
SELMER GROUP HEURISTICS AND SIEVES

BJORN POONEN

These are expanded lecture notes for a series of four lectures at the Arizona Winter School on “Arithmetic

statistics” held March 15–19, 2014 in Tucson, Arizona. They are not intended for publication; in fact, they

are largely drawn from articles that have already been published: [Poo04,Poo07,PR12,BKL+13].

Part 1. Sieves in arithmetic geometry

1. Introduction

In the past decade or so, the most elementary of the sieve methods of analytic number
theory has been adapted to a geometric setting. In this geometric setting, the primes are
replaced by the closed points of a variety over a finite field or more generally of a scheme of
finite type over Z. We will present the method and some of the results that have been proved
using it. For instance, the probability that a plane curve over F2 is smooth is asymptotically
21/64 as the degree tends to infinity.

2. Squarefree integers

Before discussing the geometric sieve, let us recall a simple application of classical sieve
techniques, to the counting of squarefree integers.

Consider the problem of determining the “probability” that a “random” positive integer is
squarefree. To make sense of this problem, we should clarify what is meant by probability,
since the set of positive integers is countably infinite. For any subset S ⊆ N, define the density
of S as the limit

µ(S) := lim
B→∞

#(S ∩ [1, B])

B
.

In other words, we compute the fraction of the integers from 1 to B that belong to S, and
then let B tend to ∞.

From now on, interpret “the probability that a positive integer is squarefree” as the density
of the set S of squarefree positive integers. We can guess the answer by using the following
reasoning. An integer n is squarefree if and only if for all primes p, the integer p2 does not
divide n. For each prime p, the probability that an integer is divisible by p2 is 1/p2, so the
probability that the integer is not divisible by p2 is 1− 1/p2. These conditions for different p
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should be independent, by the Chinese remainder theorem. Therefore one predicts that the
density of squarefree integers equals∏

prime p

(1− p−2) = ζ(2)−1 = 6/π2,

where ζ(s) is the Riemann zeta function, defined by

ζ(s) :=
∑
n≥1

n−s =
∏

prime p

(1− p−s)−1

for Re(s) > 1 (which is all we need).
It is not immediate that this heuristic prediction can be made rigorous. The Chinese

remainder theorem does imply that for any finite set T of primes, the density of positive
integers not divisible by p2 for any p ∈ T equals

∏
p∈T (1− p−2). But the argument breaks

down if we try to apply the Chinese remainder theorem to infinitely many primes. In other
words, the difficulty is that to prove a density result for squarefree integers, we must let T
grow to include all primes before letting B tend to infinity, but the argument so far shows
only that when B is sufficiently large relative to the primes in T , then the number of such
integers in [1, B] is approximately B

∏
p∈T (1− p−2).

One approach that works is to approximate the condition of being squarefree by the
condition of being “squarefree as far as the primes ≤ r are concerned”, and then to estimate
the error in this approximation. As B →∞ for fixed r, the fraction of integers not divisible
by p2 for any prime p ≤ r indeed equals

∏
prime p ≤ r(1 − p−2), by the Chinese remainder

theorem. Bounding the error amounts to bounding the upper density of the set of integers
divisible by p2 for a large prime p (that is, a prime p > r), i.e., showing that

lim
r→∞

lim sup
B→∞

(
#{n ≤ B : n is divisible by p2 for some p > r}

B

)
= 0.

This is easy to prove:

#{n ≤ B : n is divisible by p2 for some p > r}

≤
∑

prime p > r

#{n ≤ B : n is divisible by p2}

=
∑

prime p > r

bB/p2c

≤
∑

integers n > r

B/n2

≤ B

∫ ∞
r

1

x2
dx

= B/r,

so if we divide by B, take the limit as B →∞, and then take the limit as r →∞, we get 0.
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Thus the density of squarefree integers equals

lim
r→∞

∏
prime p ≤ r

(1− p−2) =
∏

prime p

(1− p−2) = ζ(2)−1.

3. Squarefree values of polynomials

For more general problems, the hard part is in bounding the error arising from ignoring the
large primes. Consider for instance the following problem: Given a polynomial f(x) ∈ Z[x],
compute the density of integers n such that f(n) is squarefree. The naïve heuristic above
suggests that the answer should be

∏
prime p(1− cp/p2) where cp equals the number of integers

n ∈ [0, p2 − 1] for which p2 | f(n).
For fixed r, the density of integers n satisfying the conditions for primes ≤ r can be

computed as before, by using the Chinese remainder theorem. Assuming that r exceeds the
discriminant of f , if p > r, then Hensel’s lemma shows that there are at most deg f solutions
x mod p2 to f(x) ≡ 0 (mod p2), so we can bound the number of integers n ∈ [1, B] for which
p2|f(n) by (deg f)dB/p2e. But f(n) for n ≤ B could be as large as (a constant times) Bdeg f ,
so we must consider all p up to about B(deg f)/2, and unfortunately the sum of (deg f)dB/p2e
over these primes will be small compared to B only if deg f ≤ 2.

Thus controlling the error is easy only if deg f ≤ 2. A more complicated argument [Hoo67]
shows that the error can be controlled and the predicted density proved correct also in the
case deg f = 3, but for irreducible f of degree ≥ 4, it is not yet clear whether one can
prove that the conjectural density is correct (except in cases where there is an obstruction
coming from a single prime, in which case the density is 0). There is only a theorem of
Granville [Gra98] saying that the expected result follows from the abc conjecture.

4. A function field analogue

There is an obvious function field analogue of the result about the density of squarefree
integers. Namely, for a fixed finite field Fq, one can ask what fraction of elements of the
polynomial ring Fq[t] are squarefree. In this context one defines the density of a subset
S ⊆ Fq[t] as the limit

µ(S) := lim
d→∞

#(S ∩ Fq[t]≤d)
#Fq[t]≤d

,

if the limit exists, where Fq[t]≤d is the set of polynomials in Fq[t] of degree ≤ d.
The sieve argument works as before. One need only replace integer primes p by monic

irreducible polynomials P of Fq[t]. We find that the density of squarefree elements of Fq[t]
equals ∏

P

(
1− q−2 degP

)
,

which turns out to equal 1− 1/q, as we will explain later using zeta functions.
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5. Closed points and zeta functions

To generalize, we will need to reinterpret the set of monic irreducible polynomials in Fq[t]
in geometric terms. Namely, the following sets are in bijection:

• the set of monic irreducible polynomials of Fq[t],
• the set of maximal ideals of Fq[t], and
• the set of Gal(Fq/Fq)-orbits in A1(Fq).

Specifically, given a monic irreducible polynomial, one can take the ideal it generates in Fq[t],
or one can take its set of zeros in A1(Fq).

A closed point on a variety (or scheme of finite type) X over Fq corresponds to a maximal
ideal of the affine coordinate ring of an affine open subscheme of X. The closed points of
X are in bijection with the Gal(Fq/Fq)-orbits in X(Fq). The degree of a closed point P is
[κ(P ) : Fq], where κ(P ) is the residue field of the corresponding maximal ideal: the degree
equals the size of the corresponding Gal(Fq/Fq)-orbit. The zeta function of X can be defined
either as an Euler product over closed points, or as a generating function for the sequence of
integers #X(Fq), #X(Fq2), #X(Fq3), . . . :

ζX(s) = ZX(q−s) :=
∏

closedP∈X

(
1− q−sdegP

)−1
= exp

(
∞∑
r=1

#X(Fqr)
r

q−rs

)

for Re(s) > dimX. The power series ZX(T ) ∈ Z[[T ]] is (the Taylor series of) a rational
function [Dwo60], as was conjectured by A. Weil [Wei49]. The Euler product definition
extends also to schemes X of finite type over Z.

The density of squarefree elements of Fq[t] is ζA1(2)−1, as given by the product definition.
The generating function definition shows that ZA1(T ) = 1/(1− qT ), so this density equals

ZA1(q−2)−1 = 1− qq−2 = 1− 1/q.

6. Smooth plane curves

We now consider a more geometric problem. What is the density of homogeneous polynomi-
als f ∈ Fq[x, y, z] such that the plane curve f = 0 in P2 is smooth (of dimension 1)? (Density
is defined as the limit as d→∞ of the fraction of the degree d homogeneous polynomials
which satisfy the desired condition. We wrote “of dimension 1” to exclude the case where f is
identically 0.)

Smoothness can be tested locally. Therefore we will start with all homogeneous polynomials
f of degree d and sieve out, for each closed point P ∈ P2, those f for which the curve f = 0

has a singularity at P . The condition that f = 0 has a singularity at P amounts to 3 linear
conditions on the Taylor coefficients of a dehomogenization f̄ of f at P (namely, the vanishing
of f̄ and its two partial derivatives at P ), and these linear conditions are over the residue

4



field of P . It follows that the density of f such that f = 0 has a singularity at P equals
q−3 degP . This suggests the guess that the density of f defining a smooth plane curve equals∏

closed P ∈ P2

(
1− q−3 degP

)
= ζP2(3)−1

= (1− q−1)(1− q−2)(1− q−3),

where the last equality comes from substituting T = q−3 in

ZP2(T )−1 = (1− T )(1− qT )(1− q2T ).

Taking q = 2 gives 21/64.
The guess turns out to be correct, although the proof is much more involved than the

proof for squarefree integers or polynomials.
In the rest of Section 6, we will sketch the proof of the analogous result for plane curves in

A2 over Fq. Instead of homogeneous polynomials f , we now use f ∈ Fq[x, y]≤d (i.e., arbitrary
polynomials of total degree at most d). Define the density of a subset P ⊆ Fq[x, y], as

µ(P) := lim
d→∞

#P ∩ Fq[x, y]≤d
#Fq[x, y]≤d

,

and define the upper density µ(P) similarly using lim sup.

Theorem 6.1. Let P be the set of f ∈ k[x, y] such that f = 0 in A2 is smooth (by which we
mean smooth of dimension 1, so 0 /∈ P). Then µ(P) = ζA2(3)−1.

The proof sketch will occupy the next few subsections.

6.1. Low degree. Given r > 0, define Pr as the set of f ∈ k[x, y] such that f = 0 in A2 is
smooth at all closed points P of A2 of degree ≤ r. Thus Pr is an approximation to P, in
which smoothness is imposed only at the low degree points.

Lemma 6.2. We have µ(Pr) =
∏

degP≤r(1− q−3 degP ).

Proof. Let mP ⊆ Fq[x, y] be the maximal ideal corresponding to P . Let I :=
∏

degP≤rm
2
P .

The lemma follows from two observations:

1. The polynomial f belongs to Pr if and only if the image of f under

Fq[x, y]≤d
φd−→ Fq[x, y]

I
'

∏
degP≤r

Fq[x, y]

m2
P

is nonzero in each factor.
2. For sufficiently large d, the Fq-linear map φd above is surjective. (Proof: Let Vd = im(φd).

Then Vd+1 is obtained from Vd by a process independent of d, namely, Vd+1 = Vd+xVd+yVd,
so Vd strictly grows until it stabilizes, at which point Vd is the whole space Fq [x,y]

I
. Thus φd

is surjective for d ≥ dimFq

Fq [x,y]

I
.) �
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6.2. Medium degree. Let

Qr :=
⋃
d

{f ∈ Fq[x, y]≤d : there exists P with r < degP ≤ d/3 at which f = 0 is not smooth}.

Lemma 6.3. We have µ(Qr)→ 0 as r →∞.

Proof. By the argument in the final sentence of the proof of Lemma 6.2, Fq[x, y]≤d →
Fq[x, y]

m2
P

is surjective for d ≥ dimFq

Fq[x, y]

m2
P

= 3 degP . So when degP ≤ d/3, the fraction of elements

of Fq[x, y]≤d lying in m2
P is q−3 degP . Thus

µ(Qr) ≤ lim sup
d→∞

∑
r<degP≤d/3

q−3 degP ,

which tends to 0 as r →∞ since
∑

all closed points P q
−3 degP converges (the number of closed

points of degree e in A2 is O(q2e)). �

6.3. High degree. Define

R :=
⋃
d

{f ∈ Fq[x, y]≤d : there exists P with degP > d/3 at which f = 0 is not smooth}.

Lemma 6.4. We have µ(R) = 0.

Proof. If f0, g1, g2, h are chosen uniformly at random, from Fq[x, y]≤d, Fq[x, y]≤(d−1)/p, Fq[x, y]≤(d−1)/p,
Fq[x, y]≤d/p, respectively, then

f := f0 + xgp1 + ygp2 + hp

is a uniform random polynomial in Fq[x, y]≤d, so we may generate f this way. The point of
doing this is that by choosing f0, g1, g2, h in that order, we partially decouple the partial
derivatives. In particular, by bounding the number of irreducible components as we go along,
we obtain as d→∞ that

(1) the probability, conditioned on a choice of f0, that g1 is such that dim{∂f
∂x

= 0} = 1 is
1− o(1);

(2) the probability, conditioned on a choice of such f0, g1, that g2 is such that dim{∂f
∂x

=
∂f
∂y

= 0} = 0 is 1− o(1); and
(3) the probability, conditioned on a choice of such f0, g1, g2 that h is such that {f =

∂f
∂x

= ∂f
∂y

= 0} has no points of degree > d/3 is 1− o(1) (this uses Bézout’s theorem
to bound the degree of the 0-dimensional subscheme in the previous item). �
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6.4. End of proof. Now P = Pr −Qr −R. As r →∞, we have

µ(Pr)→ ζ−1A2 (3)

µ(Qr)→ 0

µ(R) = 0,

so µ(P) = ζ−1A2 (3).

7. The Bertini smoothness theorem

A generalization of the argument of the previous section yields a “Bertini smoothness
theorem” over finite fields.

The Bertini smoothness theorem says that if a subvariety X ⊆ Pn over a field k is
smooth, then for a sufficiently general hyperplane H ⊂ Pn, the variety H ∩X is smooth too.
“Sufficiently general” here means inside a Zariski dense open subset U of the dual projective
space that parametrizes hyperplanes in Pn. If k is infinite, then U(k) is nonempty, so there
exists a hyperplane H over k with H ∩ X smooth. But if k is finite, this last result can
fail: it may happen that each of the finitely many hyperplanes over k is bad, tangent to X
somewhere.

Katz [Kat99] asked whether the Bertini smoothness theorem over finite fields could be
salvaged by allowing hypersurfaces of unbounded degree in place of hyperplanes. The
closed point sieve yields such a result, and even gives an asymptotically positive fraction
of good hypersurfaces of degree d, as d → ∞. (The existence of a good hypersurface,
for d sufficiently large and divisible by the characteristic p, was shown independently by
Gabber [Gab01, Corollary 1.6].)

The result is that if X is a smooth quasiprojective subvariety of Pn of dimension m over Fq,
then the density of f such that {f = 0}∩X is smooth of dimension m−1 equals ζX(m+1)−1.

Perhaps surprisingly, the density is an intrinsic property of X, independent of how X is
embedded in projective space. Taking X = A1 ⊆ P1, we recover the result that the density
of squarefree polynomials in Fq[t] equals ζA1(2)−1.

Here are a few applications of the Bertini smoothness theorem and its variants:

• Space-filling curves (answering questions posed in [Kat99]): Given a smooth projective
geometrically irreducible variety X of positive dimension over Fq, there exists a smooth
projective geometrically irreducible curve Y ⊆ X passing through all the Fq-points of
X.
• Space-avoiding varieties: GivenX as above, and an integer y satisfying 1 ≤ y < dimX,
there exists a smooth projective geometrically irreducible variety Y ⊆ X of dimension
y such that Y (Fq) = ∅.
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• Abelian varieties as quotients of Jacobians: For every nontrivial abelian variety A
over Fq, there is a smooth projective geometrically irreducible curve Y in A such that
the induced map from the Jacobian of Y to A is surjective.
• Brauer groups of surfaces: Q. Liu, D. Lorenzini, and M. Raynaud [LLR05] used the
Bertini smoothness theorem (and several other ingredients) to show that if X is a
smooth projective geometrically irreducible surface over Fq, then the order of BrX is
a perfect square.

8. Extensions of the Bertini smoothness theorem

The Bertini smoothness theorem can be viewed as a statement about the probability that
a random divisor in |dA| is smooth as d→∞, where A is an ample divisor. A “semiample
generalization” is to study random divisors in |nA+ dE| as d→∞, where A is ample, but
E is only globally generated. Erman and Wood [EW12] prove that a statement along these
lines holds, if n is sufficiently large.

The Bertini smoothness theorem also has a conjectural arithmetic analogue: If X is a
quasiprojective subscheme of PnZ that is regular of dimension m, then the density (suitably
defined) of f ∈ Z[x0, . . . , xn] such that {f = 0} ∩ X is regular of dimension m − 1 equals
ζX(m+ 1)−1. This is proved in [Poo04] assuming the abc conjecture and one other conjecture,
by making use of a multivariable extension [Poo03] of Granville’s conditional result [Gra98]
on squarefree values of polynomials. This statement implies both the finite field Bertini
smoothness theorem and the fact that the squarefree integers have density ζ(2)−1 (take
X = SpecZ in P0

Z = SpecZ).

9. Whitney embedding theorems

If X is a smooth projective curve over an infinite field k, then there is a closed immersion
X ↪→ P3. To prove this, one starts with X in some large projective space PN , and iteratively
performs projections. One shows that if N > 3, then composing the embedding X ↪→ PN

with a sufficiently generic projection PN 99K PN−1 yields an embedding X ↪→ PN−1.
The analogous statement for a finite field Fq is false. There are some obvious obstructions

to embedding a smooth curve X in P3. Namely, it can happen that X has more Fq-points
than P3 does! Even if #X(Fq) ≤ #P3(Fq), it could happen that X has more closed points of
degree 2 than P3 does.

Nguyen [Ngu05] used the closed point sieve to prove that the obvious obstructions are the
only ones. Namely, he proved that given a smooth curve X over Fq and an integer n ≥ 3,
there exists a closed immersion X ↪→ Pn if and only if for every e ≥ 1 the number of closed
points of degree e on X is less than or equal to the number of closed points of degree e on
Pn. In fact, he also proved the higher-dimensional analogue: given a smooth variety X of
dimension m and an integer n ≥ 2m+ 1, there is a closed immersion X ↪→ Pn if and only if
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the conditions on the number of closed points are satisfied. This proof was more involved
than the proof of the Bertini smoothness theorem, because the conditions on homogeneous
polynomials f0, . . . , fn for the rational map (f0 : · · · : fn) : PN 99K Pn to restrict to a closed
immersion X ↪→ Pn are not local, as were the conditions defining smoothness. Nguyen had
to sieve over pairs of closed points to get his result.

These embedding results are algebraic analogues of the Whitney embedding theorem, which
states that every m-dimensional real manifold X can be embedded in R2m+1. (In fact,
Whitney proved that R2m suffices, but his methods for this stronger result are not algebraic,
and indeed this result fails in the algebraic setting, even over infinite fields.)

10. Lefschetz pencils

One fruitful way to study a variety X ⊆ Pn is to choose a dominant rational map
(f : g) : X 99K P1, say defined by a pair of homogeneous polynomials f, g ∈ k[x0, . . . , xn] of
the same degree. The fibers (after blowing up the indeterminacy locus) form a family of
hypersurface sections in X, namely {λ1f −λ0g = 0}∩X for (λ0 : λ1) ∈ P1. Ideally, questions
about X can then be reduced to questions about these hypersurface sections, which are of
lower dimension.

Unfortunately, even if X is smooth and the rational map is chosen generically, some of
the hypersurface sections may fail to be smooth. The best one can reasonably expect is
that there will be at most finitely many singular fibers, and each such fiber has the simplest
kind of singularity. More precisely, (f : g) : X 99K P1 defines a Lefschetz pencil if all of the
following hold (after base extension to an algebraically closed field):

(1) The axis f = g = 0 intersects X transversely.
(2) All but finitely many hypersurface sections in the family are smooth.
(3) Each non-smooth hypersurface section has only one singularity, and that singularity

is an ordinary double point.

Over an infinite field k, a dimension-counting argument proves the existence of Lefschetz
pencils for any smooth X ⊆ Pn: see [Kat73]. This was famously used by P. Deligne to prove
the Riemann hypothesis for varieties over finite fields [Del74,Del80]: for his application, he
had the freedom to enlarge the ground field if necessary, so he needed only the existence of
Lefschetz pencils over an algebraic closure of a finite field.

In any case, the question remained as to whether Lefschetz pencils over k existed for
varieties over k in the case where k is finite. Nguyen [Ngu05] proved such an existence result
using the closed point sieve. Again, because the conditions in the definition of Lefschetz
pencil are not all local, he had to sieve over pairs of closed points.
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11. The Bertini irreducibility theorem

The Bertini irreducibility theorem over a field k states that ifX is a geometrically irreducible
subscheme X ⊆ Pn over k and dimX ≥ 2, then for a sufficiently general hyperplane H ⊂ Pn,
the intersection H∩X is geometrically irreducible too. But again, “sufficiently general” means
inside a Zariski dense open subset U of the dual projective space, so the statement is vacuous
if k is finite. Therefore it is natural again to intersect X with hypersurfaces H of degree d,
and to study the density of good hypersurfaces H as d→∞.

Geometric irreducibility is not a property that can be tested analytically locally, so the
closed point sieve cannot be used directly to attack this problem. Nevertheless, the following
has been proved [CP13, Theorem 1.2]:

Theorem 11.1. Let X be a geometrically irreducible subscheme of PnFq
. If dimX ≥ 2, then

the density of f such that {f = 0} ∩X is geometrically irreducible is 1.

12. Questions

(1) There seems to be a general principle that if an existence result about polynomials or
n-tuples of polynomials over an infinite field can be proved by dimension counting,
then a corresponding result over finite fields can be proved by the closed point sieve.
Can this principle be formalized and proved?

(2) The closed point sieve we have discussed is the geometric analogue of the simplest
kind of sieve appearing in analytic number theory. Are there also geometric analogues
of more sophisticated sieves like the large sieve, and do these have applications?

(3) What other theorems currently require the hypothesis “Assume that k is an infinite
field”? Hopefully the closed point sieve could be used to eliminate the hypothesis in
many of these.

Part 2. Selmer group heuristics

13. Selmer groups

We will work over Q. (We could work over other number fields, or even global fields, but
the main ideas are the same, with some extra technicalities or restrictions when considering
p-power Selmer groups in characteristic p.) Let G := Gal(Q/Q). For each place v of Q, let
Qv be the completion (either R or Qp for some prime p). For finite v, let Zv be the valuation
ring of Qv. The adele ring of Q is the restricted direct product

A :=
∏′

v

(Qv,Zv) :=

{
(av) ∈

∏
v

Qv : av ∈ Zv for all but finitely many v

}
.
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Let E be an elliptic curve over Q. The only known proof (up to minor variations) of
Mordell’s theorem that E(Q) is finitely generated first shows that E(Q)/nE(Q) is finite for
some n ≥ 2.

How is the latter done? Identify E with the G-module E(Q), and define E[n] as the kernel
in the exact sequence

0 −→ E[n] −→ E
n−→ E −→ 0

of G-modules. The “take G-invariants” functor is only left exact, but the left exact sequence
can be continued by using (profinite) group cohomology:

0→ E[n](Q)→ E(Q)
n→ E(Q)→ H1(Q, E[n])→ H1(Q, E)

n→ H1(Q, E)→ · · · .

Here H1(Q, E) := H1(G,E(Q)) and so on.1 The long exact sequence can be contracted to

(1) 0 −→ E(Q)

nE(Q)
−→ H1(Q, E[n]) −→ H1(Q, E).

Unfortunately H1(Q, E[n]) is infinite, so the finiteness of E(Q)/nE(Q) is not immediate. To

prove the finiteness, we will constrain the image of
E(Q)

nE(Q)
→ H1(Q, E[n]) by local conditions.

The sequence (1) maps to the analogous sequence over Qv for each v, and we may take a
product to obtain a diagram

0 // E(Q)

nE(Q)
//

��

H1(Q, E[n])

β

��

// H1(Q, E)

γ

��

0 //
∏
v

E(Qv)

nE(Qv)

α //
∏
v

H1(Qv, E[n]) //
∏
v

H1(Qv, E)

(2)

with exact rows. Choose a model E of E over Z[1/N ] for some N ≥ 1. Then for finite
v - N , the sequence (1) has an analogue also over Zv. Replacing the direct products in the
diagram (2) by restricted direct products yields a new diagram

0 // E(Q)

nE(Q)
//

��

H1(Q, E[n])

β

��

// H1(Q, E)

γ

��

0 // E(A)

nE(A)

α // H1(A, E[n]) // H1(A, E),

(3)

1This notation is reasonable since this is what one gets by taking cohomology of the sheaf represented by
E on (SpecQ)et.
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in which the groups in the second row are defined as the restricted direct products. The
maps α, β, γ are the same as before; only their codomains have shrunk.2

For an element ξ ∈ H1(Q, E[n]) to be in the image of
E(Q)

nE(Q)
, it is necessary that its

localization in H1(A, E[n]) be in the image of α. The set of ξ satisfying this necessary
condition is called the n-Selmer group:

SelnE := β−1(imα) ⊆ H1(Q, E[n]).

(Warning: SelnE is not the subgroup of locally trivial elements of H1(Q, E[n]).) The group

SelnE is an upper bound for the image of
E(Q)

nE(Q)
. Using finiteness theorems of algebraic

number theory (finiteness of the class group, and the finite generation of the unit group), one
shows that SelnE is finite, and computable in principle.

Also define the Shafarevich–Tate group

X = X(E) := ker γ.

14. Distribution questions

Let E be the set of all elliptic curves over Q, ordered by “height” defined in some way (e.g.,
the height of E could be defined as the minimum value of max(|A|3, |B|2) over all Weierstrass
models y2 = x3 +Ax+B for E with A,B ∈ Z). Let E<X := {E ∈ E : h(E) < X}. An event
is a subset S of E , and its “probability” (or density) is

Prob(S) := lim
X→∞

#(S ∩ E<X)

#E<X
,

if the limit exists.
We are interested in the distribution of the rank of E(Q), the group SelnE, and the group

X(E), as E varies. For instance, given a prime p, we can ask, for each s ∈ Z≥0, what is
Prob(dim SelpE = s)? We will motivate a conjecture that SelpE behaves like the intersection
of two maximal isotropic subspaces in a hyperbolic quadratic space of large dimension (we
will explain below what all this means).

15. Maximal isotropic subspaces

Equip the vector space V := F2n
p with the quadratic form

Q(x1, . . . , xn, y1, . . . , yn) := x1y1 + · · ·+ xnyn.

2Suppose that p - N . The valuative criterion for properness gives E(Zp) = E(Qp). Any torsor T of EZp is
smooth over Zp; the special fiber TFp

has an Fp-point by Lang’s theorem on the triviality of torsors under a
connected algebraic group over a finite field; this Fp-point lifts to a Zp-point, by Hensel’s lemma, so T is

trivial. Thus
E(A)

nE(A)
=
∏
v

E(Qv)

nE(Qv)
and H1(A, E) =

⊕
v

H1(Qv, E).
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Any quadratic space isomorphic to this one is called a hyperbolic quadratic space. Associated
to Q is the symmetric bilinear pairing 〈 , 〉 : V × V → Fp defined by

〈v, w〉 := Q(v + w)−Q(v)−Q(w).

Given a subspace Z ≤ V , define

Z⊥ := {v ∈ V : 〈v, z〉 = 0 for all z ∈ Z}.

Call Z isotropic if Q|Z = 0. Call Z maximal isotropic if Q|Z = 0 and Z = Z⊥; every such Z
has dimension n, half that of V . For example, {(x1, . . . , xn, 0, . . . , 0) : x1, . . . , xn ∈ Fp} is a
maximal isotropic subspace. Let OGrn(Fp) be the set of all maximal isotropic Z in V . (If
Grn,m denotes the usual Grassmannian parametrizing n-dimensional subspaces of a given
m-dimensional space, then OGrn(Fp) ⊆ Grn,2n(Fp); the O is for orthogonal.)

Choose Z,W ∈ OGrn(Fp) uniformly at random, and examine the distribution of dim(Z ∩
W ) ∈ Z≥0. One can show that this distribution converges to a discrete probability distribution
on Z≥0 as n→∞. (Recall that 2n was dimV .)

Conjecture 15.1 ([PR12, Conjecture 1.1(a)]). The distribution of SelpE for E ∈ E matches
the limiting distribution above. That is, for each s ∈ Z≥0,

Prob(dim SelpE = s) = lim
n→∞

Prob(dim(Z ∩W ) = s).

Remark 15.2. Conjecture 15.1 was inspired by a result of Heath-Brown. Define s(E) :=

dimF2 Sel2E − dimF2 E[2](Q). Heath-Brown [HB93, HB94] proved that as E varies over
quadratic twists of y2 = x3 − x over Q,

Prob(s(E) = s) =
∏
j≥0

(1 + 2−j)−1
s∏
j=1

2

2j − 1
.

The authors of [PR12] intuited that there should be not be so many distributions on
nonnegative integers arising naturally as the dimension of a random F2-vector space. After
trying various linear algebra constructions, they found the one above that produced the same
distribution.

16. Evidence in the arithmetic of elliptic curves

But why should SelpE behave like the intersection of random maximal isotropic subspaces?
It turns out that SelpE actually is an intersection of maximal isotropic subspaces, in an
infinite-dimensional quadratic space! The goal of this section is to explain this.

For simplicity, we will assume that p is odd, so that quadratic forms correspond bijectively
to symmetric bilinear forms. (We already showed how to pass from Q to 〈 , 〉. To go back,
define Q(v) := 1

2
〈v, v〉.)

13



16.1. Elliptic curves over local fields. LetQv be a completion ofQ. LetGv := Gal(Qv/Qv).
Let Gm be the multiplicative group over Qv; the corresponding Gv-module is Q×v . Then
H2(Qv,Gm) is the Brauer group of Qv, which injects into R/Z. (In fact, the Brauer group is
1
2
Z/Z if v =∞, and Q/Z if v is finite.)
Let E be an elliptic curve over Qv. Let Vv := H1(Qv, E[p]), which is a finite-dimensional

Fp-vector space. The Weil pairing

e : E[p]× E[p]→ Gm

induces a cup product pairing

〈 , 〉v : Vv × Vv
∪−→ H2(Qv, E[p]⊗ E[p])

e−→ H2(Qv,Gm) ↪→ R/Z.

The map ∪ is alternating (α ∪ β = −β ∪ α), but so is e, so 〈 , 〉 is a symmetric bilinear
pairing. Let qv : Vv → R/Z be the associated quadratic form.

Let Wv be the image of
E(Qv)

pE(Qv)
↪→ H1(Qv, E[p]) = Vv. It turns out that Wv coincides with

H1(Zv, E [p]) if E is a smooth model over Zv and v - p. Also, Wv is maximal isotropic because
of Tate local duality, and the analogous facts hold even if p = 2: see [O’N02, Proposition 2.3].
The existence of a maximal isotropic subspace implies that (Vv, qv) is a hyperbolic quadratic
space.

16.2. Elliptic curves over a global field. Now suppose that E is an elliptic curve over Q.
For every place v ofQ, form Vv := H1(Qv, E[p]) as above. Let V :=

∏
v(Vv,Wv) ' H1(A, E[p]).

Then Q :=
∑

v qv : V → R/Z is well-defined.
Recall from (3) the maps

H1(Q, E[p])

β

��
E(A)

pE(A)

α // H1(A, E[p])= V.

Theorem 16.1.

(a) im(α) and im(β) are maximal isotropic.
(b) β is injective.
(c) im(α) ∩ im(β) = β(SelpE) ' SelpE.

Sketch of proof. Here we will only list the ingredients of the proof.

(a) The space im(α) is
∏

vWv, so it is maximal isotropic. That im(β) is isotropic is a
consequence of global duality, specifically the exactness in the middle of the 9-term
Poitou–Tate exact sequence. (If p = 2, one uses also the reciprocity law for the Brauer
group.)
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(b) Injectivity of β follows from the Chebotarev density theorem and the fact that the Sylow
p-subgroup of GL2(Fp) is cyclic! (The injectivity is delicate: it can fail if p is replaced by
a power of p, or if E is replaced by a higher-dimensional abelian variety.)

(c) The first equality is the definition of Selp. The second equality is the injectivity of β. �

17. The p∞-Selmer group

From (3) one can extract a short exact sequence

0 −→ E(Q)

nE(Q)
−→ SelnE −→X[n] −→ 0.

Setting n = pe and taking the direct limit over e yields a short exact sequence

(SeqE) 0 −→ E(Q)⊗ Qp

Zp
−→ Selp∞ E −→X[p∞] −→ 0

in which each term is a Zp-module of the form
(
Qp

Zp

)s
⊕ F for some s ∈ Z≥0 and finite

abelian p-group F . Knowing the distribution of (SeqE) among isomorphism types of short
exact sequences of Zp-modules would be much better than knowing just the distribution of
dim Selp, because (SeqE) contains information also about the rank of E(Q) and about X.

18. The orthogonal Grassmannian

In Section 15, we defined OGrn(Fp) ⊆ Grn,2n(Fp) using the standard hyperbolic quadratic
form Q.

Now replace Fp by an arbitrary commutative ring A. For any n ≤ m, the Grassmannian
Grn,m is a smooth projective scheme over Z such that

Grn,m(A) = {locally free rank n A-submodules Z ≤ Am : Z is a direct summand}

functorially in A, so define

OGrn(A) := {Z ∈ Grn,2n(A) : Q|Z = 0}.

It turns out that OGrn is a smooth projective scheme over Z with two connected components
[SGA 7II, XII, Proposition 2.8]. A classical fact, valid over any field k, states that Z,Z ′ ∈
OGrn(k) lie in the same component if and only if dim(Z ∩ Z ′) ≡ n (mod 2).

By smoothness, the fibers of OGrn(Z/pe+1Z)→ OGrn(Z/peZ) have constant size, so the
uniform probability measures on these finite sets induce a probability measure on the inverse
limit

OGrn(Zp) = lim←−
e

OGrn(Z/peZ).
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19. Model

Let V := Z2n
p . There is no interesting information in the choice of one element of OGrn(Zp),

since it turns out that the orthogonal group O2n(Zp) of Q acts transitively on OGrn(Zp).
Therefore we choose two. One of them might as well be W := Znp ×{0}; the other one, Z, we
sample at random from OGrn(Zp). Form the random short exact sequence

0 −→ (Z ∩W )⊗ Qp

Zp︸ ︷︷ ︸
R

−→
(
Z ⊗ Qp

Zp

)
∩
(
W ⊗ Qp

Zp

)
︸ ︷︷ ︸

S

−→ T −→ 0

which defines R and S as shown, and then T := S/R.

Theorem 19.1 ([BKL+13, Theorem 1.2]). The limit as n → ∞ of the distribution of
0→ R→ S → T → 0 exists.

Conjecture 19.2 ([BKL+13, Conjecture 1.3]). The limit distribution equals the distribution
of SeqE for E ∈ E .

Loosely speaking, the conjecture is that R models the rank (or rational points), S models
the Selmer group, and T models the Tate–Shafarevich group.

20. Consequences of the conjecture

20.1. Consequences for rank. Let ZQp
:= Z ⊗Zp Qp, and so on. We have

(Z ∩W )⊗ Qp

Zp
=

(
Qp

Zp

)r
where

r := dimQp(ZQp ∩WQp) ≈

0, for Z in one component of OGrn,

1, for Z in the other component of OGrn,

where ≈ means “equal for Z outside a lower-dimensional locus”. (The set of Zp-points of a
lower-dimensional locus has measure 0.)

Corollary 20.1. Conjecture 19.2 implies that 50% of elliptic curves have rank 0 and 50% of
elliptic curves have rank 1.

20.2. Consequences for Selpe. Fix a prime p. By the Hilbert irreducibility theorem,
E[p](Q) = 0 for 100% of elliptic curves E. In this case, one can show that Selpe E =

(Selp∞ E) [pe].

Corollary 20.2. Conjecture 19.2 implies that the distribution of Selpe E for E ∈ E is the
limit as n→∞ of the distribution of Z ∩W for random Z,W ∈ OGrn(Z/peZ).
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In particular, Conjecture 19.2 is compatible with Conjecture 15.1. Corollary 20.2 is
compatible also with the theorems of Bhargava and Shankar [BS13a,BS13b,BS13c,BS13d]
on the average size of Selpe E for pe ≤ 5.

20.3. Consequences for X. In the model, elementary group theory shows that R is always
the maximal divisible subgroup of S, and T is always finite.

Corollary 20.3. Conjecture 19.2 implies that X[p∞] is finite for 100% of elliptic curves.

When speaking of Shafarevich–Tate groups, it is natural to condition on the rank of E(Q).
There are three descriptions of a distribution supported on the set of finite abelian p-groups
G, each conjectured to be the distribution of X[p∞] as E varies over elliptic curves of rank r!

1. Delaunay [Del01,Del07,DJ13], in analogy with the Cohen–Lenstra heuristics for class
groups [CL84], proposed the distribution in which G occurs with probability

#G1−r

# Aut(G, [ , ])

∞∏
i=r+1

(
1− p1−2i

)
,

where [ , ] := G × G → Qp/Zp denotes any nondegenerate alternating pairing (if no
such [ , ] exists, the probability should be 0).

2. The paper [BKL+13] proposes the limit as n→∞ of the distribution of

coker(A : Z2n+r
p → Z2n+r

p )tors

for a random A ∈ M2n+r(Zp) such that AT = −A and rankA = 2n. This is analogous
to the Friedman–Washington interpretation [FW89] of the Cohen–Lenstra heuristics
for class groups.

3. Conjecture 19.2 suggests the limit as n → ∞ of the distribution of the group T in
the model, when Z is sampled from the locus in OGrn(Zp) where rank(Z ∩W ) = r.
(Strictly speaking, this sampling makes sense only for r = 0, 1, the problem being that
the locus has measure 0 if r ≥ 2. But there is a natural variant of Conjecture 19.2
involving a probability measure supported on that locus for each r ≥ 2.)

Happily, the three distributions coincide for each r ≥ 0 [BKL+13, Theorems 1.6 and 1.10].
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