζh

k radially
within the unit disk, we have that

lim
q→ζh

k

(
R (ζa

b ; q)− ζ−a2h′k
b2 C (ζa

b ; q)
)

= −(1− ζa
b )(1− ζ−a

b ) · U(ζa
b ; ζh

k ).

Three remarks.
1) There is an integer c(a, b, h, k) such that the limit in Theorem 2.5 reduces to the finite
sum

−(1− ζa
b )(1− ζ−a

b )

c(a,b,h,k)∑
n=0

(ζa
b ζ

h
k ; ζh

k )n · (ζ−a
b ζh

k ; ζh
k )n · ζh(n+1)

k .

2) Theorem 1.2 is the a = 1 and b = 2 case of Theorem 2.5 because R(−1; q) = f(q),
combined with the well known fact that C(−1; q) = b(q).

3) A variant of Theorem 2.5 holds when b - k. This is obtained by modifying the proof to
guarantee that the two resulting asymptotic expressions match.

We now return to the original point of Ramanujan’s last letter: the claim that his strange
q-series are examples of his so-called mock theta functions. Earlier we presented the following
fitting conclusion which confirms that his examples indeed satisfies his own vague definition
of a mock theta function.

Theorem 2.6. Suppose that M(z) is one of Ramanujan’s mock theta functions, and let γ
and δ be integers for which qγM(δz) is the holomorphic part of a weight 1/2 harmonic weak
Maass form. Then there does not exist a weakly holomorphic modular form g(z) of any
weight k ∈ 1

2
Z on any congruence subgroup Γ1(N

′) such that for every root of unity ζ we
have

lim
q→ζ

(qγM(δz)− g(z)) = O(1).

This result is a special case of the following general theorem which we will prove.

Theorem 2.7. Suppose that f(z) = f−(z)+f+(z) is a harmonic weak Maass form of weight
k ∈ 1

2
Z on Γ1(N), where f−(z) (resp. f+(z)) is the nonholomorphic (resp. holomorphic) part

of f(z). If f−(z) is nonzero and g(z) is a weight k weakly holomorphic modular form on any
Γ1(N

′), then f+(z)− g(z) has exponential singularities at infinitely many roots of unity ζ.

Remark. Harmonic weak Maass forms in this theorem are assumed to have principal parts
at all cusps. Again, see Section 4.1 for definitions.
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We shall prove Theorems 1.2,2.5, and 2.7 in Section 13.

(Quantum modular forms)

Recently, Bryson, Pitman, Rhoades and the author [83] investigated the q-series U(w; q)
defined in (2.13) in connection with the theory of quantum modular forms. Following Zagier8

[247], a weight k quantum modular form is a complex-valued function f on Q, or possibly
P1(Q) \ S for some set S, such that for all γ = ( a b

c d ) ∈ SL2(Z) the function

hγ(x) := f(x)− ε(γ)(cx+ d)−kf

(
ax+ b

cx+ d

)
satisfies a “suitable” property of continuity or analyticity. The ε(γ) are suitable complex
numbers, such as those in the theory of half-integral weight modular forms when k ∈ 1

2
Z\Z.

In particular, Zagier offered a number of examples of such forms by making use of Dedekind
sums, period polynomials, and a few curious q-series identities. Particularly interesting
examples of such forms relate functions which are simultaneously defined on both H = H+

and H−, the upper-half and lower-half of the complex plane respectively. The quantum form
is the device which makes it possible to pass between the two half-planes.

We begin by recalling a particularly nice example related to the series U(w; q) defined by
(2.13). The q-series U(1; q), the generating function for the number of size n sequences with
even rank minus the number with odd rank, is intimately related to Kontsevich’s strange
function9

(2.14) F (q) :=
∞∑

n=0

(q; q)n = 1 + (1− q) + (1− q)(1− q2) + (1− q)(1− q2)(1− q3) + . . . .

This function is strange because it does not converge on any open subset of C, but is
well-defined at all roots of unity. Zagier [244] proved that this function satisfies the even
“stranger” identity

(2.15) F (q) = −1

2

∞∑
n=1

nχ12(n)q
n2−1

24 ,

where χ12(•) =
(

12
•

)
. Neither side of this identity makes sense simultaneously. Indeed, the

right hand side10 converges in the unit disk |q| < 1, but nowhere on the unit circle. The
identity means that F (q) at roots of unity agrees with the radial limit of the right hand side.

The series U(1; q), which converges in |q| < 1, also gives F (q−1) at roots of unity. The
following theorem was proved in [83].

Theorem 2.8. If q is a root of unity, then F (q−1) = U(1; q).

Example. Here are two examples: U(1;−1) = F (−1) = 3 and U(1; i) = F (−i) = 8 + 3i.

8Zagier’s definition is intentionally vague with the idea that sufficient flexibility is required to allow for
interesting examples. Here we modify his defintion to include half-integral weights k and multiplier systems
ε(γ).

9Zagier credits Kontsevich for relating F (q) to Feynmann integrals in a lecture at Max Planck in 1997.
10As Zagier points out in Section 6 of [244], the right hand side of the identity is essentially the “half-

derivative” of Dedekind’s eta-function, which then suggests that the series may be related to a weight 3/2
modular object.
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Remark. Theorem 2.8 is analogous to the result of Cohen [95, 247] that σ(q) = −σ∗(q−1)
for roots of unity q, for the well-known q-series σ(q) and σ∗(q) that Andrews, Dyson, and
Hickerson [26] defined in their work on partition ranks.

Zagier [244] used (2.15) to obtain the following identity

(2.16) e−
t
24

∞∑
n=0

(1− e−t)(1− e−2t) . . . (1− e−nt) =
∞∑

n=0

Tn

n!
·
(
t

24

)n

,

where Glaisher’s Tn numbers (see A002439 in [227]) are the algebraic parts of L(χ12, 2n+2).
As a companion to Theorem 2.8, we use U(1; q) to give these same L-values.

Theorem 2.9. As a power series in t, we have that

e
t
24 · U(1; e−t) =

∞∑
n=0

Tn

n!
·
(
−t
24

)n

=
6
√

3

π2
·
∞∑

n=0

(2n+ 1)!

n!
· L(χ12, 2n+ 2) ·

(
−3t

2π2

)n

.

These results are related to the next theorem which gives a new quantum modular form.
More precisely, we have that

(2.17) φ(x) := e−
πix
12 · U(1; e2πix)

is a weight 3
2

quantum modular form. Since SL2(Z) = 〈( 1 1
0 1 ) , ( 0 −1

1 0 )〉 and

φ(x)− e
πi
12 · φ(x+ 1) = 0,

it suffices to consider ( 0 −1
1 0 ). The following theorem, proved in [83], establishes the desired

relationship on the larger domain Q ∪H− {0}.

Theorem 2.10. If x ∈ Q ∪H− {0}, then

φ(x) + (−ix)−
3
2φ(−1/x) = h(x),

where (ix)−
3
2 is the principal branch and

h(x) :=

√
3

2πi

∫ i∞

0

η(τ)

(−i(x+ τ))
3
2

dτ − i

2
e

πix
6 (e2πix; e2πix)2

∞ ·
∫ i∞

0

η(τ)3

(−i(x+ τ))
1
2

dτ.

Here η(τ) := e
πiτ
12 (e2πiτ ; e2πiτ )∞ is Dedekind’s eta-function. Moreover, taking η(x) = 0 for

x ∈ R, h : R → C is a C∞ function which is real analytic everywhere except at x = 0, and
h(n)(0) = (−πi/12)n · Tn, where Tn is the nth Glaisher number.

Remark. Zagier [244] proved that e
πix
12 · F (e2πix) is a quantum modular form. Theorem 2.10

gives a dual quantum modular form, one whose domain naturally extends beyond Q to
include H. This is somewhat analogous to the situation for σ(q) and σ∗(q) discussed above.
In a recent paper, Rolen and Schneider [215] obtained a similarly strange vector-valued
quantum modular form.

Remark. Theorem 2.10 implies that Φ(z) := η(z)φ(z) behaves analogously to a weight 2
modular form for SL2(Z) for z ∈ H with a suitable error function. Namely, Φ(z + 1) = Φ(z)
and Φ(z)− z−2Φ

(
−1

z

)
= η(z)h(z), see also Theorem 1.1 of [32].
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In view of the roles that R(w; q) (which is essentially a mock modular form for roots of
unity w 6= 1) and U(w; q) play in Theorem 2.5, it is natural to ask about the more general
relationship between mock theta functions and quantum modular forms. To this end, we seek
q-hypergeometric series related to mock theta functions which are defined on both H+ and
H−. In doing so, we are led to the “False” ϑ-functions of Rogers and Fine, which Ramanujan
claimed do not “enter into mathematics as beautifully as the ordinary theta functions”.

We recall these functions. In 1917 Rogers [213] defined the important q-hypergeometric
series

(2.18) F (α, β, t; q) :=
∞∑

n=0

(αq; q)nt
n

(βq; q)n

.

This series does not typically specialize to modular forms, but instead often gives “halves”
of modular theta functions. These include many of the primary examples of “false” and
“partial” ϑ-functions. For example, we have the following special case of the work of Rogers
and Fine [114]:

1

1 + w
· F (wq−1,−w,w; q) :=

1

1 + w
·
∞∑

n=0

(w; q)nw
n

(−wq; q)n

=
∞∑

n=0

(−1)nw2nqn2

.

Here we consider the following specializations, where q := e2πiz:

G(a, b; z) := q
a2

b2

1−q
a
b
· F
(
−q a

b
−1, q

a
b ,−q a

b ; q
)
,(2.19)

H(a, b; z) := q
1
8 · F

(
ζ−a
b q−1, ζ−a

b , ζ−a
b q; q2

)
.(2.20)

We have the following false theta function identities, the second of which follows from equa-
tion (1) of [213], and the first of which is in [31].

(2.21) G(a, b; z) = q
a2

b2

∞∑
n=0

(−q a
b ; q)n

(q
a
b ; q)n+1

· (−1)nqn a
b =

∞∑
n=0

(−1)nq(n+a
b )

2

,

(2.22) H(a, b; z) = q
1
8

∞∑
n=0

(ζ−a
b q; q2)n

(ζ−a
b q2; q2)n

· (ζ−a
b q)n =

∞∑
n=0

ζ−an
b q

1
2(n+ 1

2)
2

.

Remark. The second equalities in (2.21) and (2.22) are only valid for |q| < 1.

These specializations satisfy the following nice properties often associated to quantum
modular forms: convergence in H±, a modular transformation law, and asymptotic expan-
sions which are generating functions for values of L-functions. More precisely, we prove the
following theorem.

Theorem 2.11. Let 0 < a < b be coprime integers, with b even, and let

Qa,b :=

{
h

k
∈ Q : gcd(h, k) = 1, h > 0, b | 2h, b - h, k ≡ a (mod b), k ≥ a

}
.

The following are true:
(1) The functions G(a, b; z) and H(a, b; z) converge for z ∈ H+ ∪H−.
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(2) For x ∈ Qa,b ∪H+, we have that

G(a, b;−x) +
e−

πia
b

√
2ix

·H
(
a, b;

1

2x

)
= −

∫ i∞

0

(−iu)− 3
2T
(
a, b;− 1

u

)
du√

−i(u+ x)
,

where T (a, b; z) is a weight 3/2 modular form defined by

T (a, b; z) := i
∞∑

n=−∞

(
n+

1

4

)
cosh

(
2πi

(
n+

1

4

)(
2a

b
− 1

))
q(n+ 1

4)
2

.

That is, G(a, b;x) and H(a, b;x) are weight 1/2 quantum modular forms on Qa,b ∪H+.

(3) Let Br(n) be the rth Bernoulli polynomial. For h
k
∈ Qa,b, as t→ 0+, we have

G

(
a, b;

−h
k

+
it

2π

)
∼

∞∑
r=0

L(−2r, cG) · (−t)r

r! · b2r
,

H

(
a, b;

k

2h
+

it

2π

)
∼

∞∑
r=0

L(−2r, cH) · (−t)r

r! · 8r
,

where

L(−r, cG) = −(2kb2)r

r + 1

2kb2∑
n=1

cG(n)Br+1

( n

2kb2

)
,

L(−r, cH) = −(16h)r

r + 1

16h∑
n=1

cH(n)Br+1

( n

16h

)
,

cG(n) :=


ζ−hn2

kb2 , if n ≡ a (mod 2b),

−ζ−hn2

kb2 , if n ≡ a+ b (mod 2b),

0, otherwise,

cH(n) :=

{
ζ
−a(n−1

2 )
b ζkn2

16h , if n ≡ 1 (mod 2),

0, otherwise.

Two remarks.
1) For x = h

k
∈ Qa,b, we have that G(a, b;−x) and H

(
a, b; 1

2x

)
converge. Moreover, they are

explicitly given by the finite sums

G

(
a, b;−h

k

)
= ζ−a2h

b2k

m∑
n=0

(−ζ−ah
bk ; ζ−h

k )n(−ζ−ah
bk )n

(ζ−ah
bk ; ζ−h

k )n+1

,(2.23)

H

(
a, b;

k

2h

)
= ζk

16h

∑̀
n=0

(ζ−a
b ζk

2h; ζ
k
h)n(ζ−a

b ζk
2h)

n

(ζ−a
b ζk

h ; ζk
h)n

,(2.24)

where the non-negative integers ` and m satisfy b(2`+1) = 2h and a+ bm = k, respectively.

2) In Theorem 2.11 (2), we are using the vector-valued notion of a quantum modular form.



28 KEN ONO

Example. Here we will illustrate how the different parts of Theorem 2.11 may be used
to understand the Rogers-Fine functions (2.21) and (2.22), and relations between them, at
rational numbers z by way of an example. If a = 1 and b = 2, then (2.21) and (2.22) give
the identities

G(1, 2; z) := q
1
4

∞∑
n=0

(−q 1
2 ; q)n(−1)nq

n
2

(q
1
2 ; q)n+1

=
∞∑

n=0

(−1)nq
(2n+1)2

4 ,

H(1, 2; z) := q
1
8

∞∑
n=0

(−q; q2)n(−q)n

(−q2; q2)n

=
∞∑

n=0

(−1)nq
(2n+1)2

8 ,

so that G(1, 2; z) = H(1, 2; 2z). For simplicity, we consider the rational number h
k

= 1
1
∈ Q1,2.

On one hand, from Theorem 2.11 (3), we find that asymptotically, as t→ 0+, we have

G

(
1, 2;−1 +

it

2π

)
∼

∞∑
r=0

L(−2r, cG) · (−t)r

r! · b2r
.

We compute (using that B1(x) = x − 1/2) that L(0, cG) = − i
2
, and so G(1, 2;−1) ∼ − i

2
.

On the other hand, Thereom 2.11 gives G(1, 2;−1) exactly, as a finite sum, using (2.23). In
particular, we have m = 0 for (a, b, h, k) = (1, 2, 1, 1), and hence we compute that at the

root of unity −1, the function G(1, 2;−1) is exactly equal to G(1, 2;−1) =
ζ−1
4

1−ζ−1
2

= − i
2
.

Similarly, using Theorem 2.11 (3), we find that asymptotically, H
(
1, 2; 1

2

)
∼ ζ16. On the

other hand, we may evaluate H
(
1, 2; 1

2

)
exactly as a finite sum using (2.24). Indeed, we find

that H
(
1, 2; 1

2

)
= ζ16.

We may combine these calculations with Theorem 2.11 (2), to find an exact value for the
integral expression appearing in Theorem 2.11 (2). Namely, we have that

i

4

∫ i∞

0

(−iu)− 3
2 Θ1,4

(
− 1

u

)
du√

−i(u+ 1)
=
i

2
−
√
i

2
· ζ16,

where Θ1,4(z) :=
∑

n≡1 (mod 4) nq
n2

16 .

In Section 14 we shall sketch the proof of Theorem 2.11.

3. The mock theta functions of Ramanujan d’après Zwegers

Now we begin to describe recent results beginning with the work of Zwegers. We first give
a typical example of Zwegers’s results on Ramanujan’s mock theta functions, and we briefly
describe his construction of a weight 1/2 non-holomorphic Jacobi form.

3.1. Ramanujan’s mock theta functions f(q) and ω(q). We first consider Ramanujan’s
third order mock theta function f(q). Important results concerning its modularity properties
were first obtained by G. N. Watson in [239]. Although f(q) is not the Fourier expansion of
a usual meromorphic modular form, in this classic paper Watson determined its complicated
modular transformation properties. Watson’s modular transformation formulas are difficult
to grasp at first glance; they involve another third order mock theta function, as well as
terms arising from Mordell integrals.
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Zwegers [252] nicely packaged Watson’s results in terms of real analytic vector-valued
modular forms. We now describe this result. As before, let ω(q) be the third order mock
theta function defined by (1.6). Define the vector-valued function F (z) by

(3.1) F (z) = (F0(z), F1(z), F2(z))
T := (q−

1
24f(q), 2q

1
3ω(q

1
2 ), 2q

1
3ω(−q

1
2 ))T .

Similarly, let G(z) be the vector-valued non-holomorphic function defined by

(3.2) G(z) = (G0(z), G1(z), G2(z))
T := 2i

√
3

∫ i∞

−z

(g1(τ), g0(τ), −g2(τ))
T√

−i(τ + z)
dτ,

where the gi(τ) are the cuspidal weight 3/2 theta functions

g0(τ) :=
∞∑

n=−∞

(−1)n

(
n+

1

3

)
e3πi(n+ 1

3)
2
τ ,

g1(τ) := −
∞∑

n=−∞

(
n+

1

6

)
e3πi(n+ 1

6)
2
τ ,

g2(τ) :=
∞∑

n=−∞

(
n+

1

3

)
e3πi(n+ 1

3)
2
τ .

(3.3)

Using these vector-valued functions, Zwegers defined the vector-valued function H(z) by

(3.4) H(z) := F (z)−G(z).

The following description of H(z) is the main result of [252].

Theorem 3.1. (Zwegers)
The function H(z) is a vector-valued real analytic modular form of weight 1/2 satisfying

H(z + 1) =

ζ−1
24 0 0
0 0 ζ3
0 ζ3 0

H(z),

H(−1/z) =
√
−iz ·

0 1 0
1 0 0
0 0 −1

H(z),

where ζn := e2πi/n. Furthermore, H(z) is an eigenfunction of the Casimir operator Ω 1
2

:=

−4y2 ∂2

∂z∂z
+ iy ∂

∂z
+ 3

16
with eigenvalue 3

16
, where z = x + iy, ∂

∂z
= 1

2

(
∂
∂x
− i ∂

∂y

)
, and ∂

∂z
=

1
2

(
∂
∂x

+ i ∂
∂y

)
.

Remark. This Casimir operator is essentially the weight 1/2 hyperbolic Laplacian operator
(see (4.1)) which plays an important role in the definition of harmonic Maass forms.

This beautiful theorem nicely describes the modular transformations of both f(q) and
ω(q). In particular, they are essentially the “holomorphic parts” of components of a 3-
dimensional vector-valued weight 1/2 real analytic modular form. The “non-holomorphic”
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parts of these components are “period integrals” of classical weight 3/2 functions which turn
out to be single variable theta functions. The functions in Theorem 3.1 can be thought of
as prototypes for the theory of harmonic Maass forms.

3.2. Zwegers’s weight 1/2 non-holomorphic Jacobi form. In his thesis, Zwegers con-
structed weight 1/2 harmonic Maass forms by making use of the transformation properties
of Lerch sums. Here we briefly recall some of these important results which address the
difficult problem of constructing weight 1/2 harmonic Maass forms.

For τ ∈ H, u, v ∈ C \ (Zτ + Z), Zwegers defined the function

(3.5) µ(u, v; τ) :=
z1/2

ϑ(v; τ)
·
∑
n∈Z

(−w)nqn(n+1)/2

1− zqn
,

where z := e2πiu, w := e2πiv, q := e2πiτ and

(3.6) ϑ(v; τ) :=
∑

ν∈Z+ 1
2

eπiνwνqν2/2.

Remark. We stress that q := e2πiτ in this subsection, which is a brief departure from our
convention that q := e2πiz.

Zwegers (see Section 1.3 of [253]) proves that µ(u, v; τ) satisfies the following important
properties.

Lemma 3.2. Assuming the notation above, we have that

µ(u, v; τ) = µ(v, u; τ),

µ(u+ 1, v; τ) = −µ(u, v; τ),

z−1wq−
1
2µ(u+ τ, v; τ) = −µ(u, v; τ)− iz−

1
2w

1
2 q−

1
8 ,

µ(u, v; τ + 1) = ζ−1
8 µ(u, v; τ) (ζN := e2πi/N)

(τ/i)−
1
2 eπi(u−v)2/τµ

(
u

τ
,
v

τ
;−1

τ

)
= −µ(u, v; τ) +

1

2i
h(u− v; τ),

where

h(z; τ) :=

∫ ∞

−∞

eπix2τ−2πxzdx

cosh πx
.

Remark. The integral h(z; τ) is known as a Mordell integral.

Lemma 3.2 shows that µ(u, v; τ) is nearly a weight 1/2 Jacobi form, where τ is the modular
variable. Zwegers then uses µ to construct weight 1/2 harmonic Maass forms. He achieves
this by modifying µ to obtain a function µ̂ which he then uses as building blocks for such
Maass forms. To make this precise, for τ ∈ H and u ∈ C, let c := Im(u)/Im(τ), and let

(3.7) R(u; τ) :=
∑

ν∈Z+ 1
2

(−1)ν− 1
2

{
sgn(ν)− E

(
(ν + c)

√
2Im(τ)

)}
e−2πiνuq−ν2/2,
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where E(x) is the odd function

(3.8) E(x) := 2

∫ x

0

e−πu2

du = sgn(x)(1− β(x2)),

where for positive real x we let β(x) :=
∫∞

x
u−

1
2 e−πudu.

Using µ and R, Zwegers defines the real analytic function

(3.9) µ̂(u, v; τ) := µ(u, v; τ) +
i

2
R(u− v; τ).

Zwegers construction of weight 1/2 harmonic Maass forms depends on the following theorem
(see Section 1.4 of [253]).

Theorem 3.3. Assuming the notation and hypotheses above, we have that

µ̂(u, v; τ) = µ̂(v, u; τ),

µ̂(u+ 1, v; τ) = z−1wq−
1
2 µ̂(u+ τ, v; τ) = −µ̂(u, v; τ),

ζ8µ̂(u, v; τ + 1) = −(τ/i)−
1
2 eπi(u−v)2/τ µ̂

(
u

τ
,
v

τ
;−1

τ

)
= µ̂(u, v; τ).

Moreover, if A =
(

α β
γ δ

)
∈ SL2(Z), then

µ̂

(
u

γτ + δ
,

v

γτ + δ
;
ατ + β

γτ + δ

)
= χ(A)−3(γτ + δ)

1
2 e−πiγ(u−v)2/(γτ+δ) · µ̂(u, v; τ),

where χ(A) := η(Aτ)/
(
(γτ + δ)

1
2η(τ)

)
.

Theorem 3.3 shows that µ̂(u, v; τ) is essentially a weight 1/2 non-holomorphic Jacobi
form. In analogy with the classical theory of Jacobi forms, one may then obtain harmonic
Maass forms by making suitable specializations for u and v by elements in Qτ + Q, and by
multiplying by appropriate powers of q. Without this result, it would be very difficult to
explicitly construct examples of weight 1/2 harmonic Maass forms.

Harmonic Maass forms of weight k are mapped to classical modular forms (see Lemma 4.4),
their so-called shadows, by the differential operator

ξk := 2iyk · ∂
∂τ
.

The following lemma makes it clear that the shadows of the real analytic forms arising from
µ̂ can be described in terms of weight 3/2 theta functions.

Lemma 3.4. [Lemma 1.8 of [253]] The function R is real analytic and satisfies

∂R

∂u
(u; τ) =

√
2y−

1
2 e−2πc2yϑ(u;−τ),

where c := Im(u)/Im(τ). Moreover, we have that

∂

∂τ
R(aτ − b; τ) = − i√

2y
e−2πa2y

∑
ν∈Z+ 1

2

(−1)ν− 1
2 (ν + a)e−πiν2τ−2πiν(aτ−b).
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4. Harmonic Maass forms

For the remainder of the paper, we shall assume that the reader is familiar with the
classical theory of elliptic modular forms (for example, see [84, 100, 151, 160, 169, 182, 191,
205, 216, 224, 228]).

D. Niebur [187, 188] and D. Hejhal [143] constructed certain non-holomorphic Poincaré
series which turn out to be examples of harmonic Maass forms. Bruinier [70] made great use
of these Poincaré series in his early work on Borcherds lifts and Green’s functions. He then
realized the importance of developing a “theory of harmonic Maass forms” in its own right.
Later in joint work with Funke [73], he developed the fundamental results of this theory,
some of which we describe here. After making the necessary definitions, we shall discuss
Hecke operators and various differential operators. The interplay between harmonic Maass
forms and classical modular forms shall play an important role throughout this paper.

4.1. Definitions. In 1949, H. Maass introduced the notion of a Maass form11 (see [176,
177]). He constructed these non-holomorphic automorphic forms using Hecke characters of
real quadratic fields, in analogy with Hecke’s theory [141] of modular forms with complex
multiplication (see [210] for a modern treatment).

To define these functions, let ∆ = ∆0 be the hyperbolic Laplacian

∆ := −y2

(
∂2

∂x2
+

∂2

∂y2

)
,

where z = x+ iy ∈ H with x, y ∈ R. It is a second-order differential operator which acts on
functions on H, and it is invariant under the action of SL2(R).

A Maass form for a subgroup Γ ⊂ SL2(Z) is a smooth function f : H → C satisfying:

(1) For every ( a b
c d ) ∈ Γ, we have

f

(
az + b

cz + d

)
= f(z).

(2) We have that f is an eigenfunction of ∆.
(3) There is some N > 0 such that

f(x+ iy) = O(yN)

as y → +∞.

Furthermore, we call f a Maass cusp form if∫ 1

0

f(z + x)dx = 0.

There is now a vast literature on Maass forms thanks to the works of many authors such as
Hejhal, Iwaniec, Maass, Roelcke, Selberg, Terras, Venkov, among many others (for example,
see [142, 143, 150, 152, 176, 177, 211, 222, 231, 232, 235]).

This paper concerns a generalization of this notion of Maass form. Following Bruinier and
Funke [73], we define the notion of a harmonic Maass form of weight k ∈ 1

2
Z as follows. As

11In analogy with the eigenvalue problem for the vibrating membrane, Maass referred to these automorphic
forms as Wellenformen, or waveforms.
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before, we let z = x + iy ∈ H with x, y ∈ R. We define the weight k hyperbolic Laplacian
∆k by

(4.1) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

For odd integers d, define εd by

(4.2) εd :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

Definition 4.1. If N is a positive integer (with 4 | N if k ∈ 1
2
Z \ Z), then a weight k

harmonic Maass form on Γ ∈ {Γ1(N),Γ0(N)} is any smooth function M : H → C satisfying
the following:

(1) For all A = ( a b
c d ) ∈ Γ and all z ∈ H, we have

M

(
az + b

cz + d

)
=

{
(cz + d)kM(z) if k ∈ Z,(

c
d

)2k
ε−2k
d (cz + d)k M(z) if k ∈ 1

2
Z \ Z.

Here
(

c
d

)
denotes the extended Legendre symbol, and

√
z is the principal branch of

the holomorphic square root.
(2) We have that ∆kM = 0.
(3) There is a polynomial PM =

∑
n≤0 c

+(n)qn ∈ C[q−1] such that

M(z)− PM(z) = O(e−εy)

as y → +∞ for some ε > 0. Analogous conditions are required at all cusps.

Remark. Maass forms and classical modular forms are required to satisfy moderate growth
conditions at cusps, and it is for this reason that harmonic Maass forms are often referred
to as “harmonic weak Maass forms”. The term “weak” refers to the relaxed condition
Definition 4.1 (3) which gives rise to a rich theory. For convenience, we use the terminology
“harmonic Maass form” instead of “harmonic weak Maass form”.

Remark. We refer to the polynomial PM as the principal part of M(z) at ∞. Obviously, if
PM is non-constant, then M(z) has exponential growth at ∞. Similar remarks apply at all
cusps.

Remark. We do not have time here to discuss the interesting recent work of Candelori [85]
which interpretes some essential features of the theory of harmonic Maass forms in a p-adic
context.

Remark. Bruinier and Funke [73] define two types of harmonic Maass forms based on varying
the growth conditions at cusps. For a group Γ, they refer to these spaces asHk(Γ) andH+

k (Γ).
Definition 4.1 (3) corresponds to their H+

k (Γ) definition.

Remark. Since holomorphic functions on H are harmonic, it follows that weakly holomorphic
modular forms are harmonic Maass forms.
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Remark. Here we recall the congruence subgroups. If N is a positive integer, then define the
level N congruence subgroups Γ0(N), Γ1(N), and Γ(N) by

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
,

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod N, and c ≡ 0 mod N

}
,

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod N, and b ≡ c ≡ 0 mod N

}
.

Remark. For k ∈ 1
2
Z \ Z, the transformation law in Definition 4.1 (1) coincides with those

in Shimura’s theory of half-integral weight modular forms [223].

Remark. Later we shall require the classical “slash” operator. For convenience, we recall its
definition here. Suppose that k ∈ 1

2
Z. For A = ( a b

c d ) ∈ SL2(Z) (Γ0(4) if k ∈ 1
2
Z \ Z), define

j(A, z) by

(4.3) j(A, z) :=

{√
cz + d if k ∈ Z,(

c
d

)
ε−1

d

√
cz + d if k ∈ 1

2
Z \ Z,

where εd is defined by (4.2), and where
√
z is the principal branch of the holomorphic square

root as before. For functions f : H → C, we define the action of the “slash” operator by

(4.4) (f |k A)(z) := j(A, z)−2kf(Az) = j(A, z)−2kf

(
az + b

cz + d

)
.

Notice that Definition 4.1 (1) may be rephrased as

(M |k A) (z) = M(z).

Remark. We shall also consider level N weight k ∈ 1
2
Z forms with Nebentypus χ. To define

such forms, suppose that N is a positive integer (with 4 | N if k ∈ 1
2
Z \ Z), and let χ

be a Dirichlet character modulo N . To define these forms, one merely requires12, for every
( a b

c d ) ∈ Γ0(N), that

M

(
az + b

cz + d

)
=

{
χ(d)(cz + d)kM(z) if k ∈ Z,(

c
d

)2k
ε−2k
d χ(d)(cz + d)k M(z) if k ∈ 1

2
Z \ Z.

Throughout, we shall adopt the following notation. If Γ ⊂ SL2(Z) is a congruence sub-
group, then we let

Sk(Γ) := weight k cusp forms on Γ,

Mk(Γ) := weight k holomorphic modular forms on Γ,

M !
k(Γ) := weight k weakly holomorphic modular forms on Γ,

Hk(Γ) := weight k harmonic Maass forms on Γ.

12This replaces (1) in Definition 4.1.
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Furthermore, if χ is a Dirichlet character modulo N , then we let

Sk(N,χ) := level N weight k cusp forms with Nebentypus χ,

Mk(N,χ) := level N weight k holomorphic modular forms with Nebentypus χ,

M !
k(N,χ) := level N weight k weakly holomorphic modular forms with Nebentypus χ,

Hk(N,χ) := level N weight k harmonic Maass forms with Nebentypus χ.

When the Nebentypus character is trivial, we shall suppress χ from the notation.
The real analytic forms in Theorem 3.1 provide non-trivial examples of weight 1/2 har-

monic Maass forms. More generally, the work of Zwegers [252, 253], shows how to complete
all of Ramanujan’s mock theta functions to obtain weight 1/2 harmonic Maass forms. In
Section 5, we shall present further examples of harmonic Maass forms.

4.2. Fourier expansions. In this paper we consider harmonic Maass forms with weight
2− k ∈ 1

2
Z with k > 1. Therefore, throughout we assume that 1 < k ∈ 1

2
Z.

Harmonic Maass forms have distinguished Fourier expansions which are described in terms
of the incomplete Gamma-function Γ(α;x)

(4.5) Γ(α;x) :=

∫ ∞

x

e−ttα−1 dt,

and the usual parameter q := e2πiz. The following characterization is straightforward (for
example, see Section 3 of [73]).

Lemma 4.2. Assume the notation and hypotheses above, and suppose that N is a positive
integer. If f(z) ∈ H2−k(Γ1(N)), then its Fourier expansion is of the form

(4.6) f(z) =
∑

n�−∞

c+f (n)qn +
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn,

where z = x+ iy ∈ H, with x, y ∈ R.

As Lemma 4.2 reveals, f(z) naturally decomposes into two summands. In view of this
fact, we make the following definition.

Definition 4.3. Assuming the notation and hypotheses in Lemma 4.2, we refer to

f+(z) :=
∑

n�−∞

c+f (n)qn

as the holomorphic part of f(z), and we refer to

f−(z) :=
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn

as the non-holomorphic part of f(z).

Remark. A harmonic Maass form with trivial non-holomorphic part is a weakly holomorphic
modular form. We shall make use of this fact as follows. If f1, f2 ∈ H2−k(Γ) are two harmonic
Maass forms with equal non-holomorphic parts, then f1 − f2 ∈M !

2−k(Γ).
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4.3. The ξ-operator and period integrals of cusp forms. Harmonic Maass forms are
related to classical modular forms thanks to the properties of differential operators. The
first nontrivial relationship depends on the differential operator

(4.7) ξw := 2iyw · ∂
∂z
.

The following lemma13, which is a straightforward refinement of a proposition of Bruinier
and Funke (see Proposition 3.2 of [73]), shall play a central role throughout this paper.

Lemma 4.4. If f ∈ H2−k(N,χ), then

ξ2−k : H2−k(N,χ) −→ Sk(N,χ)

is a surjective map. Moreover, assuming the notation in Definition 4.3, we have that

ξ2−k(f) = −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn.

Thanks to Lemma 4.4, we are in a position to relate the non-holomorphic parts of harmonic
Maass forms, the expansions

f−(z) :=
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn,

with “period integrals” of modular forms. This observation was critical in Zwegers’s work
on Ramanujan’s mock theta functions.

To make this connection, we must relate the Fourier expansion of the cusp form ξ2−k(f)
with f−(z). This connection is made by applying the simple integral identity

(4.8)

∫ i∞

−z

e2πinτ

(−i(τ + z))2−k
dτ = i(2πn)1−k · Γ(k − 1, 4πny)q−n.

This identity follows by the direct calculation∫ i∞

−z

e2πinτ

(−i(τ + z))2−k
dτ =

∫ i∞

2iy

e2πin(τ−z)

(−iτ)2−k
dτ = i(2πn)1−k · Γ(k − 1, 4πny) q−n.

In this way, we may think of the non-holomorphic parts of weight 2 − k harmonic Maass
forms as period integrals of weight k cusp forms, where one applies (4.8) to∫ i∞

−z

∑∞
n=1 a(n)e2πinτ

(−i(τ + z))2−k
dτ,

where
∑∞

n=1 a(n)qn is a weight k cusp form. In short, f−(z) is the period integral of the
cusp form ξ2−k(f).

This connection is nicely illustrated in the case of certain integer weight harmonic Maass
forms, where one can use holomorphic parts of these forms to compute the classical “period
polynomials”. As is well known, these polynomials are generating functions for the critical
values of modular L-functions. Here we make this precise in one nice setting (see [59]).

13The formula for ξ2−k(f) corrects a typographical error in [73].
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Suppose that F(z) := F−(z) + F+(z) ∈ H2−k(1), where k is a positive even integer. For
each γ = ( a b

c d ) ∈ SL2(Z), we define the γ-mock modular period function for F+ by

(4.9) P
(
F+, γ; z

)
:=

(4π)k−1

Γ(k − 1)
·
(
F+ −F+|2−kγ

)
(z),

where for any function g, we let (g|wγ) (z) := (cz + d)−wg
(

az+b
cz+d

)
. The map

γ 7→ P
(
F+, γ; z

)
gives an element in the first cohomology group of SL2(Z) with polynomial coefficients, and
we shall see that they are intimately related to classical “period polynomials”.

For positive c, let ζc := e2πi/c, and for 0 ≤ d < c, let γc,d ∈ SL2(Z) be any matrix satisfying

γc,d := ( ∗ ∗
c′ d′ ). Here the integers 0 ≤ d′ < c′ are chosen so that d

c
= d′

c′
in lowest terms. The

following result is motivation for the paper [59] by Bringmann, Guerzhoy, Kent, and the
author.

Theorem 4.5. Suppose that 4 ≤ k ∈ 2Z, and suppose that F ∈ H2−k(1) and f = ξ2−k(F).
Then we have that

P (F+, γ1,0; z) =
k−2∑
n=0

L(f, n+ 1)

(k − 2− n)!
· (2πiz)k−2−n.

Moreover, if χ (mod c) is a Dirichlet character, then

1

c

∑
m∈(Z/cZ)×

χ(m)
c−1∑
d=0

ζmd
c · P

(
F+, γc,d; z −

d

c

)
=

k−2∑
n=0

L(f, χ, n+ 1)

(k − 2− n)!
· (2πiz)k−2−n.

Here L(f, s) (resp. L(f, χ, s)) is the usual L-function (resp. twisted by χ) for f .

Sketch of the proof. The proof follows from the fact that the non-holomorphic part F− can
be described in terms of a “period integral” of f as described above. In particular, it then
suffices to consider the integral ∫ i∞

−z

f c(τ)(z + τ)k−2dτ.

Here we let f c(z) := f(−z). The theorem then follows from the standard fact, for 0 ≤ n ≤
k − 2, that

L(f, n+ 1) =
(2π)n+1

n!
·
∫ ∞

0

f(it)tndt.

We leave the details to the reader. �

In addition to these important observations, we require the following fact concerning the
nontriviality of certain principal parts of harmonic Maass forms.

Lemma 4.6. If f ∈ H2−k(Γ) has the property that ξ2−k(f) 6= 0, then the principal part of f
is nonconstant for at least one cusp.
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Sketch of the proof. This lemma follows from the work of Bruinier and Funke [73]. Using
their pairing {•, •}, one finds that {ξ2−kf, f} 6= 0 thanks to its interpretation in terms of
Petersson norms. On the other hand, Proposition 3.5 of [73] expresses this quantity in terms
of the principal part of f and the coefficients of the cusp form ξ2−k(f). An inspection of this
formula reveals that at least one principal part of f must be nonconstant. �

4.4. The D-operator. In addition to the differential operator ξ2−k, which defines the sur-
jective map

ξ2−k : H2−k(N,χ) −→ Sk(N,χ),

we consider the differential operator

(4.10) D :=
1

2πi
· d
dz
.

We have the following theorem for integer weights.

Theorem 4.7. Suppose that 2 ≤ k ∈ Z and f ∈ H2−k(N), then

Dk−1(f) ∈M !
k(N).

Moreover, assuming the notation in (4.6), we have

Dk−1f = Dk−1f+ =
∑

n�−∞

c+f (n)nk−1qn.

To prove this theorem, we must first recall some further differential operators, the Maass
raising and lowering operators (for example, see [73, 84]) Rk and Lk. They are defined by

Rk = 2i
∂

∂z
+ ky−1 = i

(
∂

∂x
− i

∂

∂y

)
+ ky−1,

Lk = −2iy2 ∂

∂z̄
= −iy2

(
∂

∂x
+ i

∂

∂y

)
.

With respect to the Petersson slash operator (4.4), these operators satisfy the intertwining
properties

Rk(f |k γ) = (Rkf) |k+2 γ,

Lk(f |k γ) = (Lkf) |k−2 γ,

for any γ ∈ SL2(R). The Laplacian ∆k can be expressed in terms of Rk and Lk by

(4.11) −∆k = Lk+2Rk + k = Rk−2Lk.

If f is an eigenfunction of ∆k satisfying ∆kf = λf , then

∆k+2Rkf = (λ+ k)Rkf,(4.12)

∆k−2Lkf = (λ− k + 2)Lkf.(4.13)

For any positive integer n we put

Rn
k := Rk+2(n−1) ◦ · · · ◦Rk+2 ◦Rk.
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We also let R0
k be the identity. The differential operator D := 1

2πi
d
dz

= q d
dq

satisfies the

following relation

Rk = −4πD + k/y.

The next well known lemma (for example, see (4.15) of [175]) is often referred to as Bol’s
identity.

Lemma 4.8. Assuming the notation and hypotheses above, we have

Dk−1 =
1

(−4π)k−1
Rk−1

2−k.

By Lemma 4.8, we see that Dk−1 defines a linear map

Dk−1 : M !
2−k(N) −→M !

k(N).

Theorem 4.7 asserts that this map extends to harmonic Maass forms. Moreover, the theorem
provides a simple description of the images.

Proof of Theorem 4.7. It is clear that Dk−1f has the transformation behavior of a modular
form of weight k.

We now show that LkD
k−1f = 0. This implies that Dk−1f is holomorphic on H. By

Lemma 4.8, it suffices to show that LkR
k−1
2−kf = 0. Since ∆2−kf = 0, it follows from (4.12)

by induction that

∆k−2R
k−2
2−kf = (2− k)Rk−2

2−kf.

Using (4.11), we obtain

LkR
k−1
2−kf = (LkRk−2)R

k−2
2−kf = (−∆k−2 − (k − 2))Rk−2

2−kf = 0.

Finally, the growth behavior of f at the cusps implies that Dk−1f is meromorphic at the
cusps. Therefore, Dk−1 indeed extends to H2−k(N).

To complete the proof, we compute the Fourier expansion of Dk−1f . Assuming the nota-
tion in (4.6), a straightforward calculation gives

Rk−2
2−kf(z) =

∑
n�−∞

c+f (n)Γ(k − 1, 4πny)(−y)2−ke2πinz̄ + (k − 2)!2
∑
n<0

c−f (n)(−y)2−ke2πinz̄.

Moreover, Rk−1
2−kf has the Fourier expansion

Rk−1
2−kf(z) =

∑
n�−∞

c+f (n)(−4πn)k−1qn.

In particular, we have

Dk−1f = Dk−1f+ =
∑

n�−∞

c+f (n)nk−1qn.

The first two formulas follow from the Fourier expansion of f and the differential equations
∆k−2R

k−2
2−kf = (2 − k)Rk−2

2−kf and ∆kR
k−1
2−kf = 0. The third formula is a consequence of the

second and Lemma 4.8. �



40 KEN ONO

Remark. Note that g := yk−2Rk−2
2−kf is a harmonic Maass form of weight 2−k in the (slightly

more general) sense of Section 3 of [73]. Moreover, ξ2−kg = y−kL2−kg = Rk−1
2−kf . This can

also be used to compute the Fourier expansions in the proof of Theorem 4.7.

Theorem 4.7 implies that the coefficients c+f (n), for non-zero n, are obtained by dividing

the nth coefficient of some fixed weakly holomorphic modular form by nk−1. Therefore we
are compelled to determine the image of the map

Dk−1 : H2−k(N) −→M !
k(N).

It is not difficult to see that this map is not generally surjective. Our next result determines
the image of Dk−1 in terms of regularized inner products. The following result is obtained
by Bruinier, Rhoades and the author in [79].

Theorem 4.9. If 2 ≤ k ∈ Z, then the image of the map

Dk−1 : H2−k(N) −→M !
k(N)

consists of those h ∈M !
k(N) which are orthogonal to cusp forms with respect to the regularized

inner product, which also have constant term 0 at all cusps of Γ0(N).

To make Theorem 4.9 precise, we must define what it means for a weakly holomorphic
modular form to be orthogonal to cusp forms. To this end, we first recall the regularized
inner product.

We stress again that k ≥ 2 is an integer. Obviously, Γ0(N) has finite index in Γ(1) =
SL2(Z). We define a regularized inner product of g ∈Mk(N) and h ∈M !

k(N) as follows. For
T > 0 we denote by FT (Γ(1)) the truncated fundamental domain

FT (Γ(1)) = {z ∈ H : |x| ≤ 1/2, |z| ≥ 1, and y ≤ T}
for Γ(1). Moreover, we define the truncated fundamental domain for Γ0(N) by

FT (N) =
⋃

γ∈Γ0(N)\Γ(1)

γFT (Γ(1)).

Following Borcherds [50], we define the regularized inner product (g, h)reg as the constant
term in the Laurent expansion at s = 0 of the meromorphic continuation in s of the function

1

[Γ(1) : Γ0(N)]
lim

T→∞

∫
FT (N)

g(z)h(z)yk−s dx dy

y2
.

Arguing as in Section 6 of [50], it can be shown that (g, h)reg exists for any g ∈Mk(N) and
h ∈ M !

k(N). (It also exists for g ∈ Mk(N) and h ∈ Hk(N). But note that it does not exist
in general if g and h are both weakly holomorphic with poles at the cusps.) For cusp forms
g and h, the regularized inner product reduces to the classical Petersson inner product.

Remark. If h ∈M !
k(N) has vanishing constant term at every cusp of Γ0(N), then

(g, h)reg =
1

[Γ(1) : Γ0(N)]
lim

T→∞

∫
FT (N)

g(z)h(z)yk dx dy

y2
.

The following theorem provides a formula for the regularized inner product in terms of
Fourier coefficients.
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Theorem 4.10. If g ∈Mk(N) and f ∈ H2−k(N), then

(g,Rk−1
2−kf)reg =

(−1)k

[Γ(1) : Γ0(N)]

∑
κ∈Γ0(N)\P 1(Q)

wκ · cg(0, κ)c+f (0, κ),

where cg(0, κ) (resp. c+f (0, κ)) denotes the constant term of the Fourier expansion of g (resp.

f) at the cusp κ ∈ P 1(Q), and wκ is the width of the cusp κ.

Proof. For simplicity, we carry out the proof only in the special case Γ0(1) = SL2(Z). We

put H := yk−2Rk−2
2−kf , and let h := Rk−1

2−kf = y−kL2−kH. Since the constant terms at all cusps
of h vanish, we have

(g,Rk−1
2−kf)reg = lim

T→∞

∫
FT (1)

g(z)h(z)yk dx dy

y2

= lim
T→∞

∫
FT (1)

g(z)(L2−kH)
dx dy

y2

= lim
T→∞

∫
FT (1)

g(z)(
∂

∂z̄
H) dz dz̄

= − lim
T→∞

∫
FT (1)

(∂̄H) ∧ g(z) dz.

Using the holomorphy of g, we obtain, by Stokes’ theorem, the expression

(g,Rk−1
2−kf)reg = − lim

T→∞

∫
FT (1)

d(H(z)g(z) dz)

= − lim
T→∞

∫
∂FT (1)

H(z)g(z) dz

= lim
T→∞

∫ 1/2

x=−1/2

H(x+ iT )g(x+ iT ) dx.

The integral over x gives the constant term in the expansion of H(x+ iT )g(x+ iT ), and it
can be computed using the Fourier expansion

H(z) = (−1)k
∑

n�−∞

c+f (n)Γ(k − 1, 4πny)e−2πinz + (−1)k(k − 2)!2
∑
n<0

c−f (n)e−2πinz

of H (see the proof of Theorem 4.7) and the expansion of g. To complete the proof, notice

that in the limit T →∞ the only contribution is (−1)kcg(0)c+f (0). �

Proof of Theorem 4.9. By Theorem 4.10, it follows that if g ∈ Sk(N), then

(g,Rk−1
2−kf)reg = 0.

Therefore, if f ∈ H2−k(N), it follows from Lemma 4.8 and Theorem 4.10 that Dk−1f is
orthogonal to cusp forms.

Conversely, assume that h ∈M !
k(N) is orthogonal to cusp forms and has vanishing constant

term at every cusp of Γ0(N). By Lemma 3.11 of [73], we may chose f ∈ H2−k(N) such that
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the principal parts of Dk−1f and h at the cusps agree up to the constant terms. Since the
constant terms of h and Dk−1f vanish, they trivially agree as well. Consequently,

h−Dk−1f ∈ Sk(N).

In view of Theorem 4.10 and the hypothesis on h, we find that h−Dk−1f is orthogonal to
cusp forms, and so it is zero. �

4.5. Hecke operators.

Remark. There is an Eichler cohomology theory for harmonic Maass forms in the context of
Theorem 4.5 . The interested reader should see [59] for details.

It is natural to investigate the action of the Hecke operators on harmonic Maass forms.
Here we illustrate how to combine facts about Hecke operators with Lemma 4.4 to obtain
weakly holomorphic modular forms from harmonic Maass forms.

First we recall the classical Hecke operators. Suppose that p is prime, and that k ∈ 1
2
Z.

Suppose that

F (z) =
∑

n�−∞

aF (n)qn

is a weight k weakly holomorphic modular form on Γ0(N) with Nebentypus χ. If k ∈ Z,
then the Hecke operator Tk(p) is defined by

(4.14) F | Tk(p) :=
∑

n�−∞

(
aF (pn) + χ(p)pk−1aF (n/p)

)
qn.

If k = λ+ 1
2
∈ 1

2
Z \ Z, then we have that

(4.15)

F | Tk(p) :=
∑

n�−∞

(
aF (p2n) + χ(p)

(
(−1)λn

p

)
pλ−1aF (n) + χ(p2)p2λ−1aF (n/p2)

)
qn.

Remark. For the sake of uniformity, we abuse notation in the case of the half-integral weight
Hecke operators. Our operator Tk(p) is traditionally referred to as T (p2) or Tk(p

2).

These operators map modular forms to modular forms, and they define linear transfor-
mations on Mk(N,χ) and Sk(N,χ). Using Lemma 4.2, it is not difficult to see that the
definitions of these Hecke operators extend to harmonic Maass forms and their spaces in the
obvious way. Using Lemmas 4.2 and 4.4, it is then not difficult to obtain the following useful
theorem. As before, here we suppose that 2− k ∈ 1

2
Z with k > 1.

Theorem 4.11. Suppose that f(z) ∈ H2−k(N,χ), and that p - N is a prime for which
ξ2−k(f) ∈ Sk(N,χ) is an eigenform of Tk(p) with eigenvalue λ(p).

(1) If k ∈ 1
2
Z \ Z, then

f | T2−k(p)− p2−2kλ(p)f

is a weakly holomorphic modular form in M !
2−k(N,χ).

(2) If k ∈ Z, then
f | T2−k(p)− p1−kλ(p)f

is a weakly holomorphic modular form in M !
2−k(N,χ).
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5. Examples of harmonic Maass forms

In this section we present further examples of harmonic Maass forms. The interested
reader should consult Zwegers’s works [252, 253] to see those weight 1/2 harmonic Maass
forms whose holomorphic parts are given in terms of Lambert-type series and generating
functions for indefinite binary quadratic forms. Recent work of Bringmann, Folsom, and the
author [57] concerns further properties of these forms, and it also gives related weight 3/2
harmonic Maass forms. All of these harmonic Maass forms f have the property that ξw(f)
is a linear combination of single variable theta functions.

Here we consider further examples of harmonic Maass forms. We recall the classical
Eisenstein series E2(z), Zagier’s weight 3/2 Eisenstein series, certain Maass-Poincaré series,
and a combinatorial power series which plays a central role in the Dyson-Ramanujan theory
of partition congruences.

5.1. The Eisenstein series E2(z). The differential operator D := 1
2πi

d
dz

= q · d
dq

plays an

important role in the theory of modular forms and q-series. Indeed, as an operator on formal
power series we have that

D

(
∞∑

n=h

a(n)qn

)
:=

∞∑
n=h

na(n)qn.

Ramanujan proved [200] that

D(E4) = (E4E2 − E6)/3 and D(E6) = (E6E2 − E8)/2,

where Ek, for every even integer k ≥ 2, is the standard Eisenstein series

Ek(z) := 1− 2k

Bk

∞∑
n=1

σk−1(n)qn.

Here Bk denotes the usual kth Bernoulli number and σk−1(n) :=
∑

d|n d
k−1.

As is well known, for even k ≥ 4 we have that Ek(z) is a weight k modular form on SL2(Z).
However, the Eisenstein series E2(z)

E2(z) = 1− 24
∞∑

n=1

σ1(n)qn

is not modular, and so the derivative of a modular form is not (in general) a modular form.
It is not difficult to pin down the obstruction which prevents E2(z) from being a modular

form. Indeed, it is simple to show (for example, see page 113 of [160]), for z ∈ H, that

(5.1) z−2E2(−1/z) = E2(z) +
6

πiz
.

Using this fact, it is not difficult to modify E2(z) to obtain a weight 2 harmonic Maass form.
Using (5.1), and the fact that

SL2(Z) =

〈(
1 1
0 1

)
,

(
0 1
−1 0

)〉
,
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one finds that

(5.2) E∗
2(z) := − 3

πy
+ E2(z),

where y = Im(z), is a weight 2 harmonic Maass form on SL2(Z) in the more general sense
of Bruinier and Funke. It fails to satisfy Definition 4.1 (3). Obviously, its holomorphic part
is E2(z), and its non-holomorphic part is the simple function − 3

πy
.

Remark. Although E∗
2(z) is not a harmonic Maass form in the strict sense of Definition 4.1,

it still behaves well under the differential operator ξ2. One easily checks that ξ2(E
∗
2(z)) is

constant, and so it is a modular form of weight 0. This is in line with Lemma 4.4.

5.2. Zagier’s Eisenstein series. In their work on the intersection theory of Hilbert modu-
lar surfaces [149, 243], Hirzebruch and Zagier required a non-holomorphic weight 3/2 Eisen-
stein series G(z) on Γ0(4). The non-holomorphic part of this Eisenstein series is essentially
the “period integral” of the classical Jacobi theta function

Θ0(z) := 1 + 2q + 2q4 + 2q9 + 2q16 + · · · .

This is analogous with the work of Zwegers on Ramanujan’s mock theta functions (see The-
orem 3.1 and the discussion after Lemma 4.4) in that the non-holomorphic parts of his
harmonic Maass forms are also period integrals of single variable theta functions. Unlike
Zwegers’s harmonic Maass forms, where the holomorphic parts turned out to be combina-
torial q-series such as the mock theta functions of Ramanujan, the holomorphic part of the
Zagier form is the generating function for Hurwitz class numbers. More precisely, we have
(in Zagier’s notation) the following theorem.

Theorem 5.1. If H(0) = ζ(−1) = − 1
12

, and if H(n) denotes the usual Hurwitz class
numbers for discriminants −n, then the function

G(z) =
∞∑

n=0

H(n)qn +
1

16π
√
y

∞∑
n=−∞

β(4πn2y)q−n2

is a weight 3/2 harmonic Maass form on Γ0(4) in the sense of Bruinier and Funke. Here
we have that β(s) :=

∫∞
1
t−3/2e−stdt.

Remark. Zagier’s β-function is essentially the incomplete Gamma-function.

As in the case of E∗
2(z), we have that G(z) is a weight 3/2 harmonic Maass form on Γ0(4)

in the more general sense of Bruinier and Funke. Again, the culprit is Definition 4.1 (3).
Nevertheless, one sees that ξ 3

2
(G) is a multiple of Θ0(z), which is in line with the phenomenon

in Lemma 4.4. The only difference is that Θ0(z) is not a cusp form.

Remark. In recent work, Bringmann and Lovejoy [60] have found a striking identity relating
a certain rank generating function for overpartitions to G(z).
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5.3. Poincaré series. Here we describe certain Maass-Poincaré series. Throughout, we rely
on classical special functions whose properties and definitions may be found in [1, 22]. Such
Poincaré series, which were first given by D. Hejhal, are discussed in [65, 71, 75, 143].

Suppose that k ∈ 1
2
Z, and that N is a positive integer (with 4 | N if k ∈ 1

2
Z \ Z). Let m

be an integer, and let ϕm : R+ → C be a function which satisfies ϕm(y) = O(yα), as y → 0,
for some α ∈ R. If e(α) := e2πiα as usual, then let

(5.3) ϕ∗m(z) := ϕm(y)e(mx).

This function is fixed by the group of translations

Γ∞ :=

{
±
(

1 n
0 1

)
: n ∈ Z

}
.

Using the slash operator (4.4), we define the Poincaré series P(m, k,N, ϕm; z) by

P(m, k,N, ϕm; z) :=
∑

A∈Γ∞\Γ0(N)

(ϕ∗m |k A)(z).(5.4)

The Fourier expansions of these series are given in terms of the Kloosterman sums

(5.5) Kk(m,n, c) :=

{∑
v(c)× e

(
mv+nv

c

)
if k ∈ Z,∑

v(c)×

(
c
v

)2k
ε2k

v e
(

mv+nv
c

)
if k ∈ 1

2
Z \ Z.

In the sums above, v runs through the primitive residue classes modulo c, and v denotes the
multiplicative inverse of v modulo c. The following lemma gives the fundamental properties
of such Poincaré series (for example, see Proposition 3.1 of [75] where N = 4).

Lemma 5.2. If k > 2− 2α, then the following are true.

(1) Each Poincaré series P(m, k,N, ϕm; z) is a weight k Γ0(N)-invariant function.
(2) Near the cusp at ∞, the function P(m, k,N, ϕm; z) − ϕ∗m(z) has moderate growth.

Near the other cusps, P(m, k,N, ϕm; z) has moderate growth.
(3) If P(m, k,N, ϕm; z) is twice continuously differentiable, then it has the locally uni-

formly absolutely convergent Fourier expansion

P(m, k,N, ϕm; z) = ϕ∗m(z) +
∑
n∈Z

a(n, y)e(nx),

where

a(n, y) :=
∞∑

c>0
c≡0 (mod N)

c−kKk(m,n, c)

∫ ∞

−∞
z−kϕm

(
y

c2|z|2

)
e

(
− mx

c2|z|2
− nx

)
dx.

We now recall the classical family of Poincaré series (for example, see [151, 195]) which
arises from Lemma 5.2. If 2 ≤ k ∈ 1

2
Z, N is positive, and if m is an integer, then let

(5.6) P (m, k,N ; z) = qm +
∞∑

n=1

a(m, k,N ;n)qn =: P(m, k,N, e(imy); z).

These series are modular, and their Fourier expansions are given in terms of the I-Bessel
and J-Bessel functions, and the Kloosterman sums above.
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Theorem 5.3. If 2 ≤ k ∈ 1
2
Z, and m,N ≥ 1 (with 4 | N if k ∈ 1

2
Z \ Z), then the following

are true.

1) We have that P (m, k,N ; z) ∈ Sk(N), and for positive integers n we have

a(m, k,N ;n) = 2π(−1)
k
2

( n
m

) k−1
2 ·

∑
c>0

c≡0 (mod N)

Kk(m,n, c)

c
· Jk−1

(
4π
√
mn

c

)
.

2) We have that P (−m, k,N ; z) ∈M !
k(N), and for positive integers n we have

a(−m, k,N ;n) = 2π(−1)
k
2

( n
m

) k−1
2 ·

∑
c>0

c≡0 (mod N)

Kk(−m,n, c)
c

· Ik−1

(
4π
√
|mn|
c

)
.

Now we recall one family of Maass-Poincaré series which have appeared in earlier works
[71, 75, 143, 187]. To define them, again suppose that 2 < k ∈ 1

2
Z, and that N is a positive

integer (with 4 | N if k ∈ 1
2
Z \ Z). To employ Lemma 5.2, we first select an appropriate

function ϕ.
Let Mν, µ(z) be the usual M -Whittaker function which is a solution to the differential

equation
∂2u

∂z2
+

(
−1

4
+
ν

z
+

1
4
− µ2

z2

)
u = 0.

For complex s, let

Ms(y) := |y|−
k
2M k

2
sgn(y), s− 1

2
(|y|),

and for positive m let ϕ−m(z) := M1− k
2
(−4πmy). We now let

(5.7) Q(−m, k,N ; z) := P(−m, 2− k,N, ϕ−m; z).

Lemma 5.2 leads to the following theorem (see [63, 65, 71, 143]).

Theorem 5.4. If 2 < k ∈ 1
2
Z and m,N ≥ 1 (with 4 | N if k ∈ 1

2
Z \Z), then Q(−m, k,N ; z)

is in H2−k(N). Moreover, if Ik−1 is the usual I-Bessel function, then

Q(−m, k,N ; z) = (1− k) (Γ(k − 1, 4πmy)− Γ(k − 1)) q−m +
∑
n∈Z

cm(n, y) qn.

1) If n < 0, then

cm(n, y) = 2πik(1− k) Γ(k − 1, 4π|n|y)
∣∣∣ n
m

∣∣∣ 1−k
2

×
∑
c>0

c≡0 (mod N)

K2−k(−m,n, c)
c

· Jk−1

(
4π
√
|mn|
c

)
.

2) If n > 0, then

cm(n, y) = −2πikΓ(k)
( n
m

) 1−k
2

∑
c>0

c≡0 (mod N)

K2−k(−m,n, c)
c

· Ik−1

(
4π
√
|mn|
c

)
.
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3) If n = 0, then

cm(0, y) = −2kπkikmk−1
∑
c>0

c≡0 (mod N)

K2−k(−m, 0, c)
ck

.

These three families of Poincaré series are closely related. The following theorem gives the
explicit relationships between the cusp forms P (m, k,N ; z), the weakly holomorphic modular
forms P (−m, k,N ; z), and the harmonic Maass forms Q(−m, k,N ; z). They are related by
the ξ2−k and Dk−1 differential operators.

Theorem 5.5. Suppose that 2 < k ∈ 1
2
Z, and that m,N ≥ 1 (with 4 | N if k ∈ 1

2
Z \ Z).

Then the following are true.

(1) Under the operator ξ2−k, we have that

ξ2−k(Q(−m, k,N ; z)) = (4π)k−1mk−1(k − 1) · P (m, k,N ; z) ∈ Sk(N).

(2) Under the operator Dk−1, if k is an integer, then we have that

Dk−1Q(−m, k,N ; z) = −mk−1Γ(k) · P (−m, k,N ; z) ∈M !
k(N).

Proof. The claims follow easily from the explicit expansions in Theorems 5.3 and 5.4. �

5.4. A family of weight 1/2 harmonic Maass forms. In his work [252, 253] (also see
Section 3.2), Zwegers describes the holomorphic parts of certain harmonic Maass forms in
an explicit way. These series are presented as reciprocals of theta functions multiplied with
Lambert-type series, and are also given as generating functions for indefinite theta series.

Here we present an infinite family of Maass forms which arise from the Eulerian series

(5.8) R(w; q) := 1 +
∞∑

n=1

qn2

(wq; q)n(w−1q; q)n

,

where, as before, we let

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1).

To place this formal power series in context, we recall that we have already seen two
important specializations in w. Thanks to Proposition 1.1, by setting w = 1 we have that

R(1; q) =
∞∑

n=0

p(n)qn.

By letting w = −1, we obtain the series

R(−1; q) = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

This series is Ramanujan’s third order mock theta function f(q), which by Theorem 3.1 is
essentially the holomorphic part of a weight 1/2 harmonic Maass form. In [64], Bringmann
and the author generalized this fact.
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To make this precise, suppose that 0 < a < c are integers, and let ζc := e2πi/c. If
fc := 2c

gcd(c,6)
, then define the theta function Θ

(
a
c
; τ
)

by

(5.9) Θ
(a
c
; τ
)

:=
∑

m (mod fc)

(−1)m sin

(
aπ(6m+ 1)

c

)
· θ
(
6m+ 1, 6fc;

τ

24

)
,

where

(5.10) θ(α, β; τ) :=
∑

n≡α (mod β)

ne2πiτn2

.

Throughout, let `c := lcm(2c2, 24), and let ˜̀c := `c/24. It is well known that Θ
(

a
c
; `cτ

)
is a

cusp form of weight 3/2 (for example, see [223]).
Using this cuspidal theta function, we define the function S1

(
a
c
; z
)

by the period integral

(5.11) S1

(a
c
; z
)

:=
−i sin

(
πa
c

)
`c

1
2

√
3

∫ i∞

−z̄

Θ
(

a
c
; `cτ

)√
−i(τ + z)

dτ.

Using this notation, define D
(

a
c
; z
)

by

(5.12) D
(a
c
; z
)

:= −S1

(a
c
; z
)

+ q−
`c
24R(ζa

c ; q`c).

Theorem 5.6. If 0 < a < c, where c is odd, then D
(

a
c
; z
)

is a Maass form of weight 1/2

on Γ1(144f 2
c
˜̀
c).

Remark. For even c, these Maass forms also satisfy transformation laws with respect to Γ1

congruence subgroups. Our proof of Theorem 5.6 in [64] is long and complicated. It is based
on a modification of earlier work of Watson [239, 240]. Zagier [246] found a shorter proof
of this result using a clever application of Zwegers’s work on the µ̂-function. His proof of
Theorem 5.6 relies on the fact that

(5.13)
q−1/24R(e(α); q)

e−πiα − eπiα
=
η(3z)3/η(z)

ϑ(3α; 3z)
− q−

1
6 e(−α)µ(3α,−z; 3z) + q−

1
6 e(α)µ(3α, z; 3z).

6. Dyson-Ramanujan theory of partition congruences

As mentioned in the introduction, the partition function has been a “testing ground” for
the theory of modular forms. In number theory we are interested in the divisibility properties
of p(n) and the size of p(n). Here we consider the congruence properties of the partition
function p(n). It will turn out that these harmonic Maass forms have arithmetic properties
which may be studied using the theory of `-adic Galois representations as developed by
Deligne, Serre, and Swinnerton-Dyer [99, 218, 229]. These new congruences imply new
partition congruences.
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6.1. Ramanujan’s congruences. Ramanujan proved the striking congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

and conjectured generalizations where the moduli are powers of 5, 7 and 11. These conjec-
tures have been resolved in works by Atkin and Watson [33, 241].

These congruences are just the tip of the iceberg. In the late 1960s, Atkin [34] proved
further congruences for small prime moduli. More recently, the author proved [189] that
there are infinitely many such congruences for any prime modulus Q ≥ 5. This result was
subsequently generalized by S. Ahlgren and the author [2, 3], and these results imply the
following theorem.

Theorem 6.1. If M is coprime to 6, then there are infinitely many non-nested arithmetic
progressions An+B for which

p(An+B) ≡ 0 (mod M).

Remark. By non-nested, we mean that there are infinitely many arithmetic progressions
An + B, with 0 ≤ B < A, with the property that there are no progressions which contain
another progression.

Remark. It is believed that there are no such congruences with moduli which are not coprime
to 6 (for example, see [5, 190]).

Example. Here are the simplest examples of these congruences for the prime moduli 17 ≤
M ≤ 31:

p(48037937n+ 1122838) ≡ 0 (mod 17),

p(1977147619n+ 815655) ≡ 0 (mod 19),

p(14375n+ 3474) ≡ 0 (mod 23),

p(348104768909n+ 43819835) ≡ 0 (mod 29),

p(4063467631n+ 30064597) ≡ 0 (mod 31).

6.2. Dyson’s rank. In an effort to provide a combinatorial explanation of Ramanujan’s
congruences modulo 5 and 7, Dyson introduced [108] the so-called “rank” of a partition.
The rank of a partition is defined to be its largest part minus the number of its parts. Let
N(m,n) denote the number of partitions of n with rank m, and for integers 0 ≤ r < t let
N(r, t;n) denote the number of partitions of n with rank congruent to r modulo t. Dyson
noticed that ranks modulo 5 (resp. 7) apppeared to divide the partitions of 5n + 4 (resp.
7n + 5) into 5 (resp. 7) groups of equal size, thereby providing an elegant explanation for
these two congruences of Ramanujan.

Atkin and Swinnerton-Dyer [36] confirmed Dyson’s conjecture by proving the following
result.

Theorem 6.2. The following are true:
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(1) If 0 ≤ r < 5, then

∞∑
n=0

(
N(r, 5; 5n+ 4)− p(5n+ 4)

5

)
qn = 0.

(2) If 0 ≤ r < 7, then

∞∑
n=0

(
N(r, 7; 7n+ 5)− p(7n+ 5)

7

)
qn = 0.

Remark. Dyson [108] also noted that the rank fails to explain the Ramanujan congruence
with modulus 11. A short calculation reveals that the first failure already occurs with
p(6) = 11. In view of this difficulty, Dyson further postulated the existence of another
statistic, the so-called “crank”, that could be used to provide an explanation for all three
Ramanujan congruences. In 1988, Andrews and Garvan [28] found the crank, and they
confirmed Dyson’s speculation that it explains the three Ramanujan congruences. Recent
work of Mahlburg [178] establishes that the Andrews-Dyson-Garvan crank plays an even
more central role in the theory partition congruences. His work establishes congruences
modulo arbitrary powers of all primes ≥ 5. Other work by Garvan, Kim and Stanton [121]
gives a different “crank” for several other Ramanujan congruences.

6.3. Maass form generating functions for Dyson’s ranks. Although the rank does not
explain Ramanujan’s partition congruence with modulus 11, it turns out that it indeed plays
a central role thanks to the arithmetic properties of certain harmonic Maass forms. Indeed,
it turns out that the generating functions for N(r, t;n) are related to harmonic Maass forms.
To make this connection, one simply generalizes the proof of Proposition 1.1 to obtain the
following proposition concerning the power series

R(w; q) := 1 +
∞∑

n=1

qn2

(wq; q)n(w−1q; q)n

considered earlier in (5.8).

Proposition 6.3. As a formal power series, we have that

R(w; q) := 1 +
∞∑

n=1

∞∑
m=−∞

N(m,n)wmqn.

Thanks to Theorem 5.6, it is not difficult to relate the functionsN(r, t;n) to the coefficients
of weight 1/2 harmonic Maass forms. In this direction, Bringmann and the author proved
the following theorem in [64], which also sheds further light on Theorem 6.2.

Theorem 6.4. Assume the notation from Section 5.4. If 0 ≤ r < t are integers, where t is
odd, then

∞∑
n=0

(
N(r, t;n)− p(n)

t

)
q`tn− è

t
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is the holomorphic part of a weight 1/2 harmonic Maass form on Γ1

(
144f 2

t
˜̀
t

)
. Moreover,

the non-holomorphic part of this Maass form is

i`
1
2
t

t
√

3

∑
m (mod ft)

∑
n≡6m+1 (mod 6ft)

A(r, t,m) · γ(t, y;n)q−
è
tn2

.

Here we have that

A(r, t,m) := (−1)m

t−1∑
j=1

ζ−rj
t sin

(
πj

t

)
sin

(
πj(6m+ 1)

t

)
,(6.1)

and we have that

γ(t, y;n) :=
i√
2π˜̀t · Γ

(
1

2
; 4π˜̀tn2y

)
.

Proof. This result follows easily from a standard argument involving the orthogonality of
roots of unity. In particular, observe that

(6.2)
∞∑

n=0

N(r, t;n)qn =
1

t

∞∑
n=0

p(n)qn +
1

t

t−1∑
j=1

ζ−rj
t ·R(ζj

t ; q).

By Theorem 5.6, it then follows that

∞∑
n=0

(
N(r, t;n)− p(n)

t

)
q`tn− `t

24

is the holomorphic part of a Maass form of weight 1/2, one which is given as an appropriate
weighted sum of the Maass forms D

(
a
t
; z
)
.

The result then follows from the explicit description of the non-holomorphic parts of these
forms. For integers 0 < a < t, we have

D
(a
t
; z
)

= q−
`t
24 +

∞∑
n=1

∞∑
m=−∞

N(m,n)ζam
t q`tn− `t

24

+
i sin

(
πa
t

)
`

1
2
t√

3

∑
m (mod ft)

(−1)m sin

(
aπ(6m+ 1)

t

) ∑
n≡6m+1 (mod 6ft)

γ(t, y;n)q−
è
tn2

.

(6.3)

This expansion follows easily from

− S1

(a
t
; z
)

=
i sin

(
πa
t

)
`

1
2
t√

3

∑
m (mod ft)

(−1)m sin

(
aπ(6m+ 1)

t

)

×
∑

n≡6m+1 (mod 6ft)

∫ i∞

−z

ne2πin2 è
tτ√

−i(τ + z)
dτ,
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and the identity (recall (4.8))∫ i∞

−z

ne2πin2 è
tτ√

−i(τ + z)
dτ = γ(t, y;n) · q− è

tn2

.

�

Remark. It is not difficult to deduce Theorem 6.2 from Theorem 6.4 using Atkin’s U -operator.
In short, one must merely prove that certain harmonic Maass forms, which turn out to be
weakly holomorphic modular forms, are identically 0.

Using quadratic twists, one can use Theorem 6.4 to obtain weakly holomorphic modular
forms. Theorem 1.4 of [64] asserts the following result.

Theorem 6.5. If 0 ≤ r < t are integers, where t is odd, and P - 6t is prime, then∑
n≥1

( 24`tn−`t
P )=−

„
−24 è

t
P

«
(
N(r, t;n)− p(n)

t

)
q`tn− `t

24

is a weight 1/2 weakly holomorphic modular form on Γ1

(
144f 2

t
˜̀
tP4
)
.

Proof. The non-holomorphic parts of the Maass forms in Theorem 6.4 have the property

that their coefficients are supported on a fixed square class, numbers of the form −˜̀tn2.
This square class is easily annihilated by taking linear combinations of quadratic twists. In
particular, suppose that P - 6t is prime. For this prime P , let

g :=
P−1∑
v=1

( v
P

)
e

2πiv
P

be the usual Gauss sum with respect to P . Define the function D
(

a
t
; z
)
P by

(6.4) D
(a
t
; z
)
P

:=
g

P

P−1∑
v=1

(
v
P

)
D
(a
t
; z
)
| 1
2

(
1 − v

P
0 1

)
,

where | 1
2

is the usual slash operator (4.4). By construction, D
(

a
t
; z
)
P is the P-quadratic

twist of D
(

a
t
; z
)
. In other words, the nth coefficient in the q-expansion of D

(
a
t
; z
)
P is

(
n
P

)
times the nth coefficient of D

(
a
t
; z
)
. For the non-holomorphic part, this follows from the

fact that the factors γ(t, y;n) appearing in (6.3) are fixed by the transformations in (6.4).
Generalizing classical facts about twists of modular forms, D

(
a
t
; z
)
P is a Maass form of

weight 1/2 on Γ1(144f 2
t
˜̀
tP2). By (6.3), it follows that

(6.5) D
(a
t
; z
)
−

(
−˜̀t
P

)
D
(a
t
; z
)
P

is a Maass form of weight 1/2 on Γ1(144f 2
c
˜̀
tP2) with the property that its non-holomorphic

part is supported on summands of the form ∗q− è
tP2n2

. These terms are annihilated by taking
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the P-quadratic twist of this Maass form. Consequently, we obtain a weakly holomorphic

modular form of weight 1/2 on Γ1(144f 2
t
˜̀
tP4). Combining these observations with (6.2), we

obtain the theorem. �

Remark. All of the results in this section continue to hold for even t thanks to Theorem 3.3
and (5.13).

6.4. Implications for partition congruences. Here we apply Theorem 6.5 to shed light
on the congruence properties of Dyson’s functions N(r, t;n). We shall employ a method first
used by the author in [189] in his work on p(n) to show that Dyson’s rank partition functions
themselves uniformly satisfy Ramanujan-type congruences. Bringmann and the author have
proved the following theorem (see Theorem 1.5 of [64], as well as [53]).

Theorem 6.6. Let t be a positive odd integer, and let M be a positive integer coprime to
6. Then there are infinitely many non-nested arithmetic progressions An + B such that for
every 0 ≤ r < t we have

N(r, t;An+B) ≡ 0 (mod M).

Remark. Since we have

p(An+B) =
t−1∑
r=0

N(r, t;An+B),

Theorem 6.6 provides a combinatorial decomposition of the partition function congruence

p(An+B) ≡ 0 (mod M).

Sketch of the proof of Theorem 6.6. For simplicity, we suppose that M = Qj, where 5 ≤ Q -
t is prime, and j is a positive integer. The proof depends on Theorem 6.5, the observation
that certain “sieved” partition rank generating functions are weakly holomorphic modular
forms. This result then reduces the proof of Theorem 6.6 to the fact that any finite number
of half-integral weight cusp forms with integer coefficients are annihilated, modulo a fixed
prime power, by a positive proportion of half-integral weight Hecke operators.

To be precise, suppose that f1(z), f2(z), . . . , fs(z) are half-integral weight cusp forms where

fi(z) ∈ Sλi+
1
2
(Γ1(4Ni)) ∩ OK [[q]],

and where OK is the ring of integers of a fixed number field K. If Q is prime and j ≥ 1 is
an integer, then the set of primes L for which

(6.6) fi | Tλi+
1
2
(L) ≡ 0 (mod Qj),

for each 1 ≤ i ≤ s, has positive Frobenius density. As before, here Tλi+
1
2
(L) (see Section 4.5)

denotes the usual L2 index Hecke operator of weight λi + 1
2
.

Suppose that P - 6tQ is prime. By Theorem 6.5, for every 0 ≤ r < t

(6.7) F (r, t,P ; z) =
∞∑

n=1

a(r, t,P ;n)qn :=
∑

( 24`tn−`t
P )=−

„
−24 è

t
P

«
(
N(r, t;n)− p(n)

t

)
q`tn− `t

24
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is a weakly holomorphic modular form of weight 1/2 on Γ1(144f 2
t
˜̀
tP4). Furthermore, by the

work of Ahlgren and the author [3], it follows that

(6.8) P (t,P ; z) =
∞∑

n=1

p(t,P ;n)qn :=
∑

( 24`tn−`t
P )=−

„
−24 è

t
P

« p(n)q`tn− `t
24

is a weakly holomorphic modular form of weight −1/2 on Γ1(576˜̀tP4). In particular, all of

these forms are modular with respect to Γ1(576f 2
t
˜̀
tP4).

Since Q - 576f 2
t
˜̀
tP4, a result of Treneer (see Theorem 3.1 of [233]), generalizing earlier

observations of Ahlgren and the author [3, 189], implies that there is a sufficiently large
integer m for which ∑

Q-n

a(r, t,P ;Qmn)qn,

for all 0 ≤ r < t, and ∑
Q-n

p(t,P ;Qmn)qn

are all congruent modulo Qj to forms in the graded ring of half-integral weight cusp forms

with algebraic integer coefficients on Γ1(576f 2
t
˜̀
tP4Q2).

The system of simultaneous congruences (6.6), in the case of these forms, guarantees that a
positive proportion of primes L have the property that these forms modulo Qj are annihilated
by the index L2 half-integral weight Hecke operators. Theorem 6.6 now follows mutatis
mutandis as in the proof of Theorem 1 of [189]. One merely interprets this annihilation,
using (4.15), in terms of the N(r, t;n). �

Two remarks.
1) The simultaneous system (6.6) of congruences follows from a straightforward generaliza-
tion of a classical observation of Serre (see Section 6 of [219]).
2) Treneer states her result for weakly holomorphic modular forms on Γ0(4N) with Neben-
typus. We are using a straightforward extension of her result to Γ1(4N).

6.5. Related recent works. Recently there have been many works on the relationship
between Dyson’s rank and the Andrews-Garvan crank [28]. Several years ago, Atkin and
Garvan [35] discovered a striking partial differential equation which related the rank and
crank generating functions. Their work then inspired the recent investigation of Andrews on
Durfee symbols and higher partition statistics [20].

Armed with the new understanding of partition ranks in terms of harmonic Maass forms,
much light has been shed recently on these results from the perspective of modular forms and
Maass forms. In this direction there are papers by Bringmann, Garvan, Lovejoy, Mahlburg,
and Osburn [54, 58, 61], in which theorems concerning the automorphic properties of par-
tition generating functions, asymptotics, and congruences are obtained for various partition
statistics such as those arising in the work of Andrews [20] on rank moments. In a recent
paper, Bringmann and Zwegers [69] investigate further the phenomenon of the the Atkin-
Garvan “crank-rank” PDE from the perspective of non-holomorphic Jacobi forms.
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In another recent development, M. Monks, an undergraduate at MIT, has discovered a
deep connection between the power series R(±i; q−1), some false theta functions of Rogers,
and the generating function for Dyson’s ranks restricted to partitions into distinct parts.
Her work [183] allows one to determine the behavior of the holomorphic part of the Maass
form D(±1/4; z) in Theorem 5.6 for complex z in the lower half of the complex plane.

7. Eulerian series as modular forms

Eulerian series are combinatorial formal power series which are constructed from basic
hypergeometric series. As described in Section 1.2, there are famous examples of Eulerian
series which essentially are modular forms. For example, we have the celebrated Rogers-
Ramanujan identities

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
= 1 +

∞∑
n=1

qn2

(1− q)(1− q2) · · · (1− qn)
,

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
= 1 +

∞∑
n=1

qn2+n

(1− q)(1− q2) · · · (1− qn)
.

These identities provide series expansions of infinite products which correspond to weight
0 modular forms. As another example, we have Proposition 1.1, which asserts that the
partition number generating function satisfies

∞∏
n=1

1

1− qn
= 1 +

∞∑
n=1

qn2

(1− q)2(1− q2)2 · · · (1− qn)2
.

Since this series is essentially the reciprocal of Dedekind’s weight 1/2 modular form, this
provides another example of an Eulerian series which is a modular form.

The literature on such identities is extensive, and the pursuit of further identities and
their interpretations remains an active area of research largely due to applications in com-
binatorics, Lie theory, number theory and physics (for example, see [14], [155], and [172] to
name a few).

Here we illustrate how one may easily obtain modular forms from Eulerian series by forcing
the cancellation of non-holomorphic parts of harmonic Maass forms. To this end, we again
consider Dyson’s generating function R(w; q)

R(w; q) := 1 +
∞∑

n=1

∞∑
m=−∞

N(m,n)wmqn = 1 +
∞∑

n=1

qn2

(wq; q)n(w−1q; q)n

,

and the functions N(r, t;n).
By conjugating Ferrers boards, we have the trivial relation

(7.1) N(r, t;n) = N(t− r, t;n).

However, these functions also satisfy [36] some highly non-trivial sporadic identities such as

(7.2) N(1, 7; 7n+ 1) = N(2, 7; 7n+ 1) = N(3, 7; 7n+ 1).
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Atkin and Swinnerton-Dyer [36] proved some surprising further identities such as (see also
(5.19) of [145])

(7.3) −(q; q7)2
∞(q6; q7)2

∞(q7; q7)2
∞

(q; q)∞
=

∞∑
n=0

(N(0, 7; 7n+ 6)−N(1, 7; 7n+ 6)) qn.

This identity expresses a weight 1/2 modular form as a linear combination of Eulerian series.
This example is a special case of a much more general phenomenon which gives highly

nontrivial relationships between Dyson’s partition rank functions. Generalizing it, Bring-
mann, Rhoades, and the author [66] used the theory of harmonic Maass forms to obtain
several infinite families of modular forms as Eulerian series. Here we present examples which
arise directly from Theorem 6.4.

Theorem 7.1. Suppose that t ≥ 5 is prime, 0 ≤ r1, r2 < t and 0 ≤ d < t. Then the following
are true:

(1) If
(

1−24d
t

)
= −1, then

∞∑
n=0

(N(r1, t; tn+ d)−N(r2, t; tn+ d)) q24(tn+d)−1

is a weight 1/2 weakly holomorphic modular form on Γ1(576t6).
(2) Suppose that

(
1−24d

t

)
= 1. If r1, r2 6≡ 1

2
(±1± α) (mod t), where α is any integer for

which 0 ≤ α < 2t and 1− 24d ≡ α2 (mod 2t), then
∞∑

n=0

(N(r1, t; tn+ d)−N(r2, t; tn+ d)) q24(tn+d)−1

is a weight 1/2 weakly holomorphic modular form on Γ1(576t6).

Remark. Example (7.3) is the t = 7 and d = 6 case of Theorem 7.1 (2). In this case, the only
choices of r1 and r2 satisfying the hypotheses are 0, 1, and 6. Since N(1, 7;n) = N(6, 7;n),
(7.3) is the only nontrivial example of Theorem 7.1 (2) in this case. The proof of the theorem
will show, for all other pairs of r1 and r2 (apart from the trivial examples such as those arising
from (7.1)), that

∞∑
n=0

(N(r1, t; tn+ d)−N(r2, t; tn+ d)) q24(tn+d)−1

is not a weakly holomorphic modular form. In other words, the corresponding Maass forms
turn out to have non-trivial non-holomorphic parts.

Remark. The “Mock theta Conjectures” (see Section 1.5), which were proved by Hickerson,
are instances of pairs of harmonic Maass forms which differ by a weakly holomorphic modular
form. Using arguments along the lines of the proofs in this section, A. Folsom has provided
[115] a “Maass form” proof of these conjectures.

Remark. In a recent paper, S.-Y. Kang [158] has further developed the relationship between
basic hypergeometric series and non-holomorphic Jacobi forms using the work of Zwegers.
In particular, she gives (see Theorems 1.2 and 1.3 of [158]) two explicit families of weight 1/2
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modular forms, described in terms of theta functions and Dedekind’s eta-function, which are
sums of basic hypergeometric series.

Theorem 7.1 gives modular forms as differences of the generating functions for the functions
N(r, t; tn + d). There are similar theorems where the rank modulus t is independent of the
modulus of the arithmetic progression of the sizes of the partitions. As before, for integers

0 < a < t, let ft := 2t
gcd(t,6)

, `t := lcm(2t2, 24), and let ˜̀t := `t/24. We then have the following

theorem which is contained in [66].

Theorem 7.2. Suppose that t > 1 is an odd integer. If 0 ≤ r1, r2 < t are integers, and
P - 6t is prime, then ∑

n≥1

( 24`tn−`t
P )=−

„
−24 è

t
P

«
(N(r1, t;n)−N(r2, t;n)) q`tn− `t

24

is a weight 1/2 weakly holomorphic modular form on Γ1

(
144f 2

t
˜̀
tP4
)
.

Theorems 7.1 and 7.2 depend on Theorem 6.4. However, one may obtain many further
results of this type by making use of results which are analogous to Theorem 6.4. This is
done in [66], where we obtain several further infinite families of Eulerian modular forms.
These families give rise to further identities such as

2
(q4; q4)5

∞
(q2; q2)4

∞
=
∑
n≥0

qn(n+1)(−q2; q2)n

(q; q2)2
n+1

+
∑
n≥0

qn(n+1)(−q2; q2)n

(−q; q2)2
n+1

.

7.1. Proofs of Theorems 7.1 and 7.2. Theorem 7.2 follows immediately from Theo-
rem 6.5 since the p(n)/t summands cancel when taking the difference of the relevant gener-
ating functions.

Now we turn to the proof of Theorem 7.1. By Theorem 6.4, for any 0 ≤ r < t we have
∞∑

n=0

(
N(r, t;n)− p(n)

t

)
q24t2n−t2 +

∑
n∈Z

Ã(r, t, n) · γ(t, y;n)q−t2n2

is a weight 1/2 harmonic Maass form on Γ1(576t4). Here Ã(r, t, n) is a complex number
given by

(7.4) Ã(r, t, n) = i
√

8
∑

m (mod 2t)
6m+1≡n (mod 12t)

A(r, t,m),

where γ(t, y;n) and A(r, t;m) are defined in Theorem 6.4. Applying the Atkin U(t2) operator,
we have, by a straightforward generalization of Proposition 1.5 of [223], that

(7.5) R(r, t; z) :=
∞∑

n=0

(
N(r, t;n)− p(n)

t

)
q24n−1 +

∑
n∈Z

Ã(r, t, n) · γ(t, y;n)q−n2

is a weight 1/2 harmonic Maass form on Γ1(576t4).
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Now we prove Theorem 7.1 (1). By a straightforward generalization of the classical argu-
ment on twists of modular forms (for example, see Proposition 22 of [160]), the quadratic
twist of R(r, t; z) by

( ·
t

)
, say R(r, t; z)t, is a weight 1/2 harmonic Maass form on Γ1(576t6).

In particular,
(−1

t

)
R(r, t; z)t has an expansion of the form(

−1

t

)
R(r,t; z)t =

∞∑
n=0

(
1− 24n

t

)(
N(r, t;n)− p(n)

t

)
q24n−1 +

∑
n∈Z
t-n

Ã(r, t, n) · γ(t, y;n)q−n2

.

We find that R(r, t; z) −
(−1

t

)
R(r, t; z)t is on Γ1(576t6), and its non-holomorphic part is

supported on terms of the form q−t2n2
. By taking the quadratic twist of this form again by( ·

t

)
, to annihilate these non-holomorphic terms, one then finds that∑

n≥0,

( 1−24n
t )=−1

(
N(r, t;n)− p(n)

t

)
q24n−1

is weight 1/2 weakly holomorphic modular form. Using the orthogonality of Dirichlet char-
acters modulo t, and facts about twists again, it follows that

∞∑
n=0

(
N(r, t; tn+ d)− p(tn+ d)

t

)
q24(tn+d)−1

is a weight 1/2 weakly holomorphic modular form. Theorem 7.1 (1) follows by taking the
difference of these forms when r = r1 and r2. Since taking twists of twists can be viewed as
a single twist by the trivial character, we find that the resulting form is on Γ1(576t6).

Now we turn to the proof of Theorem 7.1 (2). Here we argue directly with (6.1) and (7.5).
Using the theory of twists of Maass forms again, we see that the restriction of R(r1, t; z)−
R(r2, t; z) to forms whose holomorphic parts are supported on exponents of the form 24(tn+
d)− 1, is a weight 1/2 harmonic Maass form on Γ1(576t6).

It suffices to show that the non-holomorphic part of this form is zero under the given
hypotheses on r1 and r2. By (7.5), one sees that the non-holomorphic part is supported

on terms of the form q−n2
. By construction, these n satisfy n ≡ α (mod 2t), for some

0 ≤ α < 2t with 1 − 24d ≡ α2 (mod 2t). Therefore, by (6.1) and (7.5), it suffices to show
that

A(r1, t,m)− A(r2, t,m) = 0,

when 6m+ 1 ≡ α (mod 12t). By (6.1), we have

A(r1, t,m)− A(r2, t,m) = (−1)m

t−1∑
j=1

(
ζ−r1j
t − ζ−r2j

t

)
sin

(
πj

t

)
sin

(
πjα

t

)
.
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Since sin(x) = 1
2i

(eix − e−ix), we have that

t−1∑
j=1

(
e

πij
t

(1−2r1+α) − e
πij
t

(1−2r1−α) − e
πij
t

(−1−2r1+α) + e
πij
t

(−1−2r1−α)

−e
πij
t

(1−2r2+α) + e
πij
t

(1−2r2−α) + e
πij
t

(−1−2r2+α) − e
πij
t

(−1−2r2−α)
)

= 0.

This follows since ±1− 2ri ± α, for i = 1 and 2, are even and coprime to t.
We conclude this section further infinite families of Eulerian series which are weakly holo-

morphic modular forms of weight 1/2. Instead of specializing a single multivariable Eulerian
series, these modular forms will be presented as linear combinations of different pairs of
Eulerian series. More precisely, we present the next theorem to illustrate that two seemingly
unrelated Eulerian series can be the holomorphic parts of distinct Maass forms with equal
non-holomorphic parts.

Define the series H ′(a, c, w; z), K ′(w; z), K ′′(w; z), with 0 < a < c, by

H ′ (a, c, w; z) :=
∑∞

n=0
q

1
2 n(n+1)(−q)n

(wq
a
c )n+1(wq1−a

c )n+1
,(7.6)

K ′ (w; z) :=
∑∞

n=0
(−1)nqn2

(q;q2)n

(wq2;q2)n(w−1q2;q2)n
,(7.7)

K ′′(w; z) :=
∑∞

n=1
(−1)nqn2

(q;q2)n−1

(wq;q2)n(w−1q;q2)n
.(7.8)

Let ζc := e2πi/c and fc := 2c/ gcd(c, 4). For 0 < a < c, we let

(7.9) H̃(a, c; z) := q
a
c
(1−a

c
) (H ′(a, c, 1; z) +H ′(a, c,−1; z)) ,

(7.10) K̃(a, c; z) :=
1

4
csc
(
π
a

c

)
q−

1
8K ′(ζa

c ; z) + sin
(
π
a

c

)
q−

1
8K ′′(ζa

c ; z).

The following theorem is proved by Bringmann, Rhoades, and the author [66].

Theorem 7.3. Let 0 < a < c. In the notation above, H̃(a, c; 4f 2
c z) is a weight 1/2 weakly

holomorphic modular form on Γ1(64f 4
c ) and K̃(a, c; 2f 2

c z) is a weight 1/2 weakly holomorphic
modular form on Γ1(64f 4

c ).

Example. By letting a = 1 and c = 2 in Theorem 7.3, it turns out that one may obtain∑
n≥0

qn(n+1)(−q2; q2)n

(q; q2)2
n+1

+
∑
n≥0

qn(n+1)(−q2; q2)n

(−q; q2)2
n+1

= 2
(q4; q4)5

∞
(q2; q2)4

∞
.

Remark. There are many more examples of Eulerian series which have been related to mod-
ular forms and holomorphic parts of harmonic Maass forms. The interested reader can see
the recent work by Kang [158] and also the work of Gordon and McIntosh [128] which defines
two “universal” mock theta functions.
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8. Exact formulas

Armed with the theory of harmonic Maass forms, one may obtain exact formulas for the
coefficients of generating functions which turn out to be holomorphic parts of such forms.
By employing the method of Poincaré series as described in Section 5.3, one obtains such
results. Here we first describe the recent resolution of the Andrews-Dragonette Conjecture,
and then we give exact formulas for generic harmonic Maass forms with weight ≤ 1/2.

8.1. The Andrews-Dragonette Conjecture. Rademacher famously employed the modu-
larity of the generating function for p(n) to perfect the Hardy-Ramanujan asymptotic formula

(8.1) p(n) ∼ 1

4n
√

3
· eπ
√

2n/3

to obtain his “exact” formula. To state his formula, let Is(x) be the usual I-Bessel function
of order s. Furthermore, if k ≥ 1 and n are integers, then let

(8.2) Ak(n) :=
1

2

√
k

12

∑
x (mod 24k)

x2≡−24n+1 (mod 24k)

χ12(x) · e
( x

12k

)
,

where the sum runs over the residue classes modulo 24k, and where

χ12(x) :=

(
12

x

)
.(8.3)

If n is a positive integer, then Rademacher’s formula reads [196]

p(n) = 2π(24n− 1)−
3
4

∞∑
k=1

Ak(n)

k
· I 3

2

(
π
√

24n− 1

6k

)
.

Here we address the problem of obtaining such exact formulas for Ne(n) (resp. No(n)),
the number of partitions of n with even (resp. odd) rank. To obtain these results, we begin
with the simple observation that

(8.4) f(q) = R(−1; q) = 1+
∞∑

n=1

(Ne(n)−No(n))qn = 1+
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

In view of (2.4) and (8.4), since

p(n) = Ne(n) +No(n),

our task is reduced to the problem of deriving exact formulas for the coefficients α(n) of the
mock theta function

f(q) = R(−1; q) = 1 +
∞∑

n=1

α(n)qn.

The problem of estimating the coefficients α(n) has a long history, one which even precedes
Dyson’s definition of partition ranks. Indeed, Ramanujan’s last letter to Hardy already
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includes the claim that

α(n) = (−1)n−1
exp

(
π
√

n
6
− 1

144

)
2
√
n− 1

24

+O

exp
(

1
2
π
√

n
6
− 1

144

)
√
n− 1

24

 .

Typical of his writings, Ramanujan offered no proof of this claim. Dragonette proved this
claim in her 1951 Ph.D. thesis [101], and Andrews [8] subsequently improved upon Drag-
onette’s work, and he proved14 that

(8.5) α(n) = π(24n− 1)−
1
4

[
√

n ]∑
k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

· I 1
2

(
π
√

24n− 1

12k

)
+O(nε).

This result falls short of the problem of obtaining an exact formula for α(n). Andrews
and Dragonette formulated the following conjecture (see page 456 of [8], and Section 5 of
[18]) for the coefficients α(n).

Conjecture. (Andrews-Dragonette)
If n is a positive integer, then

α(n) = π(24n− 1)−
1
4

∞∑
k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

· I 1
2

(
π
√

24n− 1

12k

)
.

Bringmann and the author have proved [62] the following theorem.

Theorem 8.1. The Andrews-Dragonette Conjecture is true.

Remark. In her Ph.D. thesis (see [119, 120]), S. Garthwaite generalized the proof of The-
orem 8.1, and she obtained exact formulas for the coefficients of Ramanujan’s mock theta
function ω(q). These results will be further generalized in the next subsection.

Sketch of the proof of Theorem 8.1. By Theorem 3.1, we have that D
(

1
2
; z
)

(see (5.12)) is a

harmonic weight 1/2 Maass form on Γ0(144) with Nebentypus character χ12 =
(

12
·

)
.

The idea behind the proof is simple. We shall construct a Maass-Poincaré series which we
shall show equals D

(
1
2
; z
)
. The method is analogous to material in Section 5.3. The proof

of the conjecture then follows from the fact that the formulas in the Andrews-Dragonette
Conjecture give the coefficients of this Maass-Poincaré series.

Suppose that k ∈ 1
2

+ Z. We define a class of Poincaré series Pk(s; z). For matrices
( a b

c d ) ∈ Γ0(2), with c ≥ 0, define the character χ(·) by

(8.6) χ

((
a b
c d

))
:=

{
e
(
− b

24

)
if c = 0,

i−1/2(−1)
1
2
(c+ad+1)e

(
−a+d

24c
− a

4
+ 3dc

8

)
· ω−1

−d,c if c > 0,

where

(8.7) ωd,c := eπis(d,c).

Here s(d, c) denotes the classical Dedekind sum.

14This is a reformulation of Theorem 5.1 of [8] using the identity I 1
2
(z) =

(
2

πz

) 1
2 · sinh(z).
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Throughout, let z = x+ iy, and for s ∈ C, k ∈ 1
2

+ Z, and y ∈ R \ {0}, and let

(8.8) Ms(y) := |y|−
k
2M k

2
sgn(y), s− 1

2
(|y|),

where Mν,µ(z) again is the M -Whittaker function. Furthermore, let

ϕs,k(z) := Ms

(
−πy

6

)
e
(
− x

24

)
.

Using this notation, define the Poincaré series Pk(s; z) by

(8.9) Pk(s; z) :=
2√
π

∑
M∈Γ∞\Γ0(2)

χ(M)−1(cz + d)−kϕs,k(Mz).

Here Γ∞ again is the subgroup of translations in SL2(Z).
The defining series is absolutely convergent for Pk

(
1− k

2
; z
)

for k < 1/2, and is condition-

ally convergent when k = 1/2. We are interested in P 1
2

(
3
4
; z
)
, which we define by analytically

continuing the Fourier expansion. This argument is not straightforward (see Theorem 3.2
and Corollary 4.2 of [62]). Thanks to the properties of Mν,µ, we find that P 1

2

(
3
4
; 24z

)
is a

Maass form of weight 1/2 for Γ0(144) with Nebentypus χ12.
A long calculation gives the following Fourier expansion

(8.10) P 1
2

(
3

4
; z

)
=

(
1− π−

1
2 · Γ

(
1

2
,
πy

6

))
· q−

1
24 +

0∑
n=−∞

γy(n)qn− 1
24 +

∞∑
n=1

β(n)qn− 1
24 ,

where for positive integers n we have

(8.11) β(n) = π(24n− 1)−
1
4

∞∑
k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

· I 1
2

(
π
√

24n− 1

12k

)
.

The Poincaré series P 1
2

(
3
4
; z
)

was defined so that (8.11) coincides with the conjectured ex-

pressions for the coefficients α(n).
For convenience, we let

(8.12) P (z) := P 1
2

(
3

4
; 24z

)
.

Canonically decompose P (z) into a non-holomorphic and a holomorphic part

(8.13) P (z) = P−(z) + P+(z).

In particular, we have that

P+(z) = q−1 +
∞∑

n=1

β(n)q24n−1.

Since P (z) and D
(

1
2
; z
)

are Maass forms of weight 1/2 for Γ0(144) with Nebentypus χ12,
(8.10) and (8.11) imply that the proof of the conjecture reduces to proving that these forms
are equal. This conclusion is obtained after a lengthy and somewhat complicated argument.

�
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8.2. Exact formulas for harmonic Maass forms with weight ≤ 1/2. Generalizing the
results of the previous section, Bringmann and the author have obtained exact formulas for
the coefficients of the holomorphic parts of harmonic Maass forms with weight 2− k ≤ 1/2
[68]. Suppose that f is in H2−k(N,χ), the space of weight 2 − k harmonic Maass forms
on Γ0(N) with Nebentypus character χ, where we assume that 3

2
≤ k ∈ 1

2
Z. As usual, we

denote its Fourier expansion by

(8.14) f(z) =
∑

n�−∞

c+f (n)qn +
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn.

It is our objective to determine exact formulas for the coefficients c+f (n) of the holomorphic
part of f .

We now define the functions which are required for these exact formulas. Throughout,
we let k ∈ 1

2
Z, and we let χ be a Dirichlet character modulo N , where 4 | N whenever

k ∈ 1
2
Z \ Z. Using this character, for a matrix M = ( a b

c d ) ∈ Γ0(N), we let

(8.15) Ψk(M) :=

{
χ(d) if k ∈ Z,
χ(d)

(
c
d

)
ε2k
d if k ∈ 1

2
Z \ Z,

where εd is defined by (4.2), and where
(

c
d

)
is the usual extended Legendre symbol. In

addition, if T = ( a b
c d ) ∈ SL2(Z), then we let

(8.16) µ(T ; z) := (cz + d)2−k.

Moreover, for pairs of matrices S, T ∈ SL2(Z), we then let

(8.17) σ(T, S) :=
µ(T ;Sz)µ(S; z)

µ(TS; z)
.

Using this notation, we now define certain generic Kloosterman sums which are naturally
associated with cusps of Γ0(N).

Suppose that ρ = aρ

cρ
= L−1∞, (L ∈ SL2(Z)) is a cusp of Γ0(N) with cρ|N and gcd(aρ, N) =

1. Let tρ and κρ be the cusp width and parameter of ρ with respect to Γ0(N) (see 8.20).
Suppose that c > 0 with cρ|c and N

cρ
- c. Then for integers n and m we have the Kloosterman

sum
(8.18)

Kc (2− k, ρ, χ,m, n) :=
∑

0<d<c
0<a<ct

aρa≡− c
cρ

(mod N
cρ

)

(ad,c)=1

σ(L−1, S)

Ψk (L−1S)
· exp

(
2πi

c

(
(m+ κρ)a

tρ
+ nd

))
,

where S := ( a b
c d ) ∈ SL2(Z) is the unique matrix defined using the integers a, c, and d. Using

properties of σ and Ψk, one can easily show that (8.18) is well-defined.
For convenience, we let SN be a subset of SL2(Z) with the property that{

S−1∞ : S ∈ SN

}
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represents the set of inequivalent cusps of Γ0(N). For M = ( a b
c d ) ∈ SL2(Z), we define

(8.19) fM(z) := (cz + d)k−2f

(
az + b

cz + d

)
,

where
√
z is the principal branch of the holomorphic square root. Using this notation, we

have the Fourier expansion of a form f at a cusp ρ. More precisely, if L ∈ SN with ρ = L−1∞,
then we have

(8.20) fρ(z) =
∑
n∈Z

a+
ρ (n)q

n+κρ
tρ + f−ρ (τ).

We define the principal part of f at ρ by

(8.21) Pf,ρ(z) :=
∑

m+κρ<0

a+
ρ (m)q

m+κρ
tρ .

We shall use the principal parts of a form f to determine our exact formulas. To this end,
we identify, for each cusp ρ, its contribution to the exact formula. To make this precise, let
M = L−1 and µ = L∞. For positive n, we then define

A(N, 2− k, χ, ρ,m, c;n) :=

− ik2π

tµ

∣∣∣∣(−m+ κµ)

tµn

∣∣∣∣ k−1
2 ∑

c>0
cµ|c, N

cµ
-c

Kc (2− k, µ, χ,−m,−n)

c
· Ik−1

(
4π

c

√
n| −m+ κµ|

tµ

)
.

(8.22)

Here tµ and κµ are the cusp parameters for µ as in the notation above.
Using this notation, we define the order N Kloosterman approximation of c+f (n) by

(8.23) C(f,N ;n) :=
∑

L∈SN

∑
m+κρ<0

a+
ρ (m)

N∑
c=1

A(N, 2− k, χ, ρ,m, c;n).

Moreover, we define C(f,∞;n) in the obvious way.

Remark. We stress again that L and ρ are related (throughout this section) by the formula
ρ = L−1∞.

Theorem 8.2. If f ∈ H2−k(N,χ) with 2 ≤ k ∈ 1
2
Z, then for positive n we have

c+f (n) = C(f,∞;n).

Remark. Using the asymptotic behavior of I-Bessel functions, an inspection of the principal
parts of f gives a minimal N for which

C(f,N ;n) ∼ c+f (n).

Remark. Theorem 8.2 includes the classic results of Rademacher and Zuckerman [197, 198,
250, 251] in the very special case of those f ∈ H2−k(N,χ) for which 2− k < 0 and f− = 0.
It also recovers some results of Bruinier, Hejhal, and Niebur [71, 143, 187, 188] for harmonic
Maass forms of non-positive weight. Recent work by Bruinier and Strömberg [81] addresses
the problem of efficiently computing coefficients of harmonic Maass forms.
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For weight 2− k = 1
2
, we have a conditional result. To make it precise, we say that a form

f ∈ H 1
2
(N,χ) is good if the Maass-Poincaré series corresponding to nontrivial terms in the

principal parts of f are individually convergent.

Theorem 8.3. If f ∈ H 1
2
(N,χ) is good, then there is a finite set SΘ(f) of complex numbers

such that for positive n we have

c+f (n) = C(f,∞;n) + µ

for some µ ∈ SΘ(f). Moreover, if n 6= dm2 for some d | N and m ∈ Z+, then µ = 0.

Remark. We believe that all f ∈ H 1
2
(N,χ) are good. In earlier work we deduced convergence

of such Maass-Poincaré series by making using of relationships between Kloosterman sums
and Salié sums (see Section 4 of [62]), and by generalizing work of Goldfeld and Sarnak [123]
on sums of Kloosterman sums (see [117]). It seems likely that a careful application of these
ideas will prove that each such f is indeed good.

Sketch of the proof of Theorem 8.2 and 8.3. By the general theory of Maass-Poincaré series,
which generalizes Section 5.3, we have an explicit linear combination of Maass-Poincaré se-
ries, say f ∈ H2−k(N,χ), whose principal parts agree with the principal parts of f up to
additive constants. The complex number C(f,∞;n) is the nth coefficient of the holomor-
phic part of this linear combination. For the weight 2 − k = 1/2, one must argue further
(for example, using the equidistribution of CM points) to establish that these formulas are
convergent.

There are then three possibilites:

Case 1. We have that f − f is a holomorphic modular form. It can only be nonzero when
2 − k = 1

2
, in which case the Serre-Stark Basis Theorem [220] implies that f − f is a linear

combination of theta functions, giving Theorem 8.3.

Case 2. We have that f−f is a weakly holomorphic modular form which is not a holomorphic
modular form. Such a form must have a pole at a cusp. However, this cannot happen since
we constructed f so that the principal parts of f − f are constant.

Case 3. We have that f − f is a harmonic Maass form with a non-trivial non-holomorphic
part. However, Lemma 4.6 shows that all such harmonic Maass forms have at least one
principal part which is nonconstant. Therefore, this possibility never occurs. �

9. Applications to modular forms

Here we use the theory of harmonic Maass forms to address two classical problems in the
theory of modular forms:

• Linear relations among Poincaré series
• Vanishing of Hecke eigenvalues.

We are able to obtain new results by making use of Lemma 4.4, the fact that

ξ2−k : H2−k(Γ) −→ Sk(Γ).

These classical problems, which pertain to properties of the Fourier coefficients of cusp
forms in Sk(Γ), can be investigated by leveraging information from harmonic Maass forms
in H2−k(Γ).
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9.1. Relations among classical Poincaré series. It is well known that the Poincaré series
(see Section 5.3)

{P (m, k,N ; z) : m ≥ 1}
span the space Sk(N). Since the space Sk(N) is finite dimensional, there exist many relations
among these Poincaré series. In his classic text on automorphic forms, Iwaniec [151] states
the following seemingly simple problem.

Problem. Find all the linear relations between P (m, k,N ; z).

Remark. Iwaniec states this problem for more general multiplier systems, but the techniques
here also work in that setting.

The next theorem, due to Fay [113] and Rhoades (see [206, 208]), follows from the theory
of harmonic Maass forms.

Theorem 9.1. Suppose that 2 ≤ k ∈ 1
2
Z, and suppose that I is a finite set of positive

integers. Then we have that ∑
m∈I

αmP (m, k,N ; z) ≡ 0

if and only if there is a form in M !
2−k(N) whose principal part at ∞ is∑

m∈I

αm

mk−1
· q−m

with trivial principal parts at all other cusps.

Example. In practice it is not difficult to implement Theorem 9.1. For example, consider
the two dimensional space S24(1). Obviously, there is a linear relation between the Poincaré
series P (1, 24, 1; z), P (2, 24, 1; z) and P (3, 24, 1; z). Using the formulas in Theorem 5.3, we
find that

P (1, 24, 1; z) ∼1.00100852 · q + 132.988977 · q2 + 189296.261 · q3 + · · ·
P (2, 24, 1; z) ∼0.00001585 · q + 2.45743136 · q2 + 114.854805 · q3 + · · ·
P (3, 24, 1; z) ∼0.00000201 · q + 0.01023411 · q2 + 0.88465633 · q3 + · · · .

From these numerics, we find that

−0.00000207832 · P (1, 24, 1; z) + 0.00427703 · P (2, 24, 1; z) + P (3, 24, 1; z) ∼ 0.

Although it is not possible to make this approximation precise by using explicit Fourier
expansions, Theorem 9.1 reduces this problem to a simple calculation. We find the exact
relation thanks to the existence of the modular form E14/∆

3

E14(z)

∆(z)3
=

1

q3
+

48

q2
− 195660

q
+ · · · .

Therefore, we then find that the two coefficients in the linear combination above are exactly

−195660

323
≈ −0.00000207832 . . . and

48 · 223

323
≈ 0.00427703 . . . .

Theorem 9.1 is a simple consequence of the theory of harmonic Maass forms.
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Proof of Theorem 9.1. Assume that
∑

m∈I αmP (m, k,N ; z) ≡ 0. Define a weight 2 − k
harmonic Maass form f by

f =
∑
m∈I

αm

mk−1
·Q(−m, k,N ; z) =

∑
n�−∞

c+f (n)qn +
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn.

By Lemma 4.4 and Theorem 5.5, we find that

ξ2−k(f) = (4π)k−1(k − 1)
∑
m∈I

αmP (m, k,N ; z) = −(4π)k−1(k − 1)
∑
n≥1

c−f (−n)nk−1qn.

By our assumption on the sum over the Poincaré series, we know that c−f (n) = 0 for all

n < 0, and so f ∈ M !
2−k(N). Namely, in terms of the Maass-Poincaré series Q(−m, k,N ; z)

in Section 5.3, we have that∑
m∈I

αm

mk−1
·Q+(−m, k,N ; z) ∈M !

2−k(N)

is the weakly holomorphic form that we desire.
Conversely, assume that f is such a weakly holomorphic modular form. From the expan-

sion for the coefficients of Q+(−m, k,N ; z) in Theorem 5.4, we find that

f̃ := −f +
1

Γ(k)
·
∑
m∈I

αm

mk−1
·Q(−m, k,N ; z) ∈ H2−k(N)

is a harmonic Maass form with trivial principal parts at every cusp. By Lemma 4.6,

it then follows that f̃ is in M !
2−k(N). Theorem 5.5 then implies that 0 = ξ2−k(f̃) =∑

m∈I αmP (m, k,N ; z). �

9.2. Algebraicity and the vanishing of Hecke eigenvalues. Despite the fact that we
have a fairly complete theory of algebraicity for forms in M !

k(N,χ), thanks to the q-expansion
principle, the theory of Eisenstein series and newforms, the question of algebraicity for
harmonic Maass forms remains open. As we shall now see, these questions (in the case of
integer weight) are intimately related to the vanishing of eigenvalues of Hecke operators.

Remark. The algebraicity of the coefficients of half-integral weight harmonic Maass forms
is much more mysterious. For certain weight 1/2 forms, we shall relate algebraicity to the
vanishing of derivatives of quadratic twists of weight 2 modular L-functions (see Section 12).

To make this precise, we shall restrict our attention to those f ∈ H2−k(N,χ) for which
ξ2−k(f) ∈ Sk(N,χ) is a Hecke eigenform. For reasons which will become apparent, we shall
concentrate on those forms for which

(9.1) ξ2−k(f) =
g

‖g‖2
,

where g is a normalized newform and ‖g‖ denotes its usual Petersson norm.
To illustrate the nature of our result, we consider two examples of Maass-Poincaré series

which are not weakly holomorphic modular forms. The Maass-Poincaré series f := 1
11!
·
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Q(−1, 12, 1; z) ∈ H−10(1) satisfies (9.1) for g = ∆(z), the unique normalized weight 12 cusp
form on the full modular group. The first few coefficients15 of its holomorphic part are

1

11!
·Q+(−1, 12, 1; z) ∼ q−1 − 65520

691
− 1842.89472q − 23274.07545q2 − · · · .

There is little reason to believe that these coefficients are rational or algebraic. On the
other hand, we shall prove that the Maass-Poincaré series 1

3!
·Q(−1, 4, 9; z) ∈ H−2(9) has the

property that 1
3!
·Q+(−1, 4, 9; z) has rational coefficients. Its first few terms are

(9.2)
1

3!
·Q+(−1, 4, 9; z) = q−1 − 1

4
q2 +

49

125
q5 − 48

512
q8 − 771

1331
q11 + · · · ,

and f := 1
3!
·Q(−1, 4, 9; z) satisfies (9.1) for the unique normalized newform in S4(9).

Our next theorem explains the distinction between these two cases. To make this precise,
let g ∈ Sk(N,χ) be a normalized newform, and let Fg be the number field obtained by
adjoining the coefficients of g to Q.

Definition 9.2. Assuming the hypotheses above, we say that a harmonic Maass form f ∈
H2−k(N,χ) is good for g if it satisfies the following properties:

(i) The principal part of f at the cusp ∞ belongs to Fg[q
−1].

(ii) The principal parts of f at the other cusps of Γ0(N) are constant.
(iii) We have that ξ2−k(f) = ‖g‖−2g.

Remark. For every such g, there is an f which is good for g. Moreover, such an f is unique
up to a weakly holomorphic form in M !

2−k(N,χ) with coefficients in Fg. Such f can be
constructed explicitly using Poincaré series.

In joint work with Bruinier and Rhoades [79], the author has obtained the following result
which explains this phenomenon.

Theorem 9.3. Let g ∈ Sk(N,χ) be a normalized newform with complex multiplication (see
(9.6)). If f ∈ H2−k(N,χ) is good for g, then all coefficients of f+ are in Fg(ζM), where ζM :=
e2πi/M and M = ND, where D is the discriminant of the field of complex multiplication.

Remark.
i) The rationality of Q+(−1, 4, 9; z) in (9.2) is an example of Theorem 9.3. In this case
Q(−1, 4, 9; z) is good for η(3z)8, the unique CM newform in S4(9).

ii) The field Fg in Theorem 9.3 is explicit, and is determined by Hecke characters.

iii) Let g ∈ Sk(N,χ) and f ∈ H2−k(N,χ) be as in Theorem 9.3. The proof of the theorem
implies that all of the coefficients of f+ belong to Fg(c

+
f (1)). In fact, the proof gives this

conclusion for any newform g, not just those with CM.

iv) In the examples we know, it turns out that the coefficients of f+ are actually contained
in Fg. It is natural to ask whether this is true in general.

The proof of Theorem 9.3 relies on the fact that some Hecke eigenvalues of g vanish. A
simple generalization of the proof of Theorem 9.3 can be used to detect the vanishing of the
Fourier coefficients of a newform.

15This corrects a typographical error for the constant term in [79].



HARMONIC MAASS FORMS, MOCK MODULAR FORMS AND QUANTUM MODULAR FORMS 69

Theorem 9.4. Suppose that g =
∑∞

n=1 cg(n)qn ∈ Sk(N,χ) is a normalized newform, and
suppose that f ∈ H2−k(N,χ) is good for g. If p - N is a prime for which cg(p) = 0, then
c+f (pn) is algebraic for every positive n coprime to p.

As in Remark 9.2 iv), it seems possible that the algebraic coefficients of f+ are always in
Fg. We address this in the next example when N = 1.

Example. Here we consider Lehmer’s Conjecture on the nonvanishing of Ramanujan’s τ -
function, where

∆(z) =
∞∑

n=1

τ(n)qn.

This example generalizes easily to all level 1 Hecke eigenforms.
Although Theorem 9.4 relates Lehmer’s Conjecture to the alleged transcendence of the

coefficients, say a∆(n), of 1
11!
· Q+(−1, 12, 1; z), it turns out that more is true. Lehmer’s

Conjecture is implied by the irrationality of these coefficients.
We make use of explicit formulas. Using the classical Eisenstein series E4 and E6, and the

classical j-function j(z), we define polynomials Jm(x) ∈ Z[x] by

(9.3)
∞∑

m=0

Jm(x)qm :=
E4(z)

2E6(z)

∆(z)
· 1

j(z)− x
= 1 + (x− 744)q + · · · .

For each m we then let jm(z) = Jm(j(z)). If p is prime, then define the modular functions

Ap(z) :=
24

B12

(1 + p11) + jp(z)− 264

p∑
m=1

σ9(m)jp−m(z),(9.4)

Bp(z) := −τ(p)
(
−264 +

24

B12

+ j1(z)

)
.(9.5)

Here B12 = − 691
2730

is the 12th Bernoulli number. Using the principal part of Q(−1, 12, 1; z)
combined with the fact that ∆(z) is an eigenform of the Hecke algebra, Theorem 4.11 implies
(also see [193]), for primes p, that

∞∑
n=−p

(
p11a∆(pn)− τ(p)a∆(n) + a∆(n/p)

)
qn =

Ap(z) +Bp(z)

E4(z)E6(z)
.

These weight −10 modular forms have integer coefficients. Now suppose that τ(p) = 0 for a
prime p. Then a∆(np) is rational for every n coprime to p.

Remark. Results similar to the example above have also been obtained recently by Boylan
and Guerzhoy [51, 135].

Here we prove Theorem 9.3 by combining facts about ξ2−k, with Hecke theory and the
theory of complex multiplication. We first begin with an important proposition.

Proposition 9.5. Let g =
∑∞

n=1 b(n)qn ∈ Sk(N,χ) be a normalized newform with integer
weight k ≥ 2, and let Fg be the number field obtained by adjoining the coefficients of g to Q.
Then there is a harmonic Maass form f ∈ H2−k(N,χ) which satisfies:

(i) The principal part of f at the cusp ∞ belongs to Fg[q
−1].
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(ii) The principal parts of f at the other cusps of Γ0(N) are constant.
(iii) We have that ξ2−k(f) = ‖g‖−2g.

Proof. Let H2−k,∞(N,χ) be the subspace of those f ∈ H2−k(N,χ) whose principal parts at
the cusps other than ∞ are constant. Note that

H2−k(N,χ) = H2−k,∞(N,χ) +M !
2−k(N,χ).

Arguing as in Section 3 of [73], the restriction of ξ2−k to H2−k,∞(N,χ) defines a surjective
map to Sk(N,χ). One now argues as in the proof of Lemma 7.3 of [77] using the pairing
{g, f} = (g, ξ2−k(f)), where f ∈ H2−k,∞(N,χ) and g ∈ Sk(N,χ). �

Remark. The harmonic Maass form f satisfying (i)–(iii) is unique up to the addition of a
weakly holomorphic form in M !

2−k(N,χ) with coefficients in Fg and a pole possibly at infinity
and constant principal part at all other cusps.

For completeness, here we briefly recall the notion of a newform with complex multipli-
cation (for example, see Chapter 12 of [151] or Section 1.2 of [191]). Let D < 0 be the

fundamental discriminant of an imaginary quadratic field K = Q(
√
D). Let OK be the ring

of integers of K, and let χK :=
(

D
•

)
be the usual Kronecker character associated to K. Let

k ≥ 2, and let c be a Hecke character of K with exponent k− 1 and conductor fc, a non-zero
ideal of OK . By definition, this means that

c : I(fc) −→ C×

is a homomorphism, where I(fc) denotes the group of fractional ideals of K prime to fc, and

c(αOK) = αk−1

for α ∈ K× for which α ≡ 1 mod×fc. To c we naturally associate a Dirichlet character ωc

defined, for every integer n coprime to fc, by

ωc(n) :=
c(nOK)

nk−1
.

We then let

(9.6) ΦK,c(z) :=
∑

a

c(a)qN(a),

where a varies over the ideals of OK prime to fc, and where N(a) is the usual ideal norm.
It is well known that ΦK,c(z) ∈ Sk(|D| ·N(fc), χK · ωc) is a normalized newform. These are
newforms with complex multiplication. By construction, if we let

ΦK,c(z) =
∞∑

n=1

b(n)qn,

then

(9.7) b(n) = 0 whenever χK(n) = −1.

This follows since every prime p for which χK(p) = −1 is inert.
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Proof of Theorem 9.3. Suppose that f is good for a CM form g =
∑∞

n=1 b(n)qn, and let
D = Dg be the fundamental discriminant of the associated imaginary quadratic field K =

Q(
√
D). By Lemma 4.4, we then have that

ξ2−k(f) = ‖g‖−2g = −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn.

Since g has complex multiplication, (9.7) implies that c−f (n) = 0 when χK(−n) = −1.
Because D < 0, this means that

c−f (n) = 0 when χK(n) = 1.(9.8)

Let M = ND. We write χ0 for the trivial character modulo |D|. Since D | N , a simple
generalization of standard facts about twists of modular forms implies that

u := f ⊗ χ0 + f ⊗ χK

is in H2−k(M,χ). The Fourier expansion of u = u+ + u− is given by

u+(z) = 2
∑

n�−∞
χK(n)=1

c+f (n)qn,

u−(z) = 2
∑
n<0

χK(n)=1

c−f (n)Γ(k − 1, 4π|n|y)qn.

The non-holomorphic part u− vanishes, and so u is a weakly holomorphic modular form.
We now claim that for any integer b, f(z + b/D) has principal parts at all cusps in

Fg(ζM)[q−1]. To see this, we let γ ∈ Γ(1) and consider the cusp γ∞. There exists a γ̃ ∈ Γ(1)
and α, β, δ ∈ Z such that (

D b
0 D

)
γ = γ̃

(
α β
0 δ

)
.

Hence, the Fourier expansion of f(z + b/D) at the cusp γ∞ is given by

f | γ̃ |
(
α β
0 δ

)
.

By the assumption of f , it is holomorphic at the cusp ∞, unless γ̃ ∈ Γ0(N), in which case
it is equal to

f |
(
α β
0 δ

)
.

Since δ | D2 | M , the principal part at ∞ of this modular form is contained in Fg(ζM)[q−1],
proving the claim. This implies that the twists f ⊗ χ0, f ⊗ χD, have principal parts at all
cusps in Fg(ζM)[q−1]. Therefore, the same is true for u.

The action of Aut(C/Q(ζN)) commutes with the action of SL2(Z) on modular functions
for Γ(N) (for example, see Theorem 6.6 in Chapter 6.2 and the diagram before Remark 6.7 in
Shimura’s book [224]). Using the action of Aut(C/Fg(ζM)) on weakly holomorphic modular
forms, we see that uσ has the same properties for any σ ∈ Aut(C/Fg(ζM)). Moreover, uσ

has the same principal parts as u at all cusps. Hence the difference u− uσ is a holomorphic
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modular form which vanishes at the cusp ∞. Since 2 − k ≤ 0, this implies that u = uσ.
Consequently, u is defined over Fg(ζM). So for all n ∈ Z with χK(n) = 1, we have that
c+f (n) ∈ Fg(ζM). In particular, c+f (1) ∈ Fg(ζM).

We now use the Hecke action on f and g. By Theorem 4.11, we have that

f |2−k T (m) = m1−kb(m)f + f ′,

where f ′ ∈M !
2−k(Γ0(N), χ) is a weakly holomorphic form with coefficients in Fg. In view of

the formula for the action of the Hecke operators on the Fourier expansion, we obtain for
any prime p that

c+f (pn) + χ(p)p1−kc+f (n/p) = p1−kb(p)c+f (n) + c+f ′(n),

where c+f ′(n) ∈ Fg. Hence an inductive argument shows that all coefficients c+f (n) are con-

tained in the extension Fg(c
+
f (1)). This concludes the proof of the theorem since we have

already established that c+f (1) is in Fg(ζM). �

The proof of Theorem 9.4 is similar to the proof of Theorem 9.3, and so we only give a
brief indication of how the proof must be modified.

Sketch proof of Theorem 9.4. If p - N is a prime, then for every positive integer m we have
that

cg(p)cg(p
m) = cg(p

m+1) + χ(p)pk−1cg(p
m−1).

Therefore, if p - N is a prime for which cg(p) = 0, then we have that

cg(p
m+1) = −χ(p)pk−1cg(p

m−1),

which in turn implies that

cg(p
m) =


(
−χ(p)pk−1

)m
2

if m is even,

0 otherwise.

A standard argument gives a harmonic Maass form whose Fourier coefficients are supported
on terms whose exponents n have the property that p exactly divides n. By the multiplica-
tivity of the Fourier coefficients of newforms, it then follows by the observation above that
the non-holomorphic part of this form is identically zero. In other words, this particular
harmonic Maass form is a weakly holomorphic modular form with suitable principal parts
at cusps. The proof now follows mutatis mutandis as in the proof of Theorem 9.3. �

10. Generating functions for singular moduli

Let j(z) be the usual modular function for SL2(Z)

j(z) = q−1 + 744 + 196884q + 21493760q2 + · · · .
The values of modular functions such as j(z) at imaginary quadratic arguments in H are
known as singular moduli. Singular moduli are algebraic integers which play many roles in
number theory. For example, they generate class fields of imaginary quadratic fields, and
they parameterize isomorphism classes of elliptic curves with complex multiplication.
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In an important paper, Zagier [245] proved that the traces of these numbers are Fourier
coefficients of certain weight 3/2 modular forms. To illustrate his results, we begin by
comparing the classical evaluations

j
(
−1+

√
−3

2

)
− 744

3
= −248,

j(i)− 744

2
= 492, j

(
1 +

√
−7

2

)
− 744 = −4119,

with the Fourier coefficients of the modular form

g(z) := −η(z)
2 · E4(4z)

η(2z)η(4z)6
= −q−1 + 2− 248q3 + 492q4 − 4119q7 + 7256q8 − · · · .(10.1)

The appearance of singular moduli as the initial coefficients of the modular form g(z) is not
a coincidence.

We now make this more precise. For integers λ, let M!
λ+ 1

2

(4) be the space of weight λ+ 1
2

weakly holomorphic modular forms on Γ0(4) satisfying the “Kohnen plus-space” condition.
A form satisfies this condition if its q-expansion has the form

(10.2)
∑

(−1)λn≡0,1 (mod 4)

a(n)qn.

Throughout let d ≡ 0, 3 (mod 4) be a positive integer, let H(d) be the Hurwitz-Kronecker
class number for the discriminant −d, and let Qd be the set of positive definite integral
binary quadratic forms (note. including imprimitive forms)

Q(x, y) = [a, b, c] = ax2 + bxy + cy2

with discriminant DQ = −d = b2 − 4ac. For each Q, let τQ be the unique root in H of
Q(x, 1) = 0. The singular modulus f(τQ), for any modular invariant f(z), depends only on
the equivalence class of Q under the action of Γ := PSL2(Z). If ωQ ∈ {1, 2, 3} is given by

(10.3) ωQ :=


2 if Q ∼Γ [a, 0, a],

3 if Q ∼Γ [a, a, a],

1 otherwise,

then, for a modular invariant f(z), define the trace Tr(f ; d) by

(10.4) Tr(f ; d) :=
∑

Q∈Qd/Γ

f(τQ)

ωQ

.

Theorems 1 and 5 of Zagier’s paper [245] imply the following theorem.

Theorem 10.1. If f(z) ∈ Z[j(z)] has a Fourier expansion with constant term 0, then there
is a finite principal part Af (z) =

∑
n≤0 af (n)qn for which

Af (z) +
∑

0<d≡0,3 (mod 4)

Tr(f ; d)qd ∈M!
3
2
(4).

Remark. The earlier claim in (10.1) is the f(z) = j(z)− 744 case of this theorem.
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Remark. Zagier’s paper [245] includes many generalizations of this theorem. One of his re-
sults proves that the generating functions of the traces of jm(z) := m (j(z)− 744) |T (m) are
also explicit weight 3/2 weakly holomorphic modular forms. This result is of particular signif-
icance because it reduces the computation of Hilbert class polynomials to a straightforward
calculation.

10.1. Further generating functions for traces of singular moduli. Zagier’s work has
inspired an enormous number of works [63, 67, 74, 75, 92, 93, 103, 104, 106, 116, 153, 154, 181]
by the author, Bringmann, Bruinier, D. Choi, W. Duke, A. Folsom, J. Funke, O. Imamoḡlu,
P. Jenkins, D. Jeon, S.-Y. Kang, C. Kim, R. Masri, A. Miller, A. Pixton, J. Rouse, and
A. Toth. These papers give theorems related to the phenomenon that the coefficients of
modular forms and harmonic Maass forms are often the “traces” of some sort of singular
moduli. For brevity, here we discuss one construction which is based on Maass-Poincaré
series.

For fundamental discriminants D1, let χD1 denote the associated genus character for pos-
itive definite binary quadratic forms whose discriminants are multiples of D1. If λ is an
integer and D2 is a non-zero integer for which (−1)λD2 ≡ 0, 1 (mod 4) and (−1)λD1D2 < 0,
then define the twisted trace of a modular invariant f(z), say TrD1(f ;D2), by

(10.5) TrD1(f ;D2) :=
∑

Q∈Q|D1D2|/Γ

χD1(Q)f(τQ)

ωQ

.

Many of the works mentioned above prove that such traces are often coefficients of Maass
forms and weakly holomorphic modular forms. Here we give one illustrative example of this
phenomenon using some of the Poincaré series constructed in Section 5.3. For convenience,
we briefly recall their construction. Let k := λ + 1

2
, where λ is an arbitrary integer, and let

Mν, µ(z) be the usual M -Whittaker function. For s ∈ C and y ∈ R− {0}, we define

Ms(y) := |y|−
k
2M k

2
sgn(y), s− 1

2
(|y|).

Suppose that m ≥ 1 is an integer with (−1)λ+1m ≡ 0, 1 (mod 4). As before, let

ϕ−m,s(z) := Ms(−4πmy)e(−mx),
where z = x + iy and e(w) := e2πiw, and let Γ∞ denote the translations in SL2(Z). With
this notation, define the Poincaré series

(10.6) Fλ(−m, s; z) :=
∑

A∈Γ∞\Γ0(4)

(ϕ−m,s |k A)(z)

for Re(s) > 1. Here |k denotes the usual half-integral weight k “slash operator”. If prλ is
Kohnen’s projection operator (see page 250 of [162]) to the weight λ+ 1

2
plus-space for Γ0(4),

then for λ 6∈ {0, 1} define Fλ(−m; z) by

(10.7) Fλ(−m; z) :=

{
3
2
Fλ

(
−m, k

2
; z
)
| prλ if λ ≥ 2,

3
2(1−k)Γ(1−k)

Fλ

(
−m, 1− k

2
; z
)
| prλ if λ ≤ −1.

Remark. For λ = 0 or 1 we also have series Fλ(−m; z). Their construction requires more
care due to questions of convergence (see [63, 75]).
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Arguing as in Section 5.3, if λ ≥ −6 with λ 6= −5, then Fλ(−m; z) ∈ M!
λ+ 1

2

(4). For such

λ, we denote the corresponding Fourier expansions by

(10.8) Fλ(−m; z) = q−m +
∑
n≥0

(−1)λn≡0,1 (mod 4)

bλ(−m;n)qn ∈M!
λ+ 1

2
(4).

For other λ, namely λ = −5 or λ ≤ −7, it turns out that the Fλ(−m; z) are Maass forms in
Hλ+ 1

2
(4). We denote their expansions by

(10.9) Fλ(−m; z) = Bλ(−m; z) + q−m +
∑
n≥0

(−1)λn≡0,1 (mod 4)

bλ(−m;n)qn,

where Bλ(−m; z) is the “non-holomorphic” part of Fλ(−m; z).

Example. If λ = 1 and −m = −1, then we find the form in (10.1)

−F1(−1; z) = g(z) = −q−1 + 2− 248q3 + 492q4 − 4119q7 + 7256q8 − · · · .

Generalizing Zagier’s results, we have that the coefficients bλ(−m;n) of the Fλ(−m; z) are
traces of singular moduli for functions defined by Niebur [187]. If Is(x) denotes the usual
I-Bessel function, and if λ > 1, then let

(10.10) Fλ(z) := π
∑

A∈Γ∞\SL2(Z)

Im(Az)
1
2 Iλ− 1

2
(2πIm(Az))e(−Re(Az)).

For λ = 1, a similar construction holds. Indeed, Niebur [187] showed that F1(z) = 1
2
(j(z)−

744), where this function is the analytic continuation, as s→ 1+, of

−12 + π
∑

A∈Γ∞\SL2(Z)

Im(Az)
1
2 Is− 1

2
(2πIm(Az))e(−Re(Az)).

We then have the following theorem.

Theorem 10.2. (Bringmann and Ono; Theorem 1.2 of [63])
If λ,m ≥ 1 are integers for which (−1)λ+1m is a fundamental discriminant (note. which
includes 1), then for each positive integer n with (−1)λn ≡ 0, 1 (mod 4) we have

bλ(−m;n) =
2(−1)[(λ+1)/2]n

λ
2
− 1

2

m
λ
2

· Tr(−1)λ+1m (Fλ;n) .

Remark. A version of Theorem 10.2 holds for integers λ ≤ 0. This follows from a duality (see
Theorem 1.1 of [63]) of Fourier expansions. Suppose that λ ≥ 1, and that m is a positive
integer for which (−1)λ+1m ≡ 0, 1 (mod 4). For every positive integer n with (−1)λn ≡ 0, 1
(mod 4), this duality implies that

bλ(−m;n) = −b1−λ(−n;m).

Example. For λ = 1, Theorem 10.2 relates b1(−m;n) to traces and twisted traces of F1(z) =
1
2
(j(z)− 744). These are Theorems 1 and 6 of Zagier’s paper [245].
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Theorem 10.2 is obtained by reformulating, as traces of singular moduli, exact expres-
sions for the coefficients bλ(−m;n). The proof follows from the classical fact that certain
half-integral weight Kloosterman sums are essentially Salié sums. To define these sums,
suppose that 0 6= D1 ≡ 0, 1 (mod 4). If λ is an integer, D2 6= 0 is an integer for which
(−1)λD2 ≡ 0, 1 (mod 4), and N is a positive multiple of 4, then define the generalized Salié
sum Sλ(D1, D2, N) by

(10.11) Sλ(D1, D2, N) :=
∑

x (mod N)

x2≡(−1)λD1D2 (mod N)

χD1

(
N

4
, x,

x2 − (−1)λD1D2

N

)
e

(
2x

N

)
,

where χD1(a, b, c), for a binary quadratic form Q = [a, b, c], is given by

(10.12) χD1(a, b, c) :=

{
0 if (a, b, c,D1) > 1,(

D1

r

)
if (a, b, c,D1) = 1 and Q represents r with (r,D1) = 1.

Remark. If D1 = 1, then χD1 is trivial. Therefore, if (−1)λD2 ≡ 0, 1 (mod 4), then

Sλ(1, D2, N) =
∑

x (mod N)

x2≡(−1)λD2 (mod N)

e

(
2x

N

)
.

Half-integral weight Kloosterman sums are essentially equal to such Salié sums, a fact
which plays a fundamental role throughout the theory of half-integral weight modular forms.
The following proposition is due to Kohnen (see Proposition 5 of [162]).

Proposition 10.3. Suppose that N is a positive multiple of 4. If λ is an integer, and D1

and D2 are non-zero integers for which D1, (−1)λD2 ≡ 0, 1 (mod 4), then

N− 1
2 (1− (−1)λi)(1 + δodd(N/4)) ·Kλ((−1)λD1, D2, N) = Sλ(D1, D2, N).

As a consequence, we may rewrite the formulas for the bλ(−m;n) using Salié sums. The
following proposition describes these Salié sums as Poincaré-type series over CM points.

Proposition 10.4. Suppose that λ is an integer, and that D1 is a fundamental discriminant.
If D2 is a non-zero integer for which (−1)λD2 ≡ 0, 1 (mod 4) and (−1)λD1D2 < 0, then for
every positive integer a we have

Sλ(D1, D2, 4a) = 2
∑

Q∈Q|D1D2|/Γ

χD1(Q)

ωQ

∑
A∈Γ∞\SL2(Z)

Im(AτQ)=

√
|D1D2|

2a

e (−Re (AτQ)) .

Proof. For every integral binary quadratic form

Q(x, y) = ax2 + bxy + cy2

of discriminant (−1)λD1D2, let τQ ∈ H be as before. Clearly τQ is equal to

τQ =
−b+ i

√
|D1D2|

2a
,(10.13)
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and the coefficient b of Q solves the congruence

(10.14) b2 ≡ (−1)λD1D2 (mod 4a).

Conversely, every solution of (10.14) corresponds to a quadratic form with an associated CM
point thereby providing a one-to-one correspondence between the solutions of

b2 − 4ac = (−1)λD1D2 (a, b, c ∈ Z, a, c > 0)

and the points of the orbits ⋃
Q

{
AτQ : A ∈ SL2(Z)/ΓτQ

}
,

where ΓτQ
denotes the isotropy subgroup of τQ in SL2(Z), and where Q varies over the

representatives of Q|D1D2|/Γ. The group Γ∞ preserves the imaginary part of such a CM
point τQ, and preserves (10.14). However, it does not preserve the middle coefficient b of
the corresponding quadratic forms modulo 4a. It identifies the congruence classes b, b + 2a
(mod 4a) appearing in the definition of Sλ(D1, D2, 4a). Since χD1(Q) is fixed under the
action of Γ∞, the corresponding summands for such pairs of congruence classes are equal.
Proposition 10.4 follows since #ΓτQ

= 2ωQ, and since both ΓτQ
and Γ∞ contain the negative

identity matrix. �

Sketch of the proof of Theorem 10.2. Here we prove the cases where λ ≥ 2. The argument
when λ = 1 is identical. For λ ≥ 2, the exact formula for bλ(−m;n) is

bλ(−m;n) = (−1)[(λ+1)/2]π
√

2(n/m)
λ
2
− 1

4 (1− (−1)λi)

×
∑
c>0

c≡0 (mod 4)

(1 + δodd(c/4))
Kλ(−m,n, c)

c
· Iλ− 1

2

(
4π
√
mn

c

)
.

Using Proposition 10.3, where D1 = (−1)λ+1m and D2 = n, for integers N = c which are
positive multiples of 4, we have

c−
1
2 (1− (−1)λi)(1 + δodd(c/4)) ·Kλ(−m,n, c) = Sλ((−1)λ+1m,n, c).

These identities, combined with the change of variable c = 4a, give

bλ(−m;n) =
(−1)[(λ+1)/2]π√

2
(n/m)

λ
2
− 1

4

∞∑
a=1

Sλ((−1)λ+1m,n, 4a)√
a

· Iλ− 1
2

(
π
√
mn

a

)
.

Using Proposition 10.4, this becomes

bλ(−m;n) =
2(−1)[(λ+1)/2]π√

2
(n/m)

λ
2
− 1

4

∑
Q∈Qnm/Γ

χ(−1)λ+1m(Q)

ωQ

∞∑
a=1

∑
A∈Γ∞\SL2(Z)

Im(AτQ)=
√

mn
2a

Iλ− 1
2
(2πIm(AτQ))
√
a

· e(−Re(AτQ)).
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The definition of Fλ(z) in (10.10), combined with the obvious change of variable relating

1/
√
a to Im(AτQ)

1
2 , gives

bλ(−m;n) =
2(−1)[(λ+1)/2]n

λ
2
− 1

2

m
λ
2

· π
∑

Q∈Qnm/Γ

χ(−1)λ+1m(Q)

ωQ∑
A∈Γ∞\SL2(Z)

Im(AτQ)
1
2 · Iλ− 1

2
(2πIm(AτQ))e(−Re(AτQ))

=
2(−1)[(λ+1)/2]n

λ
2
− 1

2

m
λ
2

· Tr(−1)λ+1m(Fλ;n).

�

10.2. The “24-Theorem”. Exact formulas for traces of singular moduli can lead to nice
number theoretic consequences. Here we mention one such application which is related to
the classical observation that

(10.15) eπ
√

163 = 262537412640768743.9999999999992 . . .

is nearly an integer. To make this precise, we recall some classical facts. A primitive positive
definite binary quadratic form Q is reduced if |B| ≤ A ≤ C, and B ≥ 0 if either |B| = A or
A = C. If −d < −4 is a fundamental discriminant, then there are H(d) reduced forms with
discriminant −d. The set of such reduced forms, say Qred

d , is a complete set of representatives

for Qd/SL2(Z). Moreover, each such reduced form has 1 ≤ A ≤
√
d/3 (see page 29 of [97]),

and has the property that τQ lies in the usual fundamental domain for the action of SL2(Z)

(10.16) F =

{
−1

2
≤ Re(z) <

1

2
and |z| > 1

}
∪
{
−1

2
≤ Re(z) ≤ 0 and |z| = 1

}
.

Since J1(z) := j(z)− 744 = q−1 + 196884q + · · · , it follows that if Gred(d) is defined by

(10.17) Gred(d) =
∑

Q=(A,B,C)∈Qred
d

eπBi/A · eπ
√

d/A,

then Tr(d)−Gred(d) is “small”, where Tr(d) := Tr(J1; d). In other words, q−1 provides a good
approximation for J1(z) for most points z. This is illustrated by (10.15) where H(163) = 1.

It is natural to investigate the “average value”

Tr(d)−Gred(d)

H(d)
,

which for d = 163 is −0.0000000000008 . . . . Armed with the exact formulas for Tr(d), it
turns out that a uniform picture emerges for a slightly perturbed average, one including
some non-reduced quadratic forms. For each positive integer A, let Qold

A,d denote the set

(10.18) Qold
A,d = {Q = (A,B,C) : non-reduced with DQ = −d and |B| ≤ A}.
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Define Gold(d) by

(10.19) Gold(d) =
∑

√
d/2≤A≤

√
d/3

Q∈Qold
A,d

eπBi/A · eπ
√

d/A.

The non-reduced forms Q contributing to Gold(d) are those primitive discriminant −d forms
for which τQ is in the bounded region obtained by connecting the two endpoints of the lower

boundary of F with a horizontal line. Since Tr(d) is subexponential in |d| andH(d) � |d| 12+ε,
the following numerics are quite surprising:

Tr(d)−Gred(d)−Gold(d)

H(d)
=


−24.672 . . . if d = 1931,

−24.483 . . . if d = 2028,

−23.458 . . . if d = 2111.

Recently, Duke has proved [103] a result which implies the following theorem.

Theorem 10.5. As −d ranges over negative fundamental discriminants, we have

lim
−d→−∞

Tr(d)−Gred(d)−Gold(d)

H(d)
= −24.

Here we explain the source of −24 in the limit

(10.20) lim
−d→−∞

Tr(d)−Gred(d)−Gold(d)

H(d)
= −24.

Using Theorem 10.2 and Propositions 10.3 and 10.4, it is not difficult to reformulate the
exact formulas for Tr(d) to read

Tr(d) = −24H(d) +
∑
c>0

c≡0 (4)

S(d, c) sinh(4π
√
d/c),

where S(d, c) is the Salié sum

S(d, c) =
∑

x2≡−d (mod c)

e(2x/c).

As a consequence, the “24 Theorem” is equivalent to the assertion that∑
c>
√

d/3

c≡0 (4)

S(d, c) sinh

(
4π

c

√
d

)
= o (H(d)) .

This follows from the fact the sum over c ≤
√
d/3 is essentially Gred(d) +Gold(d). The sinh

factor contributes the size of q−1 in the Fourier expansion of a singular modulus, and the
summands in the Kloosterman sum provide the corresponding “angles”. The contribution
Gold(d) arises from the fact that the Kloosterman sum cannot distinguish between reduced

and non-reduced forms. In view of Siegel’s theorem that H(d) �ε d
1
2
−ε, (10.20) follows from

a bound for such sums of the form � d
1
2
−γ, for some γ > 0. Such bounds are implicit
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in Duke’s proof of this result [103], and more generally in his famous work on bounding
coefficients of half-integral weight cusp forms [102].

10.3. Singular moduli for certain non-holomorphic modular functions. Here we
briefly touch on recent work which gives further similar theorems on traces of singular moduli.
For brevity we only give a brief indication of the flavor of these results. The reader should
consult the cited references for further details.

Along these lines, Bruinier and the author [78], Bruinier have recently proved that the
coefficients of certain weight −1/2 harmonic Maass forms are traces of singular moduli over
Heegner divisors for weak Maass forms We have the following theorem.

Theorem 10.6 (Theorem 3.6 of [78]). Let f ∈ H−2(N) and put ∂f := 1
4π
R−2,zf . For

m ∈ Q>0, the (m,h)-th Fourier coefficient of the holomorphic part of the theta lift Λ(τ, f)
equals

trf (m,h) = − 1

2m

∑
z∈Z(m,h)

∂f(z).

Remark. This theorem is stated using the notion of vector-valued harmonic Maass forms.
This notion will be introduced in the next section in connection with an eye towards
Borcherds products and modular L-functions. We also note that this result has recently
be generalized by Alfes [7].

As a special case of this theorem, we recall Theorem 2.1 proved by Bruinier and the author
in [78]. To state this result we let

F (z) :=
1

2
· E2(z)− 2E2(2z)− 3E2(3z) + 6E2(6z)

η(z)2η(2z)2η(3z)2η(6z)2
= q−1 − 10− 29q − . . . ,

and then we define

P (z) := −
(

1

2πi
· d
dz

+
1

2πy

)
F (z) =

(
1− 1

2πy

)
q−1 +

5

πy
+

(
29 +

29

2πy

)
q + . . . .

Theorem 10.7. If n is a positive integer, then

Hpart
n (x) = xh(1−24n) − (24n− 1)p(n)xh(1−24n)−1 + . . . ,

where p(n) is the partition function. Moreover, we that

p(n) =
1

24n− 1

∑
Q∈Q6,1−24n,1

P (αQ),

and we have that each (24n− 1)P (αQ) is an algebraic integer.

Remark. It is interesting to compare this formula for p(n) with Rademacher’s infinite series
expansion (2.4). The sum above is a finite sum of algebraic numbers with bounded denom-
inators. Bruinier, Sutherland, and the author have obtained Chinese Remainder Theorem
based algorithms to compute class polynomials such as Hpart

n (x) in [80].

Example. Using Algorithm 3 of [80], we have computed Hpart
n (x) for n ≤ 750. Some small

examples are listed below.
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n (24n− 1)p(n) Hpart
n (x)

1 23 x3 − 23x2 + 3592
23
x− 419

2 94 x5 − 94x4 + 169659
47

x3 − 65838x2 + 1092873176
472 x+ 1454023

47

3 213 x7 − 213x6 + 1312544
71

x5 − 723721x4 + 44648582886
712 x3

+9188934683
71

x2 + 166629520876208
713 x+ 2791651635293

712

4 475 x8 − 475x7 + 9032603
95

x6 − 9455070x5 + 3949512899743
952 x4

−97215753021
19

x3 + 9776785708507683
953 x2

−53144327916296
192 x− 134884469547631

54·19 .

Sketch of the proof of Theorem 2.1. The function η(z)−1 can be viewed as a component of a
vector valued modular form, and direct calculations shows that Theorem 10.6 applies.

The main issue is that the singular moduli (24n− 1)P (αQ) are algebraic integers. Using
the classical theory of complex multiplication, Bruinier and the author proved in [78] that
the only denominators in these algebraic numbers could be a divisor of 6. Larson and Rolen
[170] recently proved that there are no such contributions. �

11. Borcherds Products

Here we describe work of the author and Bruinier [77] on Borcherds products. To describe
the context of this work, we first recall a famous result of Borcherds on infinite product
expansions of modular forms possessing a Heegner divisor.

11.1. The “classical” Borcherds products. We begin by recalling that ∆(z), the unique
normalized weight 12 cusp form with respect to SL2(Z), has a Fourier expansion given by
the infinite product

(11.1) ∆(z) = q

∞∏
n=1

(1− qn)24.

Most modular forms do not possess simple infinite product expansions. It was widely believed
that such elegant product expansions only belong to the domain of those modular forms
whose divisors are supported at cusps, such as the modular units (for example, see [165]).

Then in the 1990s, Borcherds [48, 49, 50] provided a striking description for the exponents
in the naive infinite product expansions of a much larger class of modular forms, those mod-
ular forms possessing a Heegner divisor. For example, let c(n) denote the integer exponents
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one obtains by expressing E4(z) as an infinite product:

(11.2) E4(z) = 1 + 240
∞∑

n=1

∑
d|n

d3qn = (1− q)−240(1− q2)26760 · · · =
∞∏

n=1

(1− qn)c(n).

Borcherds’s theory implies that there is a weight 1/2 meromorphic modular form

G(z) =
∑
n≥−3

b(n)qn = q−3 + 4− 240q + 26760q4 + · · · − 4096240q9 + . . .

with the property that c(n) = b(n2) for every positive integer n. Notice that the product
in (11.1) also satisfies this phenomenon, where the product exponents are the coefficients of
the weight 1/2 modular form

12Θ0(z) = 12
∑
n∈Z

qn2

= 12 + 24q + 24q4 + 24q9 + · · · .

These two examples illustrate his general result that a modular form on SL2(Z) with a
Heegner divisor has an infinite product expansion where the exponents are coefficients of
certain weight 1/2 weakly holomorphic modular forms.

Remark. The work of Borcherds [48, 49, 50] is given in the more general context of automor-
phic forms on orthogonal groups.

Remark. It is possible to derive explicit formulas for the exponents in the infinite product
expansions of generic modular forms, not just those with a Heegner divisor (for example, see
[76]). However, these formulas are in general quite complicated.

We now briefly recall the most classical case of this work of Borcherds. We shall refer to
a complex number τ ∈ H of the form

τ =
−b+

√
b2 − 4ac

2a

with a, b, c ∈ Z, gcd(a, b, c) = 1, and b2 − 4ac < 0 as a CM point, and we denote its
discriminant by the integer dτ := b2 − 4ac. A meromorphic modular form f(z) on SL2(Z)
is said to have a Heegner divisor if its zeros and poles are supported at the cusp at infinity
and at CM points.

To state Borcherds’s results, we require a special sequence of weight 1/2 modular forms
in M!

1
2

(4). These forms will be distinguished by their q-expansions. For each nonnegative

integer d ≡ 0, 3 (mod 4) let fd(z) ∈ M!
1
2

(4) be the unique modular form with a Fourier

expansion of the form

fd(z) = q−d +
∑
D>0

A(D, d)qD.

That these forms are well defined follows from Lemma 14.2 of [49]. Moreover, they form a
basis of M!

1
2

(4).

The form f0(z) is the classical Jacobi theta-function

(11.3) f0(z) = Θ0(z) = 1 + 2q + 2q4 + 2q9 + 2q16 + · · · ,
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and the form f3(z) is given by the expression

f3(z) =
D(Θ0(z))E10(4z)

2∆(4z)
− Θ0(z) (D(E10(z))|V (4))

10∆(4z)
− 152

5
Θ0(z)

= q−3 − 248q + 26752q4 − 85995q5 + · · · ,
(11.4)

where D := q · d
dq

.

Remark. It is straightforward to inductively compute the fd(z) using f0(z) and f3(z). To
compute fd(z) for d ≥ 4, one computes fd−4(z)j(4z), and then iteratively subtracts multiples
of those fj(z) with 0 ≤ j ≤ d− 4.

For completeness, we include the initial terms of the first few fd(z) below.

f0(z) = 1 + 2q + 2q4 + 2q9 + · · · ,
f3(z) = q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 − 4096248q9 + · · · ,
f4(z) = q−4 + 492q + 143376q4 + 565760q5 + 18473000q8 + 51180012q9 + · · · ,
f7(z) = q−7 − 4119q + 8288256q4 − 52756480q5 + · · · ,
f8(z) = q−8 + 7256q + 26124256q4 + 190356480q5 + · · · .

(11.5)

Using these forms, we may now state Borcherds’s famous theorem on the infinite product
expansion of those meromorphic forms on SL2(Z) possessing a Heegner divisor. Let MH de-
note the set of integer weight meromorphic modular forms on SL2(Z) with a Heegner divisor,
integer coefficients, and leading coefficient 1. Obviously, MH is closed under multiplication.

If H(−n) denotes the usual Hurwitz class number of discriminant −n, then define H̃(z)
by

H̃(z) : = − 1

12
+

∑
1<n≡0,3 (mod 4)

H(−n)qn

= − 1

12
+ q3/3 + q4/2 + q7 + q8 + q11 + 4q12/3 + · · · .

(11.6)

If f(z) =
∑

n≥n0
A(n)qn ∈M!

1
2

(4), then define Ψ(f(z)) by

(11.7) Ψ(f(z)) := q−h

∞∏
n=1

(1− qn)A(n2),

where h is the constant term of f(z)H̃(z). Borcherds [48] proved the following theorem.

Theorem 11.1. The map Ψ satisfies

Ψ : M!
1
2
(4) −→MH .

Furthermore, it is an isomorphism. The weight of Ψ(f) is A(0), and the multiplicity of the
zero of Ψ(f) at a CM point of discriminant D < 0 is∑

n>0

A(Dn2).
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Remark. The isomorphism Ψ respects the additive structure ofM!
1
2

(4) and the multiplicative

structure of MH .

Example. If f(z) = 12f0(z) = 12Θ0(z), then

f(z) =
∞∑

n=0

A(n)qn = 12 + 24q + 24q4 + 24q9 + 24q16 + · · · .

Therefore, it follows that

Ψ(f(z)) = q

∞∏
n=1

(1− qn)24.

Obviously, Ψ(f(z)) is the classical ∆-function. Its weight is A(0) = 12, and its divisor is
supported at the cusp at infinity.

Example. If f(z) = 3f3(z), then

f(z) =
∞∑

n=−3

A(n)qn = 3q−3 − 744q + 80256q4 − 257985q5 + 5121792q8 − 12288744q9 + · · · .

By Theorem 11.1, it follows that Ψ(f(z)) is a weight A(0) = 0 meromorphic modular form
whose divisor is supported at the cusp at infinity and a triple zero at ω = e2πi/3. Therefore,
it follows that Ψ(f(z)) must be j(z), and this is confirmed by

Ψ(f(z)) = q−1(1− q)−744(1− q2)80256(1− q3)−12288744 · · ·
= q−1 + 744 + 196884q + 21493760q3 + · · · .

Example. If f(z) = 4f0(z) + f3(z), then

f(z) =
∞∑

n=−3

A(n)qn = q−3 + 4− 240q + 26760q4 − 85995q5 + · · · − 4096240q9 + · · · .

Theorem 11.1 implies that Ψ(f(z)) is a holomorphic modular form of weight 4 with leading
coefficient 1. Therefore, it must be that Ψ(f(z)) = E4(z). This explains (11.2).

11.2. Harmonic Maass forms and Generalized Borcherds products. Motivated by
questions related to derivatives of modular L-functions, the author and Bruinier [77] derived
Borcherds-type products using harmonic Maass forms. These results are quite technical, and
a thorough treatment would occupy more space than is warranted in this expository paper.
For brevity, we will be content with a brief indication of the flavor of these results, followed
by two illustrative examples.

These results are phrased in terms of vector-valued weight 1/2 harmonic Maass forms. Let
(V,Q) be a non-degenerate rational quadratic space of signature (b+, b−), and let L ⊂ V be
an even lattice with dual L′. The discriminant group L′/L, together with the Q/Z-valued
quadratic form induced by Q, is called the discriminant form of the lattice L.

As usual, we let Mp2(R) denote the metaplectic two-fold cover of SL2(R). The elements of
this group are pairs (M,φ(τ)), where M = ( a b

c d ) ∈ SL2(R) and φ : H → C is a holomorphic
function with φ(τ)2 = cτ + d. The group law is defined by

(M,φ(τ))(M ′, φ′(τ)) = (MM ′, φ(M ′τ)φ′(τ)).
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We denote the integral metaplectic group, the inverse image of Γ := SL2(Z) under the

covering map, by Γ̃ := Mp2(Z). It is well known that Γ̃ is generated by T := (( 1 1
0 1 ) , 1), and

S := (( 0 −1
1 0 ) ,

√
τ). One has the relations S2 = (ST )3 = Z, where Z :=

(( −1 0
0 −1

)
, i
)

is the

standard generator of the center of Γ̃. We let Γ̃∞ := 〈T 〉 ⊂ Γ̃.
We now recall the Weil representation associated with the discriminant form L′/L (for

example, see [49], [71]). It is a representation of Γ̃ on the group algebra C[L′/L]. We denote
the standard basis elements of C[L′/L] by eh, h ∈ L′/L, and write 〈·, ·〉 for the standard scalar
product (antilinear in the second entry) such that 〈eh, eh′〉 = δh,h′ . The Weil representation

ρL associated with the discriminant form L′/L is the unitary representation of Γ̃ on C[L′/L]
defined by

ρL(T )(eh) := e(h2/2)eh,(11.8)

ρL(S)(eh) :=
e((b− − b+)/8)√

|L′/L|

∑
h′∈L′/L

e(−(h, h′))eh′ .(11.9)

If f : H → C[L′/L] is a function, we write f =
∑

λ∈L′/L fheh for its decomposition in

components with respect to the standard basis of C[L′/L]. Let k ∈ 1
2
Z, and let M !

k,ρL
denote

the space of C[L′/L]-valued weakly holomorphic modular forms of weight k and type ρL for

the group Γ̃.
Now assume that k ≤ 1. A twice continuously differentiable function f : H → C[L′/L]

is called a vector-valued harmonic Maass form of weight k with respect to Γ̃ and ρL if it
satisfies:

(i) f (Mτ) = φ(τ)2kρL(M,φ)f(τ) for all (M,φ) ∈ Γ̃;
(ii) ∆kf = 0;
(iii) We have that

f(τ) = Pf (τ) +O(e−εv),

as v →∞, for some Fourier polynomial

Pf (τ) =
∑

h∈L′/L

∑
n∈Z+Q(h)
−∞�n≤0

c+(n, h)e(nτ)eh

and some ε > 0.

We write Hk,ρL
for the vector space of such harmonic Maass forms.

Generalizing Lemma 4.2, where the modular variable is now τ = u+ iv, we have that any
f ∈ Hk,ρL

decomposes as f = f+ + f−, where

f+(τ) =
∑

h∈L′/L

∑
n∈Q

n�−∞

c+(n, h)e(nτ)eh,(11.10a)

f−(τ) =
∑

h∈L′/L

∑
n∈Q
n<0

c−(n, h)W (2πnv)e(nτ)eh,(11.10b)

and W (x) = Wk(x) :=
∫∞
−2x

e−tt−k dt = Γ(1− k, 2|x|) for x < 0.
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In [77], the theory of theta liftings is applied to such harmonic Maass forms to obtain
Borcherds products with twisted Heegner divisors on X0(N). To this end, let N be a positive
integer. We consider the rational quadratic space

V := {X ∈ Mat2(Q) : tr(X) = 0}(11.11)

with the quadratic form Q(X) := −N det(X). We let L be the lattice

L :=

{(
b −a/N
c −b

)
: a, b, c ∈ Z

}
.(11.12)

Then the dual lattice is given by

L′ :=

{(
b/2N −a/N
c −b/2N

)
: a, b, c ∈ Z

}
.(11.13)

We identify L′/L with Z/2NZ. Here the quadratic form on L′/L is identified with the
quadratic form x 7→ x2 on Z/2NZ.

If D ∈ Z, let LD be the set of vectors X ∈ L′ with Q(X) = D/4N . Notice that LD is
empty unless D is a square modulo 4N . For r ∈ L′/L with r2 ≡ D (mod 4N) we define

LD,r := {X ∈ L′ : Q(X) = D/4N and X ≡ r (mod L)}.

If X =
(

b/2N −a/N
c −b/2N

)
∈ LD,r, then the matrix

(11.14) ψ(X) :=

(
a b/2
b/2 Nc

)
= X

(
0 N
−N 0

)
defines an integral binary quadratic form of discriminant D = b2 − 4Nac = 4NQ(X) with
b ≡ r (mod 2N). We have that Γ0(N) acts on LD,r, and the number of orbits of LD,r is
finite if D 6= 0.

Let ∆ ∈ Z be a fundamental discriminant and r ∈ Z such that ∆ ≡ r2 (mod 4N).

Following [133], we define a generalized genus character for λ =
(

b/2N −a/N
c −b/2N

)
∈ L′ by

putting

χ∆(λ) = χ∆([a, b,Nc]) :=


(

∆
n

)
, if ∆ | b2 − 4Nac and (b2 − 4Nac)/∆ is a

square modulo 4N and gcd(a, b, c,∆) = 1,

0, otherwise.

Here [a, b,Nc] is the integral binary quadratic form corresponding to λ, and n is any integer
prime to ∆ represented by one of the quadratic forms [N1a, b,N2c] with N1N2 = N and
N1, N2 > 0.

The cusps of Γ0(N) correspond to Γ0(N)-classes of primitive isotropic vectors in L. Here
we let `, `′ ∈ L be the isotropic vectors

` =

(
0 1/N
0 0

)
, `′ =

(
0 0
1 0

)
.

The 1-dimensional lattice

K = L ∩ `′⊥ ∩ `⊥
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is positive definite. We find that L splits into

L = K ⊕ Z`′ ⊕ Z`,(11.15)

and K ′/K ∼= L′/L. Then we have K = Z ( 1 0
0 −1 ). For λ ∈ K ⊗ R, we write λ > 0 if λ is a

positive multiple of ( 1 0
0 −1 ).

We now define twisted Heegner divisors on the modular curve X0(N). Let ∆ be a funda-
mental discriminant and let r ∈ Z such that ∆ ≡ r2 (mod 4N). For any vector λ ∈ L′ of
negative norm, the orthogonal complement λ⊥ ⊂ V (R) defines a point H(λ) in Gr(V ) ∼= H.
For h ∈ L′/L and a negative rational number m ∈ Z + sgn(∆)Q(h), we consider the twisted
Heegner divisor

H∆,r(m,h) :=
∑

λ∈Ld∆,hr/Γ0(N)

χ∆(λ)

w(λ)
H(λ) ∈ Div(X0(N))Q,(11.16)

where d := 4Nm sgn(∆) ∈ Z. Note that d is a discriminant which is congruent to a square
modulo 4N and which has the opposite sign as ∆. Here w(λ) is the order of the stabilizer
of λ in Γ0(N). We also require the degree zero divisor

y∆,r(m,h) := H∆,r(m,h)− deg(H∆,r(m,h)) · ∞.(11.17)

We have y∆,r(f) = H∆,r(f) when ∆ 6= 1. By the theory of complex multiplication, the

divisor H∆,r(m,h) is defined over Q(
√

∆).
Recall that ρ̃L = ρL for ∆ > 0, and ρ̃L = ρ̄L for ∆ < 0. Suppose that f ∈ H1/2,ρ̃L

is a
harmonic weak Maass form of weight 1/2 with representation ρ̃L. We denote the coefficients
of f = f+ + f− by c±(m,h) as in (11.10). Using the Fourier coefficients of the principal part
of f , we finally define the twisted Heegner divisor associated to f by

H∆,r(f) :=
∑

h∈L′/L

∑
m<0

c+(m,h)H∆,r(m,h) ∈ Div(X0(N))R,(11.18)

y∆,r(f) :=
∑

h∈L′/L

∑
m<0

c+(m,h)y∆,r(m,h) ∈ Div(X0(N))R.(11.19)

Notice that y∆,r(f) = H∆,r(f) when ∆ 6= 1.

Theorem 11.2. Assume the notation and hypotheses above. Let f ∈ H1/2,ρ̃L
be a harmonic

Maass form with real coefficients c+(m,h) for all m ∈ Q and h ∈ L′/L. Moreover, assume
that c+(n, h) ∈ Z for all n ≤ 0. Then infinite product

Ψ∆,r(z, f) = e((ρf,`, z))
∏

λ∈K′
λ>0

∏
b (∆)

[1− e((λ, z) + b/∆)](
∆
b )c+(|∆|λ2/2,rλ) ,

where ρf,` is a certain Weyl vector (see (4.8) of [77]), converges for y sufficiently large and
has a meromorphic continuation to all of H with the following properties.

(i) It is a meromorphic modular form for Γ0(N) with a unitary character σ which may
have infinite order.

(ii) The weight of Ψ∆,r(z, f) is c+(0, 0) when ∆ = 1, and is 0 when ∆ 6= 1.
(iii) The divisor of Ψ∆,r(z, f) on X0(N) is given by H∆,r(f) + C∆,r(f), where C∆,r(f) is

supported at cusps.
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(iv) The “regularized theta integral” of f defined in (5.5) of [77], satisfies

Φ∆,r(z, f) =

{
−c+(0, 0)(log(4πN) + Γ′(1))− 4 log |Ψ∆,r(z, f)yc+(0,0)/2|, if ∆ = 1,

2
√

∆c(0, 0)L(1, χ∆)− 4 log |Ψ∆,r(z, f)|, if ∆ 6= 1.

Unlike the results in [49], such generalized Borcherds products typically transform with a
multiplier system of infinite order under Γ0(N). The following criterion is obtained which
determines when the multiplier system has finite order.

Theorem 11.3. Suppose that ∆ 6= 1. Let f ∈ H1/2,ρ̃L
be a harmonic Maass form with real

coefficients c+(m,h) for all m ∈ Q and h ∈ L′/L. Moreover, assume that c+(n, h) ∈ Z for
all n ≤ 0. The following are equivalent.

(i) The character σ of the function Ψ∆,r(z, f) defined in Theorem 11.2 is of finite order.
(ii) The coefficients c+(|∆|λ2/2, rλ) are rational for all λ ∈ K ′.

Remark. Theorem 11.3 is particularly simple to implement for weakly holomorphic modular
forms f (for example, see Lemma 6.5 of [77]). In this case the rationality of all the coefficients
is implied by the rationality of the principal part, and so Theorem 11.3 implies that the σ
for the corresponding generalized Borcherds product has finite order.

Example (Twisted modular polynomials). Here we use Theorems 11.2 and 11.3 to deduce
the infinite product expansion of twisted modular polynomials found by Zagier (see Section 7
of [245]).

The weight 1/2 harmonic Maass forms in question are the same weakly holomorphc mod-
ular forms fd(z) which appear in (11.5). Theorems 11.2 and 11.3 then give a meromorphic
modular form Ψ∆(z, fd) := Ψ∆,r(z, fd) of weight 0 for the group Γ = SL2(Z) whose divisor
on X(1) is given by

H∆(d) := H∆,r(d/4, d/2) =
∑

λ∈L∆d/Γ

χ∆(λ)

w(λ)
·H(λ).

Classically, the quotient L∆d/Γ corresponds to the Γ-classes of integral binary quadratic
forms of discriminant ∆d. Moreover, for sufficiently large Im(z), we have the product ex-
pansion

Ψ∆(z, fd) =
∞∏

n=1

∏
b (∆)

[1− e(nz + b/∆)](
∆
b )cd(∆n2).(11.20)

From these properties it follows that

Ψ∆(z, fd) =
∏

λ∈L∆d/Γ

(
j(z)− j(H(λ))

)χ∆(λ)
.(11.21)

As an example, let ∆ := 5 and d := −3. There are two classes of binary quadratic forms
of discriminant −15, represented by [1, 1, 4] and [2, 1, 2], and their corresponding CM points

are −1+
√
−15

2
and −1+

√
−15

4
. It is well known that the singular moduli of j(τ) of these points

are −191025
2

− 85995
2

√
5, and −191025

2
+ 85995

2

√
5. The function f−3 has the Fourier expansion

f−3 = q−3 − 248 q + 26752 q4 − 85995 q5 + 1707264 q8 − 4096248 q9 + . . . .
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Multiplying out the product over b in (11.20), we obtain the infinite product expansion

Ψ5(z, f−3) =
j(z) + 191025

2
+ 85995

2

√
5

j(z) + 191025
2

− 85995
2

√
5

=
∞∏

n=1

(
1 + 1−

√
5

2
qn + q2n

1 + 1+
√

5
2
qn + q2n

)c−3(5n2)

.

Example (A generalized Borcherds product for Ramanujan’s ω(q)). Here we give an example
of a generalized Borcherds product arising from Ramanujan’s mock theta function

ω(q) :=
∞∑

n=0

q2n2+2n

(q; q2)2
n+1

=
1

(1− q)2
+

q4

(1− q)2(1− q3)2
+

q12

(1− q)2(1− q3)2(1− q5)2
+ · · · .

(11.22)

Zwegers’s work (see Theorem 3.1) completes this q-series in a way which allows him to
produce a vector valued harmonic Maass form.

Define integers a(n) by

−2q1/3
(
ω(q1/2) + ω(−q1/2)

)
=:

∑
n∈Z+1/3

a(n)qn = −4 q1/3 − 12 q4/3 − 24 q7/3 − 40 q10/3 − . . . .

If we let

P (X) :=
1 +

√
−2X −X2

1−
√
−2X −X2

,

then Theorems 11.2 and 11.3 imply that

Ψ(z) =
∞∏

n=1

P (qn)(
n
3 )a(n2/3)(11.23)

is a modular function on Γ0(6).
Here we work out an expression for Ψ(z). We use the Hauptmodul for Γ∗0(6), the extension

of Γ0(6) by all Atkin-Lehner involutions, which is

j∗6(z) =

(
η(z)η(2z)

η(3z)η(6z)

)4

+ 4 + 34

(
η(3z)η(6z)

η(z)η(2z)

)4

= q−1 + 79 q + 352 q2 + 1431 q3 + . . . .

Let α1 and α2 be the Heegner points

α1 :=
−2 +

√
−2

6
and α2 :=

2 +
√
−2

6
.

We have j∗6(α1) = j∗6(α2) = −10. Hence j∗6(z) + 10 is a rational function on X0(6) whose
divisor consists of the 4 cusps with multiplicity −1 and the points α1, α2 with multiplicity
2. The unique normalized cusp form of weight 4 for Γ∗0(6) is

δ(z) := η(z)2η(2z)2η(3z)2η(6z)2 = q − 2 q2 − 3 q3 + 4 q4 + 6 q5 + 6 q6 − 16 q7 − 8 q8 + . . . .

Using these functions, we find that

φ(z) := Ψ(z) · (j∗6(z) + 10)δ(z)
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is a holomorphic modular form of weight 4 for Γ0(6) with divisor 4(α1). Using the classical
Eisenstein series, it turns out that

450φ(z) = (3360− 1920
√
−2)δ(z) + (1− 7

√
−2)E4(z) + (4− 28

√
−2)E4(2z)

+ (89 + 7
√
−2)E4(3z) + (356 + 28

√
−2)E4(6z).

Putting this all together, (11.23) becomes

∞∏
n=1

(
1 +

√
−2qn − q2n

1−
√
−2qn − q2n

)(n
3 )a(n2/3)

=
φ(z)

(j∗6(z) + 10)δ(z)

= 1− 8
√
−2q − (64− 24

√
−2)q2 + (384 + 168

√
−2)q3 + (64− 1768

√
−2)q4 + · · · .

12. Derivatives and values of modular L-functions

Harmonic Maass forms are very useful for investigating the central values and derivatives
of weight 2 modular L-functions. Recent works by the author, Bruinier, and Yang involve
the interplay between generalized Borcherds products, harmonic Maass forms, and earlier
celebrated theorems of Gross and Zagier, Kohnen and Zagier, and Waldspurger.

To explain these results, we first recall some standard definitions. Let

f(z) =
∞∑

n=1

a(n)qn ∈ Snew
2k (M)

be a newform of even integral weight 2k on Γ0(M). For Re(s) � 0, let

(12.1) L(f, s) =
∞∑

n=1

a(n)

ns

be its L-function. Let D denote the fundamental discriminant of a quadratic field, and let
χD =

(
D
•

)
denote the Kronecker character for the field Q(

√
D). The D-quadratic twist of

f(z), denoted fD(z), is given by

fD(z) =
∞∑

n=1

χD(n)a(n)qn,

and for Re(s) � 0 its L-function is given by

L(f, χD, s) =
∞∑

n=1

χD(n)a(n)

ns
.

These L-functions have analytic continuations to C and satisfy well known functional
equations. If we define Λ(f, s) by

Λ(f, s) := (2π)−sΓ(s)M s/2L(f, s),

then there is an ε ∈ {±1} for which

Λ(f, s) = ε · Λ(f, 2k − s).
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Furthermore, if D is a fundamental discriminant which is coprime to M , then

Λ(fD, s) = ε · χD(−M)Λ(fD, 2k − s).

Remark. The number ε above is referred to as the sign of the functional equation of L(f, s).
If f(z) ∈ Snew

2k (M) is a newform, then

ε = (−1)kλM ,

where λM is the eigenvalue of f(z) under the Fricke involution W (M). In other words, we
have

(f |2k W (M)) (z) = λMf(z).

The values L(f, χD, k) are the central critical values of the L-functions L(f, χD, s).

Our motivating problem is to describe the behavior of the values L(f, χD, k), as D varies.
Notice that if χD(−M)ε = −1, then L(f, χD, k) = 0. Therefore at least half of these
L(f, χD, k) are trivially zero. As we shall see, the “nontrivial zeros” are much more myste-
rious.

Much of the interest in central critical values of modular L-functions follows from their
connection to the Birch and Swinnerton-Dyer. Here we briefly recall important facts and
results.

Suppose that E/Q is an elliptic curve of conductor N(E) (see [225] for background on
elliptic curves), and let, for Re(s) � 0,

(12.2) L(E, s) =
∞∑

n=1

aE(n)

ns

be its Hasse-Weil L-function. In particular, if p - N(E) is prime, then we have

NE(p) = p+ 1− aE(p),

where NE(p) denotes the number of points on the reduction of E modulo p.
By the work of Breuil, Conrad, Diamond, Taylor, and Wiles [52, 96, 230, 242], we have

the following deep result which confirmed the Shimura-Taniyama Conjecture.

Theorem 12.1. If E/Q is an elliptic curve of conductor N(E), then there is a newform
fE(z) ∈ Snew

2 (N(E)) for which

L(E, s) = L(fE, s).

For elliptic curves E/Q, Theorem 12.1 implies that L(E, s) has an analytic continuation
to C, and so the analytic behavior of L(E, s) at s = 1 is well defined. The Birch and
Swinnerton-Dyer Conjecture (see Appendix C of [225]) gives arithmetic significance to this
behavior.

Conjecture. If E/Q is an elliptic curve, and if rk(E) is the Mordell-Weil rank of E over
Q, then

ords=1(L(E, s)) = rk(E).
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Remark. This is the “weak” form of the Birch and Swinnerton-Dyer Conjecture. The strong
conjecture gives an arithmetic formula for

lim
s→1

(
(s− 1)−rk(E) · L(E, s)

)
in terms of arithmetic invariants associated to E.

Although this conjecture remains open, we have the following strong result which follows
from the work of Kolyvagin, Gross, and Zagier [134, 164]16.

Theorem 12.2. If E/Q is an elliptic curve for which ords=1(L(E, s)) ∈ {0, 1}, then

ords=1(L(E, s)) = rk(E).

Now we consider quadratic twists of elliptic curves and modular forms. Let E/Q be an
elliptic curve given by the Weierstrass equation

(12.3) E : y2 = x3 + ax2 + bx+ c,

where a, b and c are integers. If D is a square-free integer, then let E(D) denote the
D−quadratic twist of E given by

(12.4) E(D) : y2 = x3 + aDx2 + bD2x+ cD3.

The curves E and E(D) are isomorphic over Q(
√
D).

Suppose that E/Q is an elliptic curve, and that

fE(z) =
∞∑

n=1

aE(n)qn ∈ Snew
2 (N(E))

is the weight two newform associated to E by Theorem 12.1. Similarly, if D is a fundamental
discriminant, then let

fE(D)(z) =
∞∑

n=1

aE(D)(n)qn

be the newform associated to E(D). If p - DN(E) is prime, then it is simple to check that

aE(D)(p) =

(
D

p

)
aE(p).

Consequently, the newform fE(D)(z) is the unique newform whose Hecke eigenvalues, for
primes p - DN(E), equal those of the quadratic twist fE by χD.

In view of the Birch and Swinnerton-Dyer Conjecture, and Theorem 12.2, we are compelled
to study central values and derivatives of weight 2 modular L-functions. In this direction we
have the celebrated works of Kohnen, Zagier and Waldspurger, and also the work of Gross
and Zagier [134].

It turns out that the Fourier coefficients of half-integral weight cusp forms often interpolate
the “square-roots” of the central critical values of the L-functions of the quadratic twists of
even weight newforms.

16Coates and Wiles [94] earlier proved that L(E, 1) 6= 0 =⇒ rk(E) = 0 for elliptic curves E/Q with
complex multiplication.
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Here we make this precise. First suppose that N is odd and square-free, and suppose
further that

(12.5) g(z) =
∞∑

n=1

b(n)qn ∈ Snew
k+ 1

2
(4N)

is a Kohnen newform17. There is a unique newform, say f(z) ∈ Snew
2k (N), associated to g(z)

under Shimura’s correspondence. The coefficients of g(z) determine the central critical values
of many of the quadratic twists L(f, χD, s). Let ν(N) denote the number of distinct prime
divisors of N , and let 〈f, f〉 (resp. 〈g, g〉) denote the Petersson inner product on S2k(N)
(resp. Sk+ 1

2
(4N)). Generalizing a result in [163], Kohnen proved the following important

theorem in [162].

Theorem 12.3. Assume the notation in the preceding discussion. If ` | N is prime, then
let λ` ∈ {±1} be the eigenvalue of the Atkin-Lehner involution

(f |2k W (Q`)) (z) = λ`f(z).

If (−1)kD > 0 and D has the property that
(

D
`

)
= λ` for each prime ` | N , then

L(f, χD, k) =
〈f, f〉 · πk

2ν(N)(k − 1)!|D|k− 1
2 〈g, g〉

· |b(|D|)|2.

For all other fundamental discriminants D with (−1)kD > 0 we have b(|D|) = 0.

Example. If f(z) = ∆(z) ∈ S12, then it turns out that the associated Kohnen newform in
Snew

13/2(4) is

g(z) =
∞∑

n=1

b(n)qn =
E4(4z) ·D(Θ0(z))

2
− D(E4(4z)) ·Θ0(z)

16

= q − 56q4 + 120q5 − . . . .

Again, here D denotes the differential operator D := q d
dq

. For positive fundamental discrim-

inants D, we then have that

L(∆, χD, 6) =
〈∆,∆〉 · π6

120D
11
2 〈g, g〉

· b(D)2.

Waldspurger proved a similar theorem which holds in greater generality. For every funda-
mental discriminant D, define D0 by

(12.6) D0 :=

{
|D| if D is odd,

|D|/4 if D is even.

The following is a convenient reformulation of Waldspurger’s theorem [238].

17These are the half-integral weight cuspidal Hecke eigenforms in Kohnen’s paper [162].
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Theorem 12.4. If f(z) =
∑∞

n=1 a(n)qn ∈ Snew
2k (M) is an even weight newform and δ ∈ {±1}

is the sign of the functional equation of L(f, s), then there is a positive integer N with
M | N , a Dirichlet character χ modulo 4N , a nonzero complex number Ωf , and a nonzero
half-integral weight Hecke eigenform

gf (z) =
∞∑

n=1

bf (n)qn ∈ Sk+ 1
2
(4N,χ)

with the property that there are arithmetic progressions of fundamental discriminants D
coprime to 4N for which δD > 0 and

L(f, χD, k) = εD ·
bf (D0)

2

D
k− 1

2
0

· Ωf ,

where εD is algebraic. For all other D with δD > 0, we have bf (D0) = 0. Moreover, the
coefficients a(n), bf (n) and the values of χ are in OK, the ring of integers of some fixed
number field K.

12.1. Extension of the Kohnen-Waldspurger Theorem. The author and Bruinier [77]
have generalized this theorem of Waldspurger and Kohnen to prove that the Fourier coeffi-
cients of weight 1/2 harmonic Maass forms encode the vanishing and nonvanishing of both
the central values and derivatives of quadratic twists of weight 2 modular L-functions.

Here we describe a special case of the main result of [77].

Theorem 12.5. Suppose that

G(z) =
∞∑

n=1

BG(n)qn ∈ S2(p)

is a weight 2 newform with prime level p. In addition, suppose that the sign of the functional
equation of L(G, s) is ε(G) = −1. Then there is a weight 1/2 harmonic Maass form f(z) on
Γ0(4p), say

f(z) =
∑

n�−∞

c+g (n)qn +
∑
n<0

c−g (n)Γ(1/2; 4π|n|y)qn,

which satisfies the following:

(1) If ∆ < 0 is a fundamental discriminant for which
(

∆
p

)
= 1, then

L(G,χ∆, 1) = αG ·
√
|∆| · c−g (∆)2,

where αG is an explicit non-zero constant.

(2) If ∆ > 0 is a fundamental discriminant for which
(

∆
p

)
= 1, then L′(G,χ∆, 1) = 0 if

and only if c+g (∆) is algebraic.

Remark. Theorem 12.5 is a special case of the general result which holds for all levels, and
any arbitrary sign. Notice that the result concerns all weight 2 newforms, not just those
which correspond to modular elliptic curves.
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Remark. The Maass form f(z) in Theorem 12.5 is unique up to the addition of a weight
1/2 weakly holomorphic modular form with coefficients in FG, the number field obtained by
adjoining the coefficients of G(z) to Q. In view of this ambiguity, it would be very interesting
to pin down a choice of f(z) which in turn gives a precise formula relating L′(G,χ∆, 1) to
c+g (∆) in Theorem 12.5 (2).

Theorem 12.5 is obtained by combining the Gross-Zagier formula with Borcherds prod-
ucts arising from harmonic Maass forms and general transcendence theorems for canonical
differentials of the third kind on modular curves. Here we give a brief sketch of the proof of
this theorem.

Sketch of the proof of Theorem 12.5. By Kohnen’s theory, there is a half-integral weight
newform

(12.7) g(z) =
∞∑

n=1

bg(n)qn ∈ S+
3
2

(4p),

unique up to a multiplicative constant, which lifts to G under the Shimura correspondence.
We can (and do) choose g so that its coefficients are in FG, the totally real number field
obtained by adjoining the Fourier coefficients of G to Q. We prove that there is a weight
1/2 harmonic Maass form on Γ0(4p) in the plus space, say

(12.8) fg(z) =
∑

n�−∞

c+g (n)qn +
∑
n<0

c−g (n)Γ(1/2, 4π|n|y)qn,

whose principal part Pfg has coefficients in FG, which also enjoys the property that ξ 1
2
(fg) =

‖g‖−2g, where ‖g‖ denotes the usual Petersson norm.
By Lemma 4.4, if n > 0, then

(12.9) bg(n) = −4
√
πn‖g‖2 · c−g (−n).

Theorem 12.5 (1) now follows from Theorem 12.3.
The proof of Theorem 12.5 (2) is more difficult, and it involves a detailed study of Heeg-

ner divisors. We establish that the algebraicity of the coefficients c+g (∆) is dictated by the
vanishing of certain twisted Heegner divisors in the Jacobian of X0(p), which when com-
bined with the work of Gross and Zagier [134] and Scholl and Waldschmidt, then implies
Theorem 12.5 (2).

To make this precise, let d < 0 and ∆ > 0 be fundamental discriminants which are both
squares modulo p. Let Qd,p be the set of discriminant d = b2− 4ac integral binary quadratic
forms aX2 + bXY + cY 2 with the property that p | a. For these pairs of discriminants, we
define the twisted Heegner divisor H∆(d) by

(12.10) H∆(d) :=
∑

Q∈Q∆d,p/Γ0(p)

χ∆(Q) · τQ
wQ

,

where χ∆ denotes the generalized genus character corresponding to the decomposition ∆ · d
as in [133], τQ is the unique root of Q(x, 1) in H as before, and wQ denotes the order of the
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stabilizer of Q in Γ0(p). Then H∆(d) is a divisor on X0(p) defined over Q(
√

∆). We use
these twisted Heegner divisors to define the degree 0 divisor

(12.11) y∆(d) := H∆(d)− deg(H∆(d)) · ∞.

Finally, we associate a divisor to fg by letting

(12.12) y∆(fg) :=
∑
n<0

c+g (n)y∆(n) ∈ Div0(X0(p))⊗ FG.

Let J be the Jacobian of X0(p), and let J(F ) denote the points of J over a number
field F . The Hecke algebra acts on J(F )⊗C, which by the Mordell-Weil Theorem is a finite

dimensional vector space. We show that the point corresponding to y∆(fg) in J(Q(
√

∆))⊗C
is in its G-isotypical component. Moreover, we show that the following are equivalent:

(i) The Heegner divisor y∆(fg) vanishes in J(Q(
√

∆))⊗ C.
(ii) The coefficient c+g (∆) is algebraic.
(iii) The coefficient c+g (∆) is contained in FG.

To obtain these results, we explicitly construct modular functions with prescribed Heegner
divisors using results related to Theorems 11.2 and 11.3. By work of Scholl and Waldschmidt,
the vanishing of the points corresponding to these divisors is equivalent to the algebraicity of
the Fourier expansions of these modular functions. Using the Hecke algebra and the explicit
formulas provided by the generalized Borcherds product, we then find that this algebraicity
is dictated by single coefficients of the form c+g (∆).

We then obtain the following generalization of the well known Gross-Kohnen-Zagier the-
orem [133]. Namely, we show that∑

n>0

yG
∆(−n)qn = g(τ)⊗ y∆(fg) ∈ S+

3
2

(4p)⊗ J(Q(
√

∆)),

where yG
∆(−n) denotes the projection of y∆(−n) onto its G-isotypical component. This

result, when combined with the Gross-Zagier theorem [134], gives the conclusion that the

Heegner divisor y∆(fg) vanishes in J(Q(
√

∆)) ⊗ C if and only if L′(G,χ∆, 1) = 0, thereby
proving Theorem 12.5 (2).

�

12.2. Recent work of Bruinier and Yang. Building on the results of the last subsection,
it is natural to seek exact formulas for derivatives of L-functions using techniques arising
from the theory of harmonic Maass forms. Theorem 12.5 makes the connection between
derivatives and coefficients of harmonic Maass forms, but it does not give exact formulas.
This problem remains open. Nevertheless, the question of fundamental interest really should
be: Can one directly obtain exact arithmetic formulas (perhaps in terms of heights) for
certain derivatives of L-functions?

To this end, Bruinier and Yang [82] have recently proven some striking theorems about
Faltings heights of CM cycles and derivatives of L-functions. In some important cases they
are able to explicitly evaluate derivatives of certain Rankin-type L-functions in terms of
Faltings heights. Their work depends critically on Borcherds lifts and the theory of harmonic
Maass forms.
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It is impossible to survey their work in any detail here. Instead, we give the flavor of
their exciting program. Loosely speaking, they use the principal parts of suitable harmonic
Maass forms f to construct Heegner divisors on certain Shimura varieties. This depends
on earlier work of Kudla, recent work on Greens functions, and Borcherds lifts. For the
cusp forms ξ(f), they investigate a certain “Rankin-type” L-function, and they conjecture
an exact formula relating its derivative at s = 0 to the Faltings height pairing of a Heegner
divisor with a CM cycle. The conjectured formula is of the form

〈Ẑ(f),Z(U)〉Fal = κ · L′(ξ(f), U, 0),(12.13)

where κ is explicit.
They have obtained several deep results in the direction of this conjecture. Here we

highlight one implication of their work in the classical setting of the original formula of
Gross and Zagier. Suppose that G is a normalized newform of weight 2 for Γ0(N) whose
Hecke L-function L(G, s) satisfies an odd functional equation. Then there is a weight 3/2
cusp form g, which corresponds to G under the Shimura correspondence, and it turns out
that the “Rankin-type” L-function is proportional to L(G, s+1). Their conjecture therefore
then implies a Faltings height pairing formula for L′(G, 1).

As in the work of the author and Bruinier [77] (see Theorem 2.2), there is a weight 1/2
harmonic Maass form f with vanishing constant term such that ξ(f) = ‖g‖−2g, with the
additional property that the coefficients of its principal part are in the number field generated
by the eigenvalues of G. In this case the Heegner divisor Z(f) defines an explicit point in
the Jacobian of X0(N), which lies in the G isotypical component (see the sketch of the proof
of Theorem 12.5). In this setting, they prove the following comprehensive theorem.

Theorem 12.6 (Bruinier and Yang [82]). Assuming the notation and hypotheses above, we
have that the Neron-Tate height of Z(f) is given by

〈Z(f), Z(f)〉NT =
2
√
N

π‖g‖2
L′
(
G, 1).

This beautiful theorem directly gives an arithmetic formula for the central derivative of
weight 2 modular L-functions with odd sign. It is natural to ask how Theorem 12.6 relates
to the classical Gross-Zagier formula. The short answer is that it implies it.

To see this, suppose that E is an elliptic curve over Q. Assume that its L-function L(E, s)
has an odd functional equation so that the central critical value L(E, 1) vanishes. Let N =
N(E) be the conductor of E, and let X0(N) be the moduli space of cyclic isogenies of degree
N of generalized elliptic curves. Let K be an imaginary quadratic field such that N is the
norm of an integral ideal of K, and write D for the discriminant of K. We may consider the
divisor Z(D) on X0(N) given by elliptic curves with complex multiplication by the maximal
order of K. By the theory of complex multiplication, this divisor is defined over K, and its
degree h is given by the class number of K. Hence the divisor y(D) = trK/Q(Z(D)−h · (∞))
has degree zero and is defined over Q. By the modularity of elliptic curves, we obtain a
rational point yE(D) on E using a modular parametrization X0(N) → E. Arguing a little
further (so as to produce L(E, χD, 1)), one can show that Theorem 12.6 then implies the
Gross-Zagier theorem as stated below.
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Theorem 12.7 (Gross-Zagier [134]). Assume the notation and hypotheses above. Then the
canonical height of yE(D), denoted 〈yE(D), yE(D)〉NT , satisfies

〈yE(D), yE(D)〉NT = C
√
|D|L′(E, 1)L(E, χD, 1).

Here C is an explicit non-zero constant which is independent of K, and χD is the Kronecker
character for K/Q.

To place Theorem 12.6 in proper context, we stress that the work of Gross and Zagier
has inspired an enormous body of further research on height pairings of algebraic cycles
on Shimura varieties. For instance, Zhang considered heights of Heegner type cycles on
Kuga-Sato fiber varieties over modular curves in [248], and the heights of Heegner points
on compact Shimura curves over totally real fields in [249]. Gross and Keating discovered a
connection between arithmetic intersection numbers of Hecke correspondences on the product
of two copies of the modular curve X(1) over Z and the coefficients of the derivative of the
Siegel-Eisenstein series of genus three and weight two [132]. This has inspired the extensive
program of Kudla, Rapoport and Yang which relates Arakelov intersection numbers on
Shimura varieties of orthogonal type to derivatives of Siegel-Eisenstein series and modular
L-functions (for example, see [166], [167], [168]).

In all of these works, the connection between a height pairing and the derivative of an
automorphic L-function arises in an indirect way. The idea has been to identify the local
height pairings in the Fourier coefficients of a suitable integral kernel function (often given
by an Eisenstein series), which takes an automorphic form φ to the special value of the
derivative of an L-function associated to φ.

This recent work of Bruinier and Yang gives a new approach for obtaining identities
between certain height pairings on Shimura varieties of orthogonal type and derivatives of
automorphic L-functions. As described above, it is based on the Borcherds lift [50] and its
generalization in [71, 73, 77]. Their approach directly gives formulas for the Faltings height
pairing of arithmetic Heegner divisors and CM cycles.

13. Ramanujan’s last letter revisited

Ramanujan’s last letter to Hardy was about his discovery of the mock theta functions.
In this letter he introduces his vague notion, and he considers the radial limits of some of
his so-called mock theta functions. Here we begin by recalling Theorem 2.5 on the radial
limits which relate the rank and crank generating functions to the unimodal rank generating
function U(w; q).

Theorem. Let 1 ≤ a < b and 1 ≤ h < k be integers with gcd(a, b) = gcd(h, k) = 1 and b | k.
If h′ is an integer satisfying hh′ ≡ −1 (mod k), then, as q approaches ζh

k radially within the
unit disk, we have that

lim
q→ζh

k

(
R (ζa

b ; q)− ζ−a2h′k
b2 C (ζa

b ; q)
)

= −(1− ζa
b )(1− ζ−a

b ) · U(ζa
b ; ζh

k ).

Sketch of the Proof of Theorem 2.5. The proof requires the theory of modular units and
mock modular forms. In particular, we employ the modular properties of Dedekind’s η-

function and certain Klein forms t(r,s)(z) = t
(N)
(r,s)(z) [165]. We also require the function
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µ(u, v; z) defined by Zwegers in his thesis (see Section 3). The µ-function satisfies the fol-
lowing beautiful bilateral series identity due to Choi [91] Let q = e2πiz, where z ∈ H. For
suitable complex numbers α = e2πiu and β = e2πiv, we have

∞∑
n=0

(αβ)nqn2

(αq; q)n(βq; q)n

+
∞∑

n=1

qn(α−1; q)n(β−1; q)n

= iq
1
8 (1− α)(βα−1)

1
2

(
qα−1; q

)
∞

(
β−1; q

)
∞ µ(u, v; z).

Remark. Choi’s identity can also be obtained from Entry 3.4.7 of Ramanujan’s “Lost Note-
book” (see p.67 of [24]).

To make use of this identity, we study the function A(u, v; z) := ϑ(v; z)µ(u, v; z) which
was previously studied by Zwegers [254] and Folsom and Bringmann [55]. We employ the

“completed” function Â(u, v; z), defined by Zwegers as

Â(u, v; z) := A(u, v; z) +
i

2
ϑ(v; z)R(u− v; z),(13.1)

where
R(v; z)

:=
∑
n∈Z

{
sgn

(
n+

1

2

)
− E

((
n+

1

2
+

Im(v)

Im(z)

)√
2 · Im(z)

)}
(−1)nq−

1
2(n+ 1

2)
2

e−2πiv(n+ 1
2),

and for w ∈ C we have

E(w) := 2

∫ w

0

e−πu2

du.

Using the transformation properties of the functions µ and ϑ, we have, for integers m,n, r, s
and γ = ( a b

c d ) ∈ SL2(Z), that

Â (u+mz + n, v + rz + s; z) = (−1)m+ne2πiu(m−r)e−2πivmq
m2

2
−mrÂ(u, v; z),(13.2)

Â

(
u

cz + d
,

v

cz + d
; γz

)
= (cz + d)eπic

(−u2+2uv)
(cz+d) Â(u, v; z).(13.3)

The proof makes use of the modular transformation properties described above. We con-
sider Choi’s identity with α = ζ−a

b and β = ζa
b , (hence u = −a

b
, v = a

b
), and q replaced by

e
2πi
k

(h+iz), and we define

(13.4) m(a, b;u) := ie
πiu
4 (1− ζ−a

b )ζa
b (ζa

b e
2πiu; e2πiu)∞(ζ−a

b ; e2πiu)∞.

To prove Theorem 2.5, noting that the function U(ζa
b ; ζh

k ) is a finite convergent sum when
b|k, it suffices to prove that upon appropriate specialization of variables, the “mixed mock”
modular form m · µ is asymptotic to a suitable multiple of the modular crank generating
function C.

To be precise, let b|k, gcd(a, b) = 1, gcd(h, k) = 1, where a, b, h, k are positive integers. As
z → 0+, we must prove that

(13.5) m

(
a, b;

1

k
(h+ iz)

)
µ

(
−a
b
,
a

b
;
1

k
(h+ iz)

)
∼ ζ−a2h′k

b2 C

(
ζa
b ;

1

k
(h+ iz)

)
.
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Above and in what follows, we let z ∈ R+, and let z → 0+. This corresponds to the radial
limit q = e

2πi
k

(h+iz) → ζh
k from within the unit disk.

The claim (13.5) is obtained by comparing separate asymptotic results for the crank func-
tion and the mixed mock modular form. To describe this, we let

(13.6) q := e
2πi
k

(h+iz), q1 := e
2πi
k (h′+ i

z ).

For the mixed mock modular m ·µ, we obtain the following asymptotics. Let b|k, gcd(a, b) =
1, gcd(h, k) = 1, where a, b, h, k are positive integers, and let b′ and h′ be positive integers
such that bb′ = k and hh′ ≡ −1 (mod k). For z ∈ R+, as z → 0+, we established in Theorem
3.2 of [118] that there is an α > 0 for which

m

(
a, b;

1

k
(h+ iz)

)
µ

(
−a
b
,
a

b
;
1

k
(h+ iz)

)
=

(
i

z

) 1
2

(ψ(γ))−1q
1
24 q

− 1
24

1 (−1)ab′ζah′−a
2b ζ−3a2kh′

2b2
ζa
b − 1

1− ζah′
b

(1 +O(qα
1 )).

Here, γ = γ(h, k) ∈ SL2(Z), and ψ(γ) is a 24th root of unity, both of which are defined in
[118].

Under the same hypotheses, we show in Proposition 3.3 of [118] that the modularity of
Dedekind’s eta-function and the Klein forms implies, for the crank function, that

C

(
ζa
b ;

1

k
(h+ iz)

)
=

(
i

z

) 1
2

(ψ(γ))−1q
1
24 q

− 1
24

1 (−1)ab′ζah′−a
2b ζ−a2kh′

2b2
ζa
b − 1

1− ζah′
b

(1 +O(qβ
1 )),

(13.7)

for some β > 0. Combining these asymptotics gives (13.5), which then gives Theorem 2.5.
�

It is important to explain the automorphic reasons which underlie the asymptotic rela-
tionship of Theorem 2.5. The rank generating function R(w; q) and the crank generating
function C(w; q) are Jacobi forms with the same weight and multiplier. This coincidence
explains why their radial asymptotics are closely related. However, they are not of the same
index, and this difference accounts for the (−1)k in Theorem 1.2, and the ζ−a2h′k

b2 in Theorem
2.5. Of course, these facts alone do not directly lead to Theorem 2.5. To make this step
requires a special case of Choi’s identity, namely,∑

n∈Z

qn2

(wq)n(w−1q)n

= R(w; q) + (1− w)(1− w−1)
∞∑

n=0

qn+1(wq)n(w−1q)n.

It turns out that this series is related to a mixed-mock Jacobi form which has asymptotics
resembling that of crank generating function. Although such coincidences are mysterious, it
is not uncommon that such a bilateral series possesses better modular properties than either
half of the series (See [127] for more dealing with bilateral series and mock theta functions).

Now we conclude this section with a discussion of Ramanujan’s vague definition of a
mock theta function. Theorem 2.5 shows that holomorphic parts of certain harmonic Maass
forms can almost have the property that their exponential singularities can be cut out by a
single weakly holomorphic modular form. The obstruction simply boils down to the need to
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multiply the weakly holomorphic modular form by various roots of unity. Nevertheless, the
question of whether Ramanujan’s examples satisfy his own definition of a mock theta function
remainded open despite the important work of Zwegers in 2002. The story is underscored
by the recent comment by Berndt [43] that

“it has not been proved that any of Ramanujan’s mock theta functions are really mock theta
functions according to his definition.”

Griffin, Rolen, and the author [131] have recently filled in this gap by proving Theorem 1.3.

Theorem. Suppose that M(z) is one of Ramanujan’s mock theta functions, and let γ and δ
be integers for which qγM(δz) is the holomorphic part of a weight 1/2 harmonic weak Maass
form. Then there does not exist a weakly holomorphic modular form g(z) of any weight
k ∈ 1

2
Z on any congruence subgroup Γ1(N

′) such that for every root of unity ζ we have

lim
q→ζ

(qγM(δz)− g(z)) = O(1).

Sketch of the proof of Theorem 1.3. We begin by considering the following question whose
solution would have been clear to him: If f(z) is a weight k1 weakly holomorphic modular
form which has some exponential singularities at cusps, then can there be another weakly
holomorphic modular form of different weight k2, say g(z), that exactly cuts out its singulari-
ties at roots of unity? The answer is no. If such a g(z) existed, then both f(z) and g(z) must
have the same principal parts at all cusps, and at least one of these must be nonconstant.
Without loss of generality, suppose that the principal part at the cusp infnity is nonconstant,
and then consider the function h(z) := f(z)− g(z). By hypothesis, h(z) has bounded radial
limits as z approaches every root of unity. Now, since f(z) and g(z) are modular on some
common subgroup Γ1(N

′), then if we take ( a b
c d ) ∈ Γ1(N

′) with cd 6= 0, then we have

(13.8) h
(

az+b
cz+d

)
= f

(
az+b
cz+d

)
− g

(
az+b
cz+d

)
= (cz + d)k1f(z)− (cz + d)k2g(z).

Letting z → i∞, we find that f(z) and g(z) cannot cut out the same exponential singularities
at roots of unity because of the difference between the weights.

We have the following fact.

Fact 13.1. Suppose that M(z) is one of Ramanujan’s alleged examples of a mock theta
function. Thanks to Zwegers, there are integers γ and δ for which qγM(δz) =: f+(z) is the
holomorphic part of a weight 1/2 harmonic weak Maass form f(z) on a congruence subgroup
Γ1(N). Moreover, the nonholomorphic part of this form is the period integral of a weight
3/2 unary theta function. In particular, there are finitely many positive integers δ1, . . . , δs
for which c−f (n) = 0 unless n = −δim2 for some 1 ≤ i ≤ s and some integer m.

Using the work of Bruinier and Funke on the extended Petersson inner product (see
Lemma 4.6), combined with the theory of Maass-Poincaré series (see Section 5.3), we have
the following fact.

Fact 13.2. Suppose that f(z) is a weight 1/2 harmonic weak Maass form with a nonconstant
principal part at some cusp. Let fP (z) be the weight 1/2 harmonic weak Maass form that is
a linear combination of Maass-Poincaré series which matches, up to constants, the principal
parts of f(z) at all cusps. Then f(z) − fP (z) is a weight 1/2 holomorphic modular form,
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which, by the Serre-Stark Basis Theorem (for example, see [191]), implies that f(z)− fP (z)
is a linear combination of weight 1/2 unary theta functions. Therefore, the subexponential
growth of the I-Bessel function, combined with the periodicity of the Kloosterman sums in
n, when m and c are fixed, then implies that a positive proportion of the coefficients of
the holomorphic part of f+(z) are nonzero. Indeed, this gives arithmetic progressions of
coefficients with smooth asymptotic subexponential growth.

Remark. Care must be taken when working with weight 1/2 Maass-Poincaré series. These
series are not obviously well defined due to potential problems related to convergence. Results
of Goldfeld and Sarnak in [123] and the spectral theory of automorphic forms apply in these
cases.

Suppose thatM(z) is one of Ramanujan’s alleged examples of a mock theta function. Then
there are integers γ and δ for which qγM(δz) =: f+(z) is the holomorphic part of the weight
1/2 harmonic weak Maass form. Now suppose that g(z) is a weakly holomorphic modular
form of some weight k which cuts out the exponential singularities of f(z). Following the
proof of Theorem 6.5, we can use Fact 13.1, Fact 13.2, and the theory of quadratic (and

trivial) twists to obtain a weight 1/2 weakly holomorphic modular form f̂(z). By Fact 13.2,

this can be done so that f̂(z) is nontrivial and has nonconstant principal parts at some cusp.
Applying the same procedure to g(z) gives a weakly holomorphic modular form ĝ(z). We

then have that f̂(z) and ĝ(z) cut out exactly the same exponential singularities at all roots
of unity. By the discussion related to (13.8), it then follows that k = 1/2. Therefore, if
there is such a g(z), then f(z)− g(z) is a weight 1/2 harmonic weak Maass form which has
a nonvanishing nonholomorphic part, which also has the property that f+(z)− g(z) has no
exponential singularities at any roots of unity, and hence has constant principal parts at all
cusps. However, this contradicts Lemma 4.6. �

14. Quantum modular forms

Here we sketch the proof of Theorem 2.11 which uses the theory of mock theta functions
as a method for producing quantum modular forms. This theorem concerns two families of
specializations of the Rogers-Fine basic hypergeometric function

F (α, β, t; q) :=
∞∑

n=0

(αq; q)nt
n

(βq; q)n

.

Here we consider the q-series

G(a, b; z) :=
q

a2

b2

1− q
a
b

· F
(
−q

a
b
−1, q

a
b ,−q

a
b ; q
)
,

H(a, b; z) := q
1
8 · F

(
ζ−a
b q−1, ζ−a

b , ζ−a
b q; q2

)
.

We have the following false theta function identities, the second of which follows from equa-
tion (1) of [213], and the first of which is in [31].

G(a, b; z) = q
a2

b2

∞∑
n=0

(−q a
b ; q)n

(q
a
b ; q)n+1

· (−1)nqn a
b =

∞∑
n=0

(−1)nq(n+a
b )

2

,



HARMONIC MAASS FORMS, MOCK MODULAR FORMS AND QUANTUM MODULAR FORMS 103

H(a, b; z) = q
1
8

∞∑
n=0

(ζ−a
b q; q2)n

(ζ−a
b q2; q2)n

· (ζ−a
b q)n =

∞∑
n=0

ζ−an
b q

1
2(n+ 1

2)
2

.

For these series we recall Theorem 2.11.

Theorem. Let 0 < a < b be coprime integers, with b even, and let

Qa,b :=

{
h

k
∈ Q : gcd(h, k) = 1, h > 0, b | 2h, b - h, k ≡ a (mod b), k ≥ a

}
.

The following are true:
(1) The functions G(a, b; z) and H(a, b; z) converge for z ∈ H+ ∪H−.

(2) For x ∈ Qa,b ∪H+, we have that

G(a, b;−x) +
e−

πia
b

√
2ix

·H
(
a, b;

1

2x

)
= −

∫ i∞

0

(−iu)− 3
2T
(
a, b;− 1

u

)
du√

−i(u+ x)
,

where T (a, b; z) is a weight 3/2 modular form defined by

T (a, b; z) := i
∞∑

n=−∞

(
n+

1

4

)
cosh

(
2πi

(
n+

1

4

)(
2a

b
− 1

))
q(n+ 1

4)
2

.

That is, G(a, b;x) and H(a, b;x) are weight 1/2 quantum modular forms on Qa,b ∪H+.

(3) Let Br(n) be the rth Bernoulli polynomial. For h
k
∈ Qa,b, as t→ 0+, we have

G

(
a, b;

−h
k

+
it

2π

)
∼

∞∑
r=0

L(−2r, cG) · (−t)r

r! · b2r
,

H

(
a, b;

k

2h
+

it

2π

)
∼

∞∑
r=0

L(−2r, cH) · (−t)r

r! · 8r
,

where

L(−r, cG) = −(2kb2)r

r + 1

2kb2∑
n=1

cG(n)Br+1

( n

2kb2

)
,

L(−r, cH) = −(16h)r

r + 1

16h∑
n=1

cH(n)Br+1

( n

16h

)
,

cG(n) :=


ζ−hn2

kb2 , if n ≡ a (mod 2b),

−ζ−hn2

kb2 , if n ≡ a+ b (mod 2b),

0, otherwise,

(14.1)

cH(n) :=

{
ζ
−a(n−1

2 )
b ζkn2

16h , if n ≡ 1 (mod 2),

0, otherwise.
(14.2)
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14.1. Sketch of the proof of Theorem 2.11. We begin with a simple lemma which is
Lemma 2.1 of [118].

Lemma 14.1. Let 0 < a < b be coprime integers, where b is even, and let Qa,b be as in
the statement of Theorem 2.11. If x = h

k
∈ Qa,b, then G(a, b;−x) and H

(
a, b; 1

2x

)
converge.

Moreover, they are explicitly given by the finite sums

G

(
a, b;−h

k

)
= ζ−a2h

b2k

m∑
n=0

(−ζ−ah
bk ; ζ−h

k )n(−ζ−ah
bk )n

(ζ−ah
bk ; ζ−h

k )n+1

,

H

(
a, b;

k

2h

)
= ζk

16h

∑̀
n=0

(ζ−a
b ζk

2h; ζ
k
h)n(ζ−a

b ζk
2h)

n

(ζ−a
b ζk

h ; ζk
h)n

,

where the non-negative integers ` and m satisfy b(2`+ 1) = 2h and a+ bm = k, respectively.

To derive quantum modularity, we make use of earlier work of Bringmann, Rhoades, and
the author. We summarize the required results from Theorem 4.3 and Lemma 4.5 of [66] in
the theorem below. These results involve the q-hypergeometric functions18

g(a, b; z) :=
∞∑

n=0

(−q; q)nq
n(n+1)

2(
q

a
b ; q
)

n+1

(
q−

a
b q; q

)
n+1

,

h(a, b; z) :=
∞∑

n=0

(−1)nqn2
(q; q2)n

(ζa
b q

2; q2)n(ζ−a
b q2; q2)n

,

and the important theta function

T (a, b; z) := i
∞∑

n=−∞

(
n+

1

4

)
cosh

(
2πi

(
n+

1

4

)(
2a

b
− 1

))
q(n+ 1

4)
2

.(14.3)

Theorem 14.2 (Theorem 4.3 and Lemma 4.5 of [66]). Let z ∈ H, and suppose that 0 < a < b
are coprime integers. We have that

q
a
b (1−a

b )g(a, b; z) =

√
2i

z

e
πi
8z

4 sin
(
π a

b

)h(a, b; −1

2z

)
+

∫ i∞

0

(−iu)− 3
2T
(
a, b;− 1

u

)
du√

−i(u+ z)
.

Theorem 2.11 (3) relates asymptotic expansions to values of L-functions. To obtain our
result in this direction, we make use of the following proposition of Lawrence and Zagier
[171].

Proposition 14.3 (p. 98 of [171]). Let C : Z → C be a periodic function with mean value 0.
Then the associated L-series L(s, C) =

∑∞
n=1C(n)n−s (Re(s) > 1) extends holomorphically

to all of C and the function
∑∞

n=1C(n)e−n2t (t > 0) has the asymptotic expansion
∞∑

n=1

C(n)e−n2t ∼
∞∑

r=0

L(−2r, C) · (−t)r

r!

18These functions were also studied by Gordon and McIntosh in [127]. In [66] §4.1, the function g(a, b; z)
is shown to be equal to what the authors call H(a, 0, b; z). We do not use this notation to avoid confusion.
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as t→ 0+. The numbers L(−r, C) are given explicitly by

L(−r, C) = − M r

r + 1

M∑
n=1

C(n)Br+1

( n
M

)
(r = 0, 1, . . .)

where Bk(x) denotes the kth Bernoulli polynomial and M is any period of the function C(n).

Sketch of the proof of Theorem 2.11. We first prove (1). Let ρ := q−1, where q = e2πiz and
z ∈ H. We compute

−ρ
a
b
−a2

b2 G(a, b;−z) = −ρ
a
b

∞∑
n=0

(−ρa
b ; ρ)n

(ρ
a
b ; ρ)n+1

(−ρ
a
b )n =

∞∑
n=0

(−q a
b ; q)n

(q
a
b ; q)n+1

qn(1−a
b ) =: G∗(a, b; z),

(14.4)

where we use the fact that

(a; ρ)n = (−a)nq−
n(n−1)

2 (a−1; q)n.(14.5)

Thus from (2.19) and (14.4) we see that the series defining G(a, b; z) is defined for z ∈ H∪H−.
Similarly, using (14.5), it is not difficult to show that

q
1
8H(a, b;−z) = F

(
q−1ζa

b , ζ
a
b , ζ

−a
b ; q2

)
,(14.6)

and hence that H(a, b; z) is defined for z ∈ H∪H−. We justify the convergence of the series
F
(
q−1ζa

b , ζ
a
b , ζ

−a
b ; q2

)
in (14.6) as follows. By considering the Rogers-Fine series F (α, β, t; q)

purely formally, we have the functional equation

F
(
q−1ζa

b , ζ
a
b , ζ

−a
b ; q2

)
= −ζa

b

(
1− ζa

b − q

ζa
b − 1

F
(
q−1ζa

b , ζ
a
b , ζ

−a
b q2; q2

))
.

(See also (2.4) of [114].) Iterating this recurrence relationship, it follows that F (α, β, t; q)
converges for all t 6= q−n, n ∈ N0. (See also [114] page 2.) This proves (1).

We now prove (2). We relate G∗(a, b; z) to the mock modular form g(a, b; z). The identity

(1− t)F (α, β; t) =
∞∑

n=0

(
β
α
; q
)

n

(βq; q)n(tq; q)n

· (−αt)nq
n(n+1)

2(14.7)

(see (12.2) of [114]) with α = −q a
b
−1, β = q

a
b , t = q1−a

b shows that

G∗(a, b; z) = g (a, b; z) .(14.8)

We use (14.7) again with α = q−1ζa
b , β = ζa

b , t = ζ−a
b , and q → q2, and find

h(a, b; z) = (1− ζ−a
b )F

(
q−1ζa

b , ζ
a
b , ζ

−a
b ; q2

)
= (1− ζ−a

b )q
1
8H(a, b;−z),(14.9)

where the last equality in (14.9) follows from (14.6). The proof of part (2) now follows
from part (1), (14.4), (14.6), (14.8), (14.9), and Theorem 14.2. While Theorem 14.2 gives a
transformation law for z ∈ H, we have continuation to x ∈ Qa,b by Lemma 14.1. As argued
in [244] and [83], the integral appearing in (2) of Theorem 2.11 is real analytic.

We now prove part (3). The conclusion of part (3) follows from Proposition 14.3 once the
hypotheses are confirmed for certain L-functions related to G(a, b; z) and H(a, b; z).



106 KEN ONO

To this end, we let cG(n) and cH(n) be as defined in (14.1) and (14.2), respectively. Then
using (2.21) and (2.22), we have

G

(
a, b;

−h
k

+
it

2π

)
=

∞∑
n=0

cG(n)e−n2 t
b2 ,

H

(
a, b;

k

2h
+

it

2π

)
=

∞∑
n=0

cH(n)e−n2 t
8 .

It is clear that cG is 2kb2 periodic, and cH is 16h periodic. The arithmetic functions cG and
cH have mean value zero. Proposition 14.3 gives part (3).

�

15. Research Projects

Here is a list of projects which arise naturally from the material discussed in these notes.

Project 15.1. Theorem 10.7 is an example of a “class polynomial” for a nonholomorphic
modular function obtained from the theory of harmonic Maass forms. Very little is known
about the behavior of p(n) modulo 2 and 3. It would be interesting to study the reductions
modulo p of these polynomials when p - (24n− 1). How are the polynomials distributed (e.g.
factorizations modulo p, individual symmetric functions in the singular moduli)? In a related
direction, one can ask the same questions for the “class polynomials” Hn(γ;x) defined in [80].
Moreover, do any of these families of polynomials satisfy a Gross-Zagier type phenomenon
concerning the prime factorizations of the constant terms?

Project 15.2. Theorem 11.3 gives Generalized Borcherds Products. These are often modular
functions on some congruence subgroup. Prove theorems about the congruence properties of
the coefficients of Ramanujan’s mock theta functions by making use of the these products,
the method of logarithmic differentiation, and the theory of modular forms modulo p and the
Deligne-Serre theory of modular Galois representations.

Project 15.3. Here we only considered the function U(w; q), defined by (2.13), when w = 1.
Theorems 2.8, 2.9 and 2.17 related U(1; q) to Kontsevich’s “strange function”, values of L-
functions, and a certain weight 3/2 quantum modular form. Study this series for other roots
of unity w. Investigate similar questions, and study the arithmetic properties of rank statistic
for unimodal sequences when dissected by arithmetic progressions.

Project 15.4. Section 13 discusses recent work on Ramanujan’s radial limits and his original
vague notion of a mock theta function. In particular, Theorems 1.2 and 2.5 give finite basic
hypergeometric-type formulas for the radial limits of some mock theta functions at roots of
unity which are exponential singularities. Obtain more results along these lines and develop
their connection with L-functions and quantum modular forms.

Project 15.5. In their 1988 Inventiones Mathematicae papers, Andrews, Dyson, and Hick-
erson [26], and Cohen [95] related two basic hypergeometric series to a special Maass cusp
form of Hecke-type (i.e. arising from a Hecke character for a real quadratic field). Study this
example and obtain further examples where Fourier expansions of Maass cusp forms arise
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from basic hypergeometric series. Then relate these results to L-functions and quantum
modular forms.
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pro vědy, slovesnost a uměńı v praze (IIC1) I 24 (1892), pages 465–480.
[175] J. Lewis and D. Zagier, Period functions for Maass wave forms. I., Ann. Math. 153 (2001), pages

191-258.
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