
RATIONAL POINTS AND OBSTRUCTIONS TO THEIR EXISTENCE
2015 ARIZONA WINTER SCHOOL PROBLEM SET

KĘSTUTIS ČESNAVIČIUS

The primary goal of the problems below is to build up familiarity with some useful lemmas and
examples that are related to the theme of the Winter School. In case you get stuck on any particular
question, consult the extended version of the problem set.

Notation. For a field k, we denote by k a choice of its algebraic closure, and by ks Ă k the
resulting separable closure. If k is a number field and v is its place, we write kv for the corresponding
completion. If k “ Q, we write p ď 8 to emphasize that p is allowed be the infinite place; for this
particular p, we write Qp to mean R. For a base scheme S and S-schemes X and Y , we write XpY q
for the set of S-morphisms Y Ñ X. When dealing with affine schemes we sometimes omit Spec for
brevity: for instance, we write BrR in place of BrpSpecRq. A ‘torsor’ always means a ‘right torsor.’

Acknowledgements. I thank the organizers of the Arizona Winter School 2015 for the opportunity
to design this problem set. I thank Alena Pirutka for helpful comments.

1. Rational points

In this section, k is a field and X is a k-scheme. A rational point of X is an element x P Xpkq, i.e.,
a section x : Spec k Ñ X of the structure map X Ñ Spec k.

1.1. Suppose that X “ Spec krT1,...,Tns

pf1,...,fmq
. Find a natural bijection

Xpkq ÐÑ tpx1, . . . , xnq P k
n such that fipx1, . . . , xnq “ 0 for every i “ 1, . . . ,mu.

1.2. (a) Prove that the image of a rational point x : Spec k Ñ X is necessarily a closed point of
the underlying topological space of X; in fact, prove that x is a closed immersion.

(b) Deduce a strengthening of the first part of (a): for any finite extension L{k, the image
of any k-morphism SpecLÑ X is a closed point of the underlying topological space of
X. In particular, a point x P X whose residue field kpxq is a finite extension of k is a
closed point.

(c) Prove a partial converse: if X is locally of finite type over k and x P X is a closed point,
then the residue field kpxq is a finite extension of k.

1.3. If k is finite and X is of finite type, prove that Xpkq is finite.

1.4. Use 1.2. (a) to prove that every k-group scheme G is necessarily separated.

1.5. Suppose that X is of finite type over k and connected. If X has a rational point, prove that
X is geometrically connected, i.e., that the base change Xk is still connected.
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1.6. Suppose that X is smooth over k and nonempty. Prove that there is a closed point x P X
with kpxq{k finite separable; in fact, prove that such x are Zariski dense.

1.7. Let o be the ring of integers of a finite extension of Qp, and let F be the residue field of
o. Prove Hensel’s lemma: for a smooth o-scheme X , the pullback map X poq Ñ X pFq is
surjective, i.e., every F-point of X may be lifted to an o-point.

1.8. Suppose that k is a finite extension of Qp and that X is of finite type, irreducible, and extends
to a smooth o-scheme X of finite type whose special fiber is nonempty. Prove that the points
of X valued in unramified extensions of k are Zariski dense.

1.9. Suppose that X is of finite type over k and regular. Prove that every rational point
x : Spec k Ñ X factors through a k-smooth open subscheme U Ă X.

2. Rational points on torsors

In this section, k is a field and G is a k-group scheme of finite type.

‚ A right action of G on a k-scheme X is a morphism X ˆk G Ñ X that induces a right
GpSq-action on XpSq for every k-scheme S.

‚ A trivial torsor under G is a k-scheme X equipped with the right action of G such that X is
isomorphic to G equipped with its right translation action (the isomorphism is required to
respect the actions of G). A choice of such an isomorphism is a trivialization of X.

‚ A torsor under G (or a G-torsor) is a k-scheme X equipped with a right action of G such
that for some finite extension k1{k the base change Xk1 is a trivial torsor under Gk1 .

If G is commutative and smooth (smoothness is automatic if char k “ 0), then there is a bijection

tisomorphism classes of G-torsors Xu ÐÑ H1pk,Gpksqq. (‹)

2.1. For a G-torsor X, find a natural bijection

ttrivializations of Xu ÐÑ trational points x P Xpkqu.

2.2. If G fits into a short exact sequence 1 Ñ GÑ H Ñ QÑ 1 of k-group schemes of finite type
and x P Qpkq, prove that the fiber Hx :“ H ˆQ,x Spec k is a G-torsor. When is it trivial?

2.3. For a, b P kˆ, prove that G :“ Spec
´

krx,ys
px2´ay2´1q

¯

has a structure of a k-group scheme and

X :“ Spec
´

krx,ys
px2´ay2´bq

¯

has a structure of its torsor.

2.4. Prove that every Gm-torsor over k is trivial. Prove the same for Ga-torsors. Deduce that
every G-torsor is trivial if G admits a filtration whose subquotients are either Gm or Ga.

2.5. If G is smooth, prove that every G-torsor trivializes over a finite separable extension k1{k.

2.6. Suppose that the field k is finite.

(a) If G is an abelian variety, prove that every G-torsor is trivial.

(b) If X is a proper smooth geometrically connected k-curve of genus 1, prove that Xpkq ‰ H.

2.7. Suppose that k is a finite extension of Qp and that A is a nonzero abelian variety over k.
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(a) Prove that up to isomorphism there are only finitely many A-torsors X for which the
associated class in H1pk,Aq is killed by an integer that is prime to p.

(b) Prove that up to isomorphism there are infinitely many A-torsors.

2.8. Suppose that k is a finite extension of Qp. Let E be an elliptic curve over k, and let X be a
torsor under E. The period of X is the order n of the corresponding class in H1pk,Eq. The
index of X is the greatest common divisor of the degrees of closed points on X. Lichtenbaum
has proved in [Lic68, Thm. 3] that period equals index under our assumptions. Assuming
Lichtenbaum’s result, prove that X even has a closed point of degree n.

3. Brauer groups

In this section, X is a scheme.

‚ An Azumaya algebra over X is a coherent OX -algebra A such that for some étale cover
tfi : Xi Ñ Xu there are OXi-algebra isomorphisms f˚i A – MatniˆnipOXiq for some ni P Zą0.

‚ Azumaya algebras A and A 1 over X are similar if there is an OX -algebra isomorphism

A bOX
EndOX

pE q – A 1 bOX
EndOX

pE 1q

for some locally free coherent OX -modules E and E 1 that are stalkwise nonzero.

‚ The set of similarity classes of Azumaya algebras over X forms an abelian group with ´bOX
´

as the group operation. This Azumaya Brauer group of X is denoted by BrAzX.

‚ The Brauer group of X is BrX :“ H2
étpX,Gmq.

‚ If X is regular, Noetherian, and has an ample invertible sheaf (in the sense of [EGA II, 4.5.3]),
then BrAzX “ BrX and both of these groups are torsion, see [Gro68, Prop. 1.4] and
[dJ, Thm. 1.1]. For example, this holds if X is a smooth quasi-projective scheme over a field.

Caution. Some authors use different definitions! For example, instead of meaning BrX the term
the Brauer group of X may mean either BrAzX or pBrXqtors.

3.1. Prove that similarity of Azumaya algebras over X is an equivalence relation.

3.2. Prove that an Azumaya algebra A over X is in particular a locally free OX -module whose
rank at every point x P X is a square. Deduce that for every fixed n P Zą0, the locus where
the rank of A is n2 is an open and closed subscheme of X.

3.3. Suppose that X “ Spec k with k a field.

(a) Find a natural bijection

tPGLn-torsors over Xu{ » ÐÑ tAzumaya algebras over X of rank n2u{ » .

(On both sides, “{ »” means “up to isomorphism.”)

(b) Find the following maps:

H1pk,PGLnq ãÑ H2pk, µnq
„
ÝÑ pBr kqrns.

Combine them with (a) to prove that every Azumaya k-algebra gives an element of Br k.

3.4. Prove that if a field k is a filtered union of its subfields ki, then

Br k “ lim
ÝÑ

Br ki.
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3.5. Prove that the Brauer group of a finite field is trivial.

3.6. If k is a finite extension of Qp and o is its ring of integers, prove that Br o “ 0.

3.7. If K is a number field and Kab is its maximal abelian extension, prove that BrKab “ 0.

3.8. Let R be a discrete valuation ring and K its field of fractions.

(a) Prove that H1pR,PGLnq Ñ H1pK,PGLnq has trivial kernel, i.e., that there is no
nontrivial pPGLnqR-torsor T whose base change to K is trivial.

(b) Prove that BrRÑ BrK is injective.

3.9. (a) Prove that BrZ “ 0.

(b) For a proper smooth curve X over a finite field, prove that BrX “ 0.

3.10. Recall Tsen’s theorem: if kpXq is the function field of an integral curve X over an algebraically
closed field k, then Br kpXq “ 0.

Prove that if k is a perfect field, then Br k Ñ BrP1
k is an isomorphism.

3.11. Suppose that X is equipped with a structure map f : X Ñ Spec k for some field k.

(a) If Xpkq ‰ H, prove that Br k
Brpfq
ÝÝÝÑ BrX is injective.

(b) If k is a number field and
ś

vXpkvq ‰ H, prove that Br k
Brpfq
ÝÝÝÑ BrX is injective even

when Xpkq “ H.

4. The Hasse principle

In this section, K is a number field and X is a K-scheme of finite type. A rational point x P XpKq
gives rise to local points xv P XpKvq, one for each place v of K. In particular,

XpKq ‰ H ùñ
ś

vXpKvq ‰ H.

One may wonder whether the existence of local points forces the existence of a global point:
ś

vXpKvq ‰ H
?
ùñ XpKq ‰ H.

If it does, then X satisfies the Hasse principle. If it does not, then X violates the Hasse principle.

4.1. (a) Prove that Proj
´

Qrx,ys
px2´ay2q

¯

satisfies the Hasse principle for every a P Qˆ.

(b) Prove that Proj
´

Krx,ys
px2´ay2q

¯

satisfies the Hasse principle for every a P Kˆ.

(c) Prove that Proj
´

Qp
?

7qrx,ys
px8´16y8q

¯

violates the Hasse principle (over Qp
?

7q).

4.2. Prove that Z{nZ-torsors over K satisfy the Hasse principle.

4.3. A Severi–Brauer variety over K is a K-scheme S for which there is a Ks-isomorphism
SKs – Pn

Ks for some n ě 0.

(a) Find a natural bijection

tpPGLn`1qK-torsorsu{ » ÐÑ tn-dimensional Severi–Brauer varieties over Ku{ » .

(On both sides, “{ »” means “up to isomorphism.”)
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(b) Prove that an n-dimensional Severi–Brauer variety S is isomorphic to Pn
K if and only if

SpKq ‰ H.

(c) Prove that Severi–Brauer varieties satisfy the Hasse principle.

4.4. The goal of this question is to work out an example of Lind [Lin40] and Reichardt [Rei42]:

X :“ Proj
´

Qrx,y,zs
px4´17y4´2z2q

¯

, where the grading has x and y in degree 1 and z in degree 2,

violates the Hasse principle; in other words, x4 ´ 17y4 “ 2z2 has a nonzero solution in Qp for
every p ď 8, but does not have any nonzero solution in Q.

(a) Prove that X is a smooth geometrically connected curve of genus 1.

(b) Prove that x4 ´ 17y4 “ 2z2 has a nonzero solution in Fp for every prime p R t2, 17u.

(c) Prove that XpQpq ‰ H for every prime p R t2, 17u.

(d) Use the 2-adic logarithm to prove that XpQ2q ‰ H. Prove that XpQ17q ‰ H by
exploiting the fact that 17 splits in Qp

?
2q. Observe that XpRq ‰ H.

(e) Prove that XpQq “ H.

5. The Brauer–Manin obstruction

In this section, K is a number field, AK is its ring of adeles, and X is a separated K-scheme of finite
type, so that XpAKq Ă

ś

vXpKvq (see 5.1. (d)).

‚ The Brauer–Manin set of X is

XpAKq
Br :“ tpxvqv P XpAKq for which

ř

v invvpx
˚
vpBqq “ 0 for every B P BrXu.

The Brauer–Manin set fits into inclusions

XpKq Ă XpAKq
Br Ă XpAKq Ă

ś

vXpKvq.

‚ If
ś

vXpKvq ‰ H but XpAKq
Br “ H, so that necessarily XpKq “ H, then X has a Brauer–

Manin obstruction to the local-global principle. In this case, the absence of rational points of
X is explained by the emptiness of the Brauer–Manin set.

The aim of the first few questions is to solidify the understanding of these ideas.

5.1. (a) Prove that there is a nonempty open U Ă SpecOK and a separated U -scheme X of
finite type for which one may fix an isomorphism XK – X. Prove uniqueness of X up to
shrinking U : if X Ñ U and X 1 Ñ U 1 both extend X, then the composite isomorphism
XK – X – X 1K extends to an isomorphism XU2 – X 1U2 for some nonempty open
U2 Ă U X U 1.

(b) With X as in (a), prove that the restricted product
ś1

vpXpKvq,X pOvqq is an independent
of X subset of

ś

vXpKvq.

(c) For an X as in (a) and each finite set of places Σ containing the places that do not
correspond to a closed point of U , prove that pullback maps induce an isomorphism

X p
ś

vPΣKv ˆ
ś

vRΣ Ovq
„
ÝÑ

ś

vPΣ X pKvq ˆ
ś

vRΣ X pOvq.

(d) Using (b) to interpret the restricted product, prove that XpAKq “
ś1

vXpKvq.
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(e) If X is proper, prove that XpAKq “
ś

vXpKvq.

5.2. For an pxvq P XpAKq Ă
ś

vXpKvq and a B P BrX, prove that invvpx
˚
vpBqq “ 0 for all but

finitely many v.

5.3. Prove that XpKq Ă XpAKq
Br.

5.4. Suppose that f : X Ñ X 1 is a morphism of separated K-schemes of finite type.

(a) Prove that fpAKq : XpAKq Ñ X 1pAKq maps XpAKq
Br into X 1pAKq

Br.

(b) Assume that
ś

vXpKvq ‰ H, so that necessarily
ś

vX
1pKvq ‰ H. If X 1 has a Brauer–

Manin obstruction to the local–global principle, prove that so does X.

5.5. Recall that eachXpKvq has a “v-adic topology” inherited fromKv: ifX has a closed immersion
into some An, then the v-adic topology on XpKvq is just the subspace topology of the v-adic
topology on AnpKvq “ Kn

v ; in general, the v-adic topology on XpKvq is described by also
requiring that UpKvq Ă XpKvq be open for each affine open U Ă X. The identification
XpAKq “

ś1XpKvq of 5.1. (d) then endows XpAKq with the restricted product topology.

For (a), (b), and (c) below, suppose that the separated finite type K-scheme X is regular.

(a) For a Brauer class B P BrX and a place v, prove that the map

XpKvq Ñ Q{Z, xv ÞÑ invvpx
˚
vBq

is locally constant for the v-adic topology on XpKvq.

(b) Prove that the evaluation of a Brauer class B P BrX defines a continuous map

XpAKq Ñ Q{Z, pxvq ÞÑ
ř

v invvpx
˚
vBq,

where Q{Z is endowed with the discrete topology.

(c) Prove that XpAKq
Br is closed in XpAKq.

5.6. The goal of this question is to work out an example of Birch and Swinnerton-Dyer [BSD75]:

X :“ Proj

ˆ

Qru, v, x, y, zs
puv ´ x2 ` 5y2, pu` vqpu` 2vq ´ x2 ` 5z2q

˙

has a Brauer–Manin obstruction to the local-global principle. In other words, XpQpq ‰ H

for every p ď 8 but XpAQq
Br “ H, so that XpQq “ H, too.

(a) Prove that X is a smooth, projective, geometrically connected surface over Q.

(b) A smooth, projective, geometrically connected surface Y over a field k is a del Pezzo
surface if the line bundle ω´1

Y {k is ample, where ωY {k “
Ź2 Ω1

Y {k. Prove that X is a del
Pezzo surface over Q.

(c) The degree of a del Pezzo surface Y Ñ Spec k is the self-intersection number of the
canonical line bundle ωY {k. Prove that the degree of X is 4.

(d) Verify that the points

p0 : 0 :
?

5 : 1 : 1q, p1 : 1 : 1 : 0 :
?
´1q,

p1 : 0 : 0 : 0 : 1?
´5
q, p´5 : 1 : 0 : 1 :

b

´12
5 q

lie on X. Use these points to prove that XpQpq ‰ H for every p ď 8.
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(e) Let F be the function field of X. Use the cup product

p , q : H1pF,Z{2Zq ˆH1pF, µ2q Ñ H2pF, µ2q “ pBrF qr2s

to make sense of the following 2-torsion classes in BrF :

p5, u`vu q, p5, u`vv q, p5, u`2v
u q, p5, u`2v

v q.

(f) For a suitable finite extension F 1{F , use the projection formula

p ¨ ,NormF 1{F p´qq “ NormF 1{F ppResF 1{F p¨q,´qq

to prove that p5, u`vu q “ p5,
u`v
v q “ p5,

u`2v
u q “ p5, u`2v

v q in BrF .

(g) Admit the existence and exactness of the residue sequences

0 Ñ BrU Ñ BrF Ñ
À

uPUp1q H1pkpuq,Q{Zq,
in which U Ă X is a nonempty open, the direct sum is indexed by height 1 points u P U ,
the residue field of u is denoted by kpuq, and the maps BrF Ñ H1pkpuq,Q{Zq do not
depend on the choice of an open U containing u. Use these sequences to prove that the
element b P BrF exhibited in (f) extends to a B P BrX.

(h) If p ď 8 is a prime different from 5 and xp P XpQpq, prove that invppx
˚
pBq “ 0.

(i) If x5 P XpQ5q, prove that inv5px
˚
5Bq “

1
2 .

(j) Prove that XpAQq
Br “ H.

6. The étale Brauer–Manin obstruction

As in §5, we assume that K is a number field and X is a separated K-scheme of finite type.

‚ For an X-group scheme G and G-torsors Y Ñ X and Y 1 Ñ X, the isomorphism functor
IsomGpY, Y

1q is the fppf sheaf

S ÞÑ tGS-torsor isomorphisms YS
„
ÝÑ Y 1Su, where S is a variable X-scheme.

If G Ñ X is affine, then IsomGpY, Y
1q is representable1 by an X-scheme that is X-affine.

‚ The étale Brauer–Manin set of X is

XpAKq
ét,Br :“

č

G and YÑX

ď

rT sPH1pK,Gq

Im
´

pIsomGX
pY, TXqpAKqq

Br
Ñ XpAKq

¯

,

where the intersection is taken over the isomorphism classes of finite étale K-group schemes
G and over the isomorphism classes of GX -torsors Y Ñ X, and the union is taken over the
isomorphism classes of G-torsors T . The étale Brauer–Manin set fits into inclusions

XpKq Ă XpAKq
ét,Br Ă XpAKq

Br Ă XpAKq Ă
ś

vXpKvq.

‚ If
ś

vXpKvq ‰ H but XpAKq
ét,Br “ H, so that necessarily XpKq “ H, then X has an étale

Brauer–Manin obstruction to the local-global principle.

The questions below are intended to help internalize the above notions.

6.1. Let G be an X-group scheme, and let Y Ñ X and Y 1 Ñ X be G-torsors.

1If G Ñ X is not assumed to be affine, then IsomGpY, Y 1
q is only representable by an algebraic space. This is “good

enough” for most practical purposes.
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(a) Consider the automorphism functor AutGpY q:

S ÞÑ tGS-torsor isomorphisms YS
„
ÝÑ YSu, where S is a variable X-scheme.

Prove that AutGpY q is a sheaf on the fppf site of X.

(b) If G Ñ X is affine, prove that AutGpY q is representable by an X-scheme that is X-affine.

(c) Prove that IsomGpY, Y
1q is an AutGpY q-torsor fppf sheaf.

(d) If G Ñ X is affine, prove that IsomGpY, Y
1q is representable by an X-scheme that is

X-affine.

6.2. (a) If G is a finite étale K-group scheme, T Ñ SpecK is a G-torsor, and Y Ñ X is a
GX -torsor, prove that IsomGX

pY, TXq Ñ X is finite étale. Conclude that IsomGX
pY, TXq

is a separated K-scheme of finite type, so that pIsomGX
pY, TXqpAKqq

Br makes sense.

(b) Prove that XpAKq
ét,Br Ă XpAKq

Br.

6.3. Prove that XpKq Ă XpAKq
ét,Br.

6.4. Suppose that f : X Ñ X 1 is a morphism of separated K-schemes of finite type.

(a) Prove that fpAKq : XpAKq Ñ X 1pAKq maps XpAKq
ét,Br into X 1pAKq

ét,Br.

(b) Assume that
ś

vXpKvq ‰ H, so that necessarily
ś

vX
1pKvq ‰ H. If X 1 has an étale

Brauer–Manin obstruction to the local–global principle, prove that so does X.
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