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In his enigmatic death bed letter to Hardy, written in January 1920, Ramanujan intro-
duced the notion of a mock theta function. Despite many works, very little was known
about the role that these functions play within the theory of automorphic and modu-
lar forms until 2002. In that year Sander Zwegers (in his Ph.D. thesis) established that
these functions are “holomorphic parts” of harmonic Maass forms. This realization has
resulted in many applications in a wide variety of areas: arithmetic geometry, combina-
torics, modular forms, and mathematical physics. Here we outline the general facets of the
theory, and we give several applications to number theory: partitions and q-series, modular
forms, singular moduli, Borcherds products, extensions of theorems of Kohnen-Zagier and
Waldspurger on modular L-functions, and the work of Bruinier and Yang on Gross-Zagier
formulae. Following our discussion of these works on harmonic Maass forms, we shall
then study the emerging new theory of quantum modular forms. Don Zagier introduced
the notion of a quantum modular form in his 2010 Clay lecture, and it turns out that a
beautiful part of this theory lives at the interface of classical modular forms and harmonic
Maass forms.

1. Zwegers’s weight 1/2 non-holomorphic Jacobi form

In his thesis, Zwegers constructed weight 1/2 harmonic Maass forms by making use of
the transformation properties of Lerch sums. Here we briefly recall some of these important
results.

For τ ∈ H, u, v ∈ C \ (Zτ + Z), Zwegers defined the function

(1.1) µ(u, v; τ) :=
z1/2

ϑ(v; τ)
·
∑
n∈Z

(−w)nqn(n+1)/2

1− zqn
,

where z := e2πiu, w := e2πiv, q := e2πiτ and

(1.2) ϑ(v; τ) :=
∑
ν∈Z+ 1

2

eπiνwνqν
2/2.
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Lemma 1.1. Assuming the notation above, we have that

µ(u, v; τ) = µ(v, u; τ),

µ(u+ 1, v; τ) = −µ(u, v; τ),

z−1wq−
1
2µ(u+ τ, v; τ) = −µ(u, v; τ)− iz−

1
2w

1
2 q−

1
8 ,

µ(u, v; τ + 1) = ζ−1
8 µ(u, v; τ) (ζN := e2πi/N)

(τ/i)−
1
2 eπi(u−v)

2/τµ

(
u

τ
,
v

τ
;−1

τ

)
= −µ(u, v; τ) +

1

2i
h(u− v; τ),

where

h(z; τ) :=

∫ ∞
−∞

eπix
2τ−2πxzdx

cosh πx
.

Remark 1. The integral h(z; τ) is known as a Mordell integral.

Lemma 1.1 shows that µ(u, v; τ) is nearly a weight 1/2 Jacobi form, where τ is the
modular variable. Zwegers then uses µ to construct weight 1/2 harmonic Maass forms. He
achieves this by modifying µ to obtain a function µ̂ which he then uses as building blocks
for such Maass forms. To make this precise, for τ ∈ H and u ∈ C, let c := Im(u)/Im(τ),
and let

(1.3) R(u; τ) :=
∑
ν∈Z+ 1

2

(−1)ν−
1
2

{
sgn(ν)− E

(
(ν + c)

√
2Im(τ)

)}
e−2πiνuq−ν

2/2,

where E(x) is the odd function

(1.4) E(x) := 2

∫ x

0

e−πu
2

du = sgn(x)(1− β(x2)),

where for positive real x we let β(x) :=
∫∞
x
u−

1
2 e−πudu.

Using µ and R, Zwegers defines the real analytic function

(1.5) µ̂(u, v; τ) := µ(u, v; τ) +
i

2
R(u− v; τ).

Theorem 1.2. Assuming the notation and hypotheses above, we have that

µ̂(u, v; τ) = µ̂(v, u; τ),

µ̂(u+ 1, v; τ) = z−1wq−
1
2 µ̂(u+ τ, v; τ) = −µ̂(u, v; τ),

ζ8µ̂(u, v; τ + 1) = −(τ/i)−
1
2 eπi(u−v)

2/τ µ̂

(
u

τ
,
v

τ
;−1

τ

)
= µ̂(u, v; τ).

Moreover, if A =
(
α β
γ δ

)
∈ SL2(Z), then

µ̂

(
u

γτ + δ
,

v

γτ + δ
;
ατ + β

γτ + δ

)
= χ(A)−3(γτ + δ)

1
2 e−πiγ(u−v)

2/(γτ+δ) · µ̂(u, v; τ),

where χ(A) := η(Aτ)/
(

(γτ + δ)
1
2η(τ)

)
.
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Theorem 1.2 shows that µ̂(u, v; τ) is essentially a weight 1/2 non-holomorphic Jacobi
form. In analogy with the classical theory of Jacobi forms, one may then obtain harmonic
Maass forms by making suitable specializations for u and v by elements in Qτ + Q, and
by multiplying by appropriate powers of q. Without this result, it would be very difficult
to explicitly construct examples of weight 1/2 harmonic Maass forms.

Harmonic Maass forms of weight k are mapped to classical modular forms (see Lemma 4.1),
their so-called shadows, by the differential operator

ξk := 2iyk · ∂
∂τ
.

The following lemma makes it clear that the shadows of the real analytic forms arising
from µ̂ can be described in terms of weight 3/2 theta functions.

Lemma 1.3. The function R is real analytic and satisfies

∂R

∂u
(u; τ) =

√
2y−

1
2 e−2πc2yϑ(u;−τ),

where c := Im(u)/Im(τ). Moreover, we have that

∂

∂τ
R(aτ − b; τ) = − i√

2y
e−2πa2y

∑
ν∈Z+ 1

2

(−1)ν−
1
2 (ν + a)e−πiν

2τ−2πiν(aτ−b).

2. Harmonic Maass forms

In 1949, H. Maass introduced the notion of a Maass form1 He constructed these non-
holomorphic automorphic forms using Hecke characters of real quadratic fields, in analogy
with Hecke’s theory of modular forms with complex multiplication (see Ribet’s famous
paper for a modern treatment).

To define these functions, let ∆ = ∆0 be the hyperbolic Laplacian

∆ := −y2

(
∂2

∂x2
+

∂2

∂y2

)
,

where z = x + iy ∈ H with x, y ∈ R. It is a second-order differential operator which acts
on functions on H, and it is invariant under the action of SL2(R).

A Maass form for a subgroup Γ ⊂ SL2(Z) is a smooth function f : H→ C satisfying:

(1) For every ( a bc d ) ∈ Γ, we have

f

(
az + b

cz + d

)
= f(z).

(2) We have that f is an eigenfunction of ∆.
(3) There is some N > 0 such that

f(x+ iy) = O(yN)

as y → +∞.

1In analogy with the eigenvalue problem for the vibrating membrane, Maass referred to these automor-
phic forms as Wellenformen, or waveforms.
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Furthermore, we call f a Maass cusp form if∫ 1

0

f(z + x)dx = 0.

There is now a vast literature on Maass forms.
This paper concerns a generalization of this notion of Maass form. Following Bruinier

and Funke, we define the notion of a harmonic Maass form of weight k ∈ 1
2
Z as follows. As

before, we let z = x+ iy ∈ H with x, y ∈ R. We define the weight k hyperbolic Laplacian
∆k by

(2.1) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

For odd integers d, define εd by

(2.2) εd :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

Definition 2.1. If N is a positive integer (with 4 | N if k ∈ 1
2
Z \ Z), then a weight

k harmonic Maass form on Γ ∈ {Γ1(N),Γ0(N)} is any smooth function M : H → C
satisfying the following:

(1) For all A = ( a bc d ) ∈ Γ and all z ∈ H, we have

M

(
az + b

cz + d

)
=

{
(cz + d)kM(z) if k ∈ Z,(
c
d

)2k
ε−2k
d (cz + d)k M(z) if k ∈ 1

2
Z \ Z.

Here
(
c
d

)
denotes the extended Legendre symbol, and

√
z is the principal branch

of the holomorphic square root.
(2) We have that ∆kM = 0.
(3) There is a polynomial PM =

∑
n≤0 c

+(n)qn ∈ C[q−1] such that

M(z)− PM(z) = O(e−εy)

as y → +∞ for some ε > 0. Analogous conditions are required at all cusps.

Remark 2. Maass forms and classical modular forms are required to satisfy moderate
growth conditions at cusps, and it is for this reason that harmonic Maass forms are often
referred to as “harmonic weak Maass forms”. The term “weak” refers to the relaxed
condition Definition 2.1 (3) which gives rise to a rich theory. For convenience, we use the
terminology “harmonic Maass form” instead of “harmonic weak Maass form”.

Remark 3. We refer to the polynomial PM as the principal part of M(z) at∞. Obviously,
if PM is non-constant, then M(z) has exponential growth at ∞. Similar remarks apply at
all cusps.

Remark 4. Bruinier and Funke define two types of harmonic Maass forms based on varying
the growth conditions at cusps. For a group Γ, they refer to these spaces as Hk(Γ) and
H+
k (Γ). Definition 2.1 (3) corresponds to their H+

k (Γ) definition.

Remark 5. Since holomorphic functions on H are harmonic, it follows that weakly holo-
morphic modular forms are harmonic Maass forms.
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3. Fourier expansions

We shall consider harmonic Maass forms with weight 2−k ∈ 1
2
Z with k > 1. Therefore,

throughout we assume that 1 < k ∈ 1
2
Z.

Harmonic Maass forms have distinguished Fourier expansions which are described in
terms of the incomplete Gamma-function Γ(α;x)

(3.1) Γ(α;x) :=

∫ ∞
x

e−ttα−1 dt,

and the usual parameter q := e2πiz. The following characterization is straightforward.

Lemma 3.1. Assume the notation and hypotheses above, and suppose that N is a positive
integer. If f(z) ∈ H2−k(Γ1(N)), then its Fourier expansion is of the form

(3.2) f(z) =
∑

n�−∞

c+f (n)qn +
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn,

where z = x+ iy ∈ H, with x, y ∈ R.

As Lemma 3.1 reveals, f(z) naturally decomposes into two summands. In view of this
fact, we make the following definition.

Definition 3.2. Assuming the notation and hypotheses in Lemma 3.1, we refer to

f+(z) :=
∑

n�−∞

c+f (n)qn

as the holomorphic part of f(z), and we refer to

f−(z) :=
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn

as the non-holomorphic part of f(z).

Remark 6. A harmonic Maass form with trivial non-holomorphic part is a weakly holo-
morphic modular form. We shall make use of this fact as follows. If f1, f2 ∈ H2−k(Γ) are
two harmonic Maass forms with equal non-holomorphic parts, then f1 − f2 ∈M !

2−k(Γ).

4. The ξ-operator and period integrals of cusp forms

The following lemma plays a central role in the subject to relate spaces of cusp forms
to spaces of harmonic Maass forms.

Lemma 4.1. If f ∈ H2−k(N,χ), then

ξ2−k : H2−k(N,χ) −→ Sk(N,χ)

is a surjective map. Moreover, assuming the notation in Definition 3.2, we have that

ξ2−k(f) = −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn.
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Thanks to Lemma 4.1, we are in a position to relate the non-holomorphic parts of
harmonic Maass forms, the expansions

f−(z) :=
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn,

with “period integrals” of modular forms.
To make this connection, we must relate the Fourier expansion of the cusp form ξ2−k(f)

with f−(z). This connection is made by applying the simple integral identity

(4.1)

∫ i∞

−z

e2πinτ

(−i(τ + z))2−k dτ = i(2πn)1−k · Γ(k − 1, 4πny)q−n.

This identity follows by the direct calculation∫ i∞

−z

e2πinτ

(−i(τ + z))2−k dτ =

∫ i∞

2iy

e2πin(τ−z)

(−iτ)2−k dτ = i(2πn)1−k · Γ(k − 1, 4πny) q−n.

In this way, we may think of the non-holomorphic parts of weight 2− k harmonic Maass
forms as period integrals of weight k cusp forms, where one applies (4.1) to∫ i∞

−z

∑∞
n=1 a(n)e2πinτ

(−i(τ + z))2−k dτ,

where
∑∞

n=1 a(n)qn is a weight k cusp form. In short, f−(z) is the period integral of the
cusp form ξ2−k(f).

In view of the surjectivity of spaces of harmonic Maass forms onto spaces of cusp forms
guaranteed by Proposition 4.1, combined with the well known importance of cusp forms
of various types, we find ourselves asking the following natural question.

Question 4.2. Suppose that g(z) ∈ Sk(N) is a cusp form of interest (e.g. in arithmetic
geometry, additive number theory, etc), and suppose that f(z) ∈ H2−k(N) is a “suitable”
harmonic Maass form for which

ξ2−k(f) = g.

By the discussion above, we have that f−(z) is morally the Fourier expansion of g(z).
The question is: What interesting information about g(z) is unearthed by discovering the
q-series f+(z)?

These lectures will aim to answer several forms of this question such as those applications
listed in the first paragraph, as well as explain how the structure of these spaces lead
naturally to explicit examples of Zagier’s theory of quantum modular forms, which comes
equipped with its own set of applications.


