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1. Course Outline

The qualitative features of the arithmetic of curves is strongly governed by geometry.
Elliptic curves form a fascinating class of varieties to study because they are varieties “of
intermediate type”, i.e., they are neither (geometrically) birational to P1, nor are they vari-
eties of general type. K3 surfaces occupy a similar place in the theory of surfaces. This class
of surfaces includes double covers of P2 ramified over a sextic plane curve, quartic surfaces
in P3, and complete intersections of three quadrics in P5. The last fifteen years have seen a
surge of activity on the arithmetic of K3 surfaces. The goal of this course is to survey some
of these developments, with an emphasis on explicit methods and examples.

Geometry of K3 surfaces. We will start with a crash course (light on proofs) on the geom-
etry of K3 surfaces: topological properties, including the lattice structure of H2(X,Z) and
simple connectivity; the period point of K3 surface, the Torelli theorem and surjectivity of
the period map. Good references for this material include [BHPVdV04, Ch. VIII] and [LP80].

Potential Density. A variety X over a number field k is said to satisfy potential density
if there is a finite extension L/k such that X(L) is Zariski dense in X. After a quick survey
of some known results for several classes of varieties, we will explain work of Bogomolov
and Tschinkel that shows that K3 surfaces X endowed with an elliptic fibration or with an
infinite automorphism group satisfy potential density [BT98,BT99,BT00,Has03].

Picard groups. It is known that over a number field k, the (geometric) Picard group Pic(X)
of a projective K3 surface X is a free Z-module of rank 1 ≤ ρ(X) ≤ 20. Determining ρ(X)
for a given K3 surface is a difficult task; we will explain how work of van Luijk, Kloosterman,
Elsenhans-Jahnel and Charles [vL07,Klo07,EJ11,Cha14] solves this problem.

Brauer Groups. The Galois module structure of Pic(X) allows one to compute an im-
portant piece of the Brauer group Br(X) = H2(Xet,Gm) of a locally solvable K3 surface X,
consisting of the classes of Br(X) that are killed by passage to an algebraic closure (mod-
ulo Brauer classes coming from the ground field). These classes can be used to construct
counter-examples to the Hasse principle on K3 surfaces via Brauer-Manin obstructions, a
topic which will dovetail with Viray’s course.

For surfaces of negative Kodaira dimension (e.g., cubic surfaces), we have Br1(X) =
Br(X), so the algebraic Brauer group already gives all the information needed to determine
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Brauer-Manin obstructions to the Hasse principle and weak approximation. In contrast, for
a K3 surface X, we know that Br(X(C)) ∼= (Q/Z)22−ρ. However, a remarkable theorem of
Skorobogatov and Zarhin [SZ08] says that over a number field the quotient Br(X)/Br(k) is
finite! The remainder of the course will be devoted to ongoing work by several authors on
the computation of the non-algebraic Brauer classes on K3 surfaces, and their impact on the
arithmetic of such surfaces [HVAV11,HVA13,MSTVA14].

2. Project Description

2.1. Diagonal K3 surfaces of degree 2. The goal of this project is to understand the
geometric Picard group, as a Galois module, of certain double covers of P2 ramified along
a sextic. More concretely, over a number field k, we want to study the hypersurface in the
weighted projective space P(1, 1, 1, 3) = Proj k[x, y, z, w] given by

XA,B,C,D/k : w2 = Ax6 +By6 + Cz6 +Dx2y2z2

for some A,B, C and D ∈ k×.

(1) What is the rank of Pic(XA,B,C,D)? Note that to compute this number we may assume
that A = B = C = 1. What upper bounds are suggested by reduction modulo 3 and
point counting?

(2) The double cover map π : XA,B,C,D → P2
k = Proj k[x, y, z] gives us a large supply of

divisors on XA,B,C,D, namely, the components of the pullback of a line in P2
k tritangent

to the branch curve Ax6+By6+Cz6+Dx2y2z2 = 0. What is the rank of the sublattice
of Pic(XA,B,C,D) generated by these divisors? Does it equal ρ(XA,B,C,D)? If so, is the
sublattice saturated, i.e., is it all of the Picard group? If not, what are the missing
divisor classes?

(3) What is the Galois module structure of Pic(XA,B,C,D)? The answer should depend

on A, B, C and D. What is the group H1(Gal(k/k),Pic(XA,B,C,D))?

(4) The Hochschild-Serre spectral sequence gives rise to an isomorphism

Br1(XA,B,C,D)/Br0(XA,B,C,D)
∼−→ H1(Gal(k/k),Pic(XA,B,C,D)),

where Br1(XA,B,C,D) = ker
(
Br(XA,B,C,D)→ Br(XA,B,C,D)

)
is the algebraic Brauer

group, and Br0(XA,B,C,D) = im (Br(k)→ Br(XA,B,C,D)) is the subgroup of constant
algebras. Can you invert this map and produce central simple algebras over the func-
tion field k(XA,B,C,D) that represent nonconstant algebraic classes in Br(XA,B,C,D)?
Can you use these classes to give examples of Brauer-Manin obstructions to weak
approximation or the Hasse principle? The paper [VA08, §3] could be of help here.

(5) Specialize to k = Q. Look at the “box”

B := {(A,B,C,D) ∈ Z4 : |A|, |B|, |C|, |D| ≤ 100}.
For which (A,B,C,D) ∈ B is there an algebraic obstruction to the Hasse principle
on XA,B,C,D? If there is no obstruction, can you find a rational point on XA,B,C,D?

(6) Can you construct a cubic fourfold containing a plane having X as its associated K3
surface? See [HVAV11] for details on this construction. If so, can you construct a
transcendental element of Br(X)[2] as a quaternion algebra over the function field
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k(X)? How about transcendental elements in Br(X)[2] arising from K3 surfaces of
degree 8? See [MSTVA14] for the geometry involved here.

2.2. Twisted derived equivalence and rational points. The goal of this project is to
explore a recent question coming out of work of Hassett and Tschinkel. FYI: You don’t have
to know much about twisted derived categories to work on this project! However, a good
understanding of the paper [HVA13] would be most helpful.

Question 2.1. Let X and Y be locally solvable K3 surfaces over a number field, and suppose
there is an equivalence of twisted derived categories Db(X,α) ∼= Db(Y, β) for some α ∈ Br(X)
and β ∈ Br(Y ). Assume that α obstructs the Hasse principle on X. Is Y (k) = ∅?

Here is a concrete instance where we can explore this problem: Let W be a double cover
of P2 × P2 ramified along a type (2, 2) divisor. The two projections πi : Y → P2 (i = 1, 2)
give quadric bundle fibrations, and the degeneracy locus of this fibration is a plane sextic in
P2. Taking the double cover of P2 ramified along the branch locus of πi gives a K3 surface.
We thus obtain two K3 surfaces X and Y out of W . In [HVA13] we explain how to use W to
construct elements α ∈ Br(X)[2] and β ∈ Br(Y )[2]. It turns out that Db(X,α) ∼= Db(Y, β).
This way we get a good supply of surfaces on which to test Question 2.1. Our goal is then
to

(1) Produce a supply of (X,α) and (Y, β) as above over Q, in such a way that X(Q) = ∅
on account of the class α. The delicate point here is to do this in a way that the
defining equations of W have small coefficients (this will require an implementation
of invariant calculations on 2-adic points of X). In order to do this, it’d be nice
to guarantee that ρ(X) = 1 (this will ensure that ρ(Y ) = 1, and thus there is no
“interference” from algebraic Brauer classes).

(2) For the surfaces in our catalogue, does β obstruct rational points on Y ? If not, can
we develop an efficient algorithm to search for points on K3 surfaces of degree 2?
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