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1. Course outline

This course will consist of two roughly independent topics.

1.1. Bertini theorems and the closed point sieve. The classical Bertini theorems over an
infinite field k state that if a subscheme X ⊆ Pn

k has a certain property (smooth, geometrically
irreducible, geometrically reduced), then a sufficiently general hyperplane section over k has
the property too. If k is finite, however, such statements can fail: for example, if X is smooth,
it can happen that all of the finitely many hyperplanes H in Pn

k are tangent to X; in this
case H ∩X is never smooth.

The paper [Poo04] proved a Bertini smoothness theorem over finite fields, in which
hyperplanes were replaced by hypersurfaces of degree d tending to ∞. For fixed d, consider
the probability pd that the intersection of a random degree d hypersurface H with the given
smooth X is smooth; the result is that limd→∞ pd is a special value of the zeta function of X,
and in particular is positive.

Here is the idea. Smoothness can be tested one closed point at a time.
At a degree e closed point x of X, if d is large enough, then the probability that H ∩X

is singular at x turns out to be q−e(m+1), where m := dimX. Heuristically, these conditions
at different x are independent, so after sieving out such H for all closed points x ∈ X,
the fraction remaining should be

∏
closed x∈X

(
1− q−e(m+1)

)
. The hard part is to make this

rigorous even though infinitely many x are involved.
More recently, the paper [CP13] proved a Bertini irreducibility theorem over finite fields.

This can no longer be done with a sieve over closed points, since irreducibility cannot be
tested locally, but ultimately it again boils down to a counting problem: how many nontrivial
sums of effective divisors D1 +D2 are there on X resulting in a hypersurface section?

The course will explain how to use these techniques, with an eye towards the open problems
in the project.

1.2. Selmer group heuristics. Given an elliptic curve E over a global field k, and a positive
integer n, the n-Selmer group SelnE is a computable finite abelian group that provides an
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upper bound for E(k)/nE(k). More precisely, there is an exact sequence

0→ E(k)

nE(k)
→ SelnE →X[n]→ 0,

where X is the Shafarevich–Tate group of E and X[n] := {x ∈X : nx = 0}. Letting n run
through powers of a prime p and taking the direct limit leads to an exact sequence

(1) 0→ E(k)⊗ Qp

Zp

→ Selp∞ E →X[p∞]→ 0.

Whereas the order of SelnE was only an upper bound for nrkE(k), the structure of the group
Selp∞ E determines the rank of E(k) exactly, if one assumes the conjecture that X is finite.

What is the distribution of Seln E among abelian groups as E varies over, say, all elliptic
curves over k? What is the distribution of (1) among all short exact sequences of abelian
groups? There is now a conjectural answer to both these questions [PR12,BKL+13], compat-
ible with the few theorems that have been proved in special cases [HB93,HB94,dJ02,SD08,
Kan13,BS10a,BS10b], and compatible with other conjectures that have been made over the
years [Gol79,KS99a,KS99b,Del01,Del07,DJ13]. The heuristic also bears a connection to the
Cohen–Lenstra heuristics [CL84] as reinterpreted in [FW89] and [VE10, Section 4.1].

2. Project

The project will be to develop new Bertini-type results over finite fields:

(1) Generalize the Bertini smoothness theorem to a setting where the given smooth variety
X is defined over a finite field that is larger than the field over which the hypersurfaces
are taken. (The analogue for the Bertini irreducibility theorem is done in [CP13], and
some partial results for smoothness are there too.)

(2) The Bertini irreducibility theorem over finite fields states the fraction of bad hyper-
surfaces tends to 0 as the degree d tends to ∞ [CP13]. Can one refine the counting
argument to obtain an explicit upper bound in terms of d, or perhaps even an
asymptotic formula?

(3) Prove a Bertini irreducibility theorem over finite fields in the setting where the
hypersurface is required to contain a certain subvariety. That is, combine [CP13] and
[Poo08].

(4) Prove a “semiample version” of the Bertini irreducibility theorem over finite fields.
That is, combine [CP13] and [EW12].

(5) Formulate and prove a Bertini reducedness theorem over finite fields. (For the Bertini
reducedness theorem over infinite fields, see [Jou83, Théorème 6.3(3)].)

Prerequisite: At least a semester of graduate-level algebraic geometry, including familiarity
with the language of schemes.
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