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LECTURES ON APPLIED ℓ-ADIC COHOMOLOGY

PHILIPPE MICHEL

Abstract. We describe how a systematic use the deep methods from ℓ-adic cohomology pioneered
by Grothendieck and Deligne and further developed by Katz, Laumon allow to make progress on
various classical questions from analytic number theory. This text is an extended version of a series
of lectures given during the 2016 Arizona Winter School and is based first and foremost on the
works of Deligne, Katz and Laumon and on our ongoing joint work with Fouvry, Kowalski, Sawin
and others.
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1. Introduction

One of the most basic question in number theory is to understand how several subsets of integers
behave when restricted (intersected with) to congruence classes, a notion that goes back at least to
Euclid and was exposed systematically by Gauss in his 1801 Disquisitiones Arithmeticae (following
works of Fermat, Euler, wilson, Lagrange, Legendre and their predecessors from the middle ages
and antiquity), and which is fundamental to number theory.

Let us recall that given an integer q ∈ Z−{0}, a congruence class (a.k.a. an arithmetic progres-
sion) modulo q is a subset of Z of the shape

a (mod q) = a+ qZ ⊂ Z
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for some integer a. The set of congruence classes modulo q is denoted Z/qZ; it is a finite ring of
cardinality q (with addition and multiplication induced by that of Z).

In number theory, especially analytic number theory one is interested in studying the behaviour
of some given arithmetic function along congruence classes for instance to determine whether a
set of integers has finite or infinite intersection with some congruence class. The analysis of such
problem, which may involve quite sophisticated manipulations often makes certain specific classes
of functions on Z/qZ.

When studying such function it is natural to invoque the Chinese Remainder Theorem

Z/qZ ≃
∏

pα‖q

Z/pαZ

which largely reduces the study to the case of prime power moduli; then, in many instances the
deepest case is when q is a prime; the ring Z/qZ is then a finite field, de noted Fq, and the functions
that occur are called trace functions.

The tone of these lectures is utilitarian: our aim is to describe these trace functions, many exam-
ples, their theory and most importantly how they are handled when they occur in analytic number
theory. Indeed the mention of ”étale” or ”ℓ-adic cohomology”, ”sheaves”, ”purity”, ”functors”,
”local systems” or ”vanishing cycles” sounds forbidding to the working analytic number theorist
and often prevents him/her to embrasse the subject and make full use of the powerful methods that
Deligne, Katz, Laumon have developed for us. It is our hope that after these introductory lectures,
any of the remaining reader will feel ready for and at ease with more serious activities such as the
reading of wonderful series of orange books by Nick Katz and eventually will be able to tackle by
him/herself any trace function that nature has laid in front of him/her.

Acknowledgements. These expository notes are an expanded version of a series of lectures given
together with Will Sawin during the 2016 Arizona Winter School. Many thanks to Will for helping
me shaping the course and for the evening sessions as well as for our (ongoing) collaboration during
which I probably learn much more from him than he does from me. I would also like to thank the
general audience for its attention and its numerous questions during the daily lecture as well as
the teams of student who had engaged in research activities with us during the evening sessions for
their enthusiasm. Big thanks are also due to Alina Bucur, Bryden Cais and David Zureick-Brown
for the perfect organisation making this edition of the AWS a memorable experience. Last but not
least I would like express my deep gratitude to my collaborators of the first hour, Etienne Fouvry
and Emmanuel Kowalski; without them, none of this would have existed.

2. Examples of trace functions

Unless stated otherwise, we now assume that q is a prime number.

2.1. Characters. Trace functions modulo q are special classes of C-valued functions on Fq of
geometric origin. Perhaps the first significant example is the Legendre symbol

(
·
q
) : x ∈ Fq 7→





0 if x = 0

+1 if x ∈ (F×
q )

2

−1 if x ∈ F×
q − (F×

q )
2.

which detects the squares modulo q, and whose arithmetic properties (especially the quadratic
reciprocity law) where studied by Gauss in the Disquisitiones.

The class of trace function was further enriched by C. L. Dirichlet : on his way to proving his
famous theorem on primes in arithmetic progressions, he introduced what are now called Dirichlet

2



characters, i.e. the homomorphisms of the multiplicative group

χ : (Z/qZ)× → C×

which are extended by 0 to the whole of Z/qZ.
Another significant class of trace functions are the additive characters

ψ : (Z/qZ,+)→ C×.

These are all of the shape

x ∈ Z/qZ 7→ eq(ax) := exp(2πi
ãx̃

q
)

(say) for some a ∈ Z/qZ, where ã and x̃ denote elements (lifts) of the congruence classes a (mod q)
and x (mod q). Both additive and multiplicative characters satisfy the important orthogonality
relations

1

q

∑

x∈Fq

ψ(x)ψ′(x) = δψ=ψ′ ,
1

q − 1

∑

x∈Fq

χ(x)χ′(x) = δχ=χ′ ;

we will see later a generalization of these relations to arbitrary trace functions.
Additive and multiplicative characters can be combined together (by means of a Fourier trans-

form) to form the (normalized) Gauss sums

gχ(a) =
1

q1/2

∑

x∈Fq

χ(x)eq(ax),

but these are not really new functions of a: by a simple change of variable, one has

gχ(a) = χ(a)gχ(1)

for a ∈ F×
q . For χ non-trivial, Gauss proved that

|gχ(1)| = 1.

2.2. Algebraic exponential sums. Another big source of trace function comes from the study
of the diophantine equations

(2.1) Q(x) = 0, x = (x1, · · · , xn) ∈ Zn, Q(X1, · · · ,Xn) ∈ Z[X1, · · · ,Xn].

For instance the analysis of the major arcs in the Hardy-Littlewood circle method leads to the
following algebraic exponential sums on (Z/qZ)n obtained by Fourier transform

(a,x) ∈ (Z/qZ)n+1 7→ 1

qn/2

∑

y∈(Z/qZ)n

eq(aQ(y) + x.y).

In the 1926, while studying the case of a positive definite homogeneous polynomial Q of degree 2
in four variables (a positive definite integral quaternary quadratic form), and introducing a new
variant of the circle method, Kloosterman defined the so-called (normalized) Kloosterman sums

Kl(a; q) =
1

q1/2

∑

x,y∈F×

q
xy=a

eq(x+ y).

This is another example of trace function, and indeed one that is defined by a Fourier transform.
By computing the fourth moment of these sums (see [Iwa97, (4.26)]), Kloosterman was able to

obtain the first non-trivial bound for these sums, namely

|Kl(a; q)| 6 2q1/4

. This proved crucial for the study of equation (2.1) in the case of quaternary positive definite
quadratic forms. In the 1940’s, this bound was improved by A. Weil, who as a consequence of
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his proof of the Riemann hypothesis for curves over finite fields ([IK04, §11.7]) proved the best
individual upper bound:

|Kl(a; q)| 6 2.

In 1939, Kloosterman sums appeared again in the work of Petersson who related them to Fourier
coefficients of modular forms.1 Since then, via the works of Selberg, Kuznetsov, Deshouillers-
Iwaniec and many others, Kloosterman sums play a fundamental role in the analytic theory of
automorphic forms2.

A further important example of trace functions are the (normalized) hyper-Kloosterman sums.
These are higher dimensional generalisations of Kloosterman sums, and are given by

Klk(a; q) =
1

q(k−1)/2

∑

x1,··· ,xk∈F
×

q
x1.x2.··· .xk=a

eq(x1 + x2 + · · · xk).

Hyper-Kloosterman sums were introduced by P. Deligne, who also established the following gener-
alization of the Weil bound:

|Klk(a; q)| 6 k.

Hyper-Kloosterman sums can be interpreted as inverse (discrete) Mellin transforms of powers of
Gauss sums, and therefore can be used to study the distribution of Gauss sums. As was noted by
Katz in [Kat80], this fact and Deligne’s bound, imply the following3

Theorem 2.1. As q →∞, the set of (normalized) Gauss sums

{gχ(1), χ non trivial} ⊂ C1

become equidistributed on the unit circle C1 ⊂ C× with respect to the uniform measure on the circle.

Hyper-Kloosterman sums also occur in the theory of automorphic forms; for instance, Luo,
Rudnick and Sarnak used the fact that powers of Gauss sums occur in the root number of the
functional equation of certain automorphic L-function, the inverse Mellin transform property and
Deligne’s bound, to obtain non-trivial estimates for the Langlands parameters of automorphic
representations on GLn (giving in particular the first improvement of Selberg’s famous 3/16 bound
for the Laplace eigenvalues of Maass cusp forms).

In addition, just as for the classical Kloosterman sums, hyper-Kloosterman sums also occur in
the spectral thoery of GLk automorphic forms.

There are many more examples of trace functions, and we will describe below some ways to ob-
tain new trace functions from older ones. For the moment, we will just say that trace functions are
functions on the set of Fq-points of the affine lineA1

Fq
coming from geometry, or alternatively/equiv-

alently as we will see below, from Galois representation of the Galois group Gal(Fq(X)sep/Fq(X))
of the field of functions of the affine line A1

Fq
.

3. Trace functions and Galois representations

Let P1
Fq

be the projective line and A1
Fq
⊂ P1

Fq
be the affine line. Trace functions are functions

defined on the set of Fq-points A
1(Fq) ≃ Fq which are constructed from constructible ℓ-adic sheaves

relative to the étale topology on P1
Fq
, where ℓ denotes a prime number coprime to q.

The category of constructible ℓ-adic sheaves on a curve is an abelian category which can be
described rather explicitly in terms of Galois representations (see [Kat80, §4.4] and [Kat88, Chap.

1 In fact, Poincaré had already written them down in one of list papers, published posthumously.
2The double occurence of Kloosterman sums in the context of quadratic forms and of modular forms is explained

by the theta correspondence
3See [Kat12] for a considerable generalisation of this theorem.
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2]). For the moment, it will be sufficent to discuss the case of sheaves which are “lisse” on a dense
open subset of the affine line.

Let K = Fq(X) be the field of rational functions in one variable over Fq (ie. the function field
of P1

Fq
), let Ksep ⊃ K be a separable closure of K, and η the associated geometric generic point

(so that Spec(η) = Ksep). Let Fq ⊂ Ksep denote the separable (or algebraic) closure of Fq in K
sep.

We denote

Ggeom := Gal(Ksep/Fq.K) ⊂ Garith = Gal(Ksep/K),

the geometric, resp. arithmetic, Galois group. We have the following exact sequence of Galois
groups:

1→ Ggeom → Garith → Gal(Fq/Fq)→ 1.

Let x be a closed point of P1
Fq
. We denote by Ox its associated local ring, by kx its residue field,

by qx = |kx| = qdeg x the size of the latter, by Kx the field of fractions of the henselization of Ox
and by Ksep

x ←֓ Ksep a separable closure of Kx with an embedding of Ksep. To these data are
associated decomposition and inertia subgroups

Ix ⊂ Dx ⊂ Garith

fitting in the exact sequence

(3.1) 1→ Ix → Dx → Gal(Fq/kx) = 〈Frgeomkx
〉 → 1.

Here Frgeomkx
(which is denoted Frx in the sequel) denotes the geometric Frobenius element, namely

the topological generator of Gal(Fq/kx) given by the inverse of the usual Frobenius automorphism

Frarithkx : u 7→ u|kx|.

Let ℓ be a prime coprime with q and ι : Qℓ →֒ C be an algebraic closure of the field of ℓ-adic
numbers Qℓ with a fixed embedding into the complex numbers. With these definitions, we can
define the notion of a lisse ℓ-adic sheaf.4

Definition 3.1. Let U ⊂ A1
Fq

be a non-empty open subset of A1
Fq

that is defined over Fq. An

ℓ-adic sheaf lisse on U , say F, is a continuous finite- dimensional Galois representation

̺F : Garith → GL(VF)

where VF is a finite dimensional Qℓ-vector space, which is unramified at every closed point x of U ,
in the sense that the inertia subgroup Ix ⊂ Ggeom acts trivially on VF for all closed points x of U .

The dimension dimVF is called the rank of F and is denoted rk(F). The vector space VF is also
denoted Fη.

From this definition, one can import the vocabulary and constructions from representation theory.
An ℓ-adic sheaf will be said to be arithmetically irreducible, isotypic, semisimple, trivial etc...

if it is so as a representation of Garith. It will be said to be geometrically irreducible, isotypic,
semisimple, trivial etc... if its restriction to Ggeom is so.

Also one can easily form new sheaves from old ones:

– The dual sheaf D(F) is the contragredient representation D(̺F) acting on the dual space
Hom(VF,Qℓ). This sheaf is also lisse on U .

– Let H ⊂ GL(VF) be an algebraic group containing ̺F(G
arith) and let r : H → GL(V ′) be

a finite-dimensional continuous ℓ-adic representation; the composite representation r ◦ ̺F
defines an ℓ-adic sheaf, denoted r ◦ F, which lisse on U and has rank dimV ′.

4This is NOt the original definition, but this one is particularly well adapted to our utilitarian purposes, although
it wouldn’t be suitable for higher-dimensional generalizations.
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– Given another sheaf G lisse on some U ′, one can form the tensor product representation
̺F ⊗ ̺G; the corresponding sheaf F ⊗ G is lisse (at least) on U ∩ U ′.

– As a special case, one obtains the endomorphism sheaf End(F), which is (isomorphic to)
the tensor product F ⊗D(F).

– Let f ∈ Fq(X) be non-constant; we can view f as a non-constant morphism P1
Fq
→ P1

Fq

(ramified) covering; the subgroup

G′arith = Gal(Ksep/Fq(f(X)))

of Garith corresponding to this covering is isomorphic to Garith, and therefore the Galois

representation ̺G′arith restricted to G′arith corresponds to an ℓ-adic sheaf, which is lisse on
f−1(U). It is denoted f∗F and is called the pull-back of F by f .

Remark 3.2. There is, a priori, no reason to limit ourselves to the affine line: if CFq is any
geometrically connected curve over Fq with function field KC (which is a finite extension of Fq(X))
and any dense open subset U ⊂ C defined over Fq, an ℓ-adic sheaf F on C lisse on U is a continuous
representation

̺F : Gal(Ksep
C
/KC)→ GL(VF)

which is unramified at every closed point of U . More generally, we may also consider ℓ-adic sheaves
over a curve C defined over a finite field extension Fqn , or even over Fq, as representations of the

Galois groups Gal(Ksep/Fqn(C)) (or of Gal(Ksep/Fq(C))).

3.1. The trace function attached to a lisse sheaf. Given F as above and x ∈ U(Fq) some
closed point of degree 1; since the inertia subgroup Ix acts trivially , there is a well-defined action
of the Frobenius element Frgeomkx

∈ Dx/Ix on VF via ̺F. We denote by

̺F(Frx) or (Frx |VF)
the conjugacy class on the corresponding automorphism; that class does not depend on the choice
of the embedding Kx →֒ Ksep

x .

Definition 3.3. Given F and U as above; the trace function KF associated to this situation is the
function on U(Fq) given by

x ∈ U(Fq) 7→ KF(x) = tr(Frx |VF).

This is a priori a Qℓ-valued function which can be considered complex valued by means of the
chosen embedding Qℓ →֒ C.

Remark 3.4. There are several ways by which one could extend KF to the whole of A1(Fq). The
simplest way is the extension by zero outside U(Fq); another possible extension (called the middle
extension) would be to set for any x ∈ A1(Fq),

KF(x) := tr(Frx |V Ix
F

)

where V Ix
F
⊂ VF is the subspace of Ix-invariant vectors: the action of the Frobenius element Frgeomkx

is well defined. For our purpose any of the two extensions would work (cf. Remark 3.7).

Example 3.5. One has

– KD(F)(x) = tr(Fr−1
x |VF),

– KF⊗G(x) = KF(x)KG(x),
– Kf∗F(x) = KF(f(x)),
– Kr◦F(x) = tr(r(Frx |VF)|V ′).
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Regarding the third examples we will write

[+a] : x 7→ x+ a, [×a] : x 7→ ax

the additive and multiplicative translate maps by a ∈ Fq. ; more generally for any γ =

(
a b
c d

)
∈

PGL2(Fq) (the group of automorphisms of P1
Fq
) we will write

[γ] : x 7→ ax+ b

cx+ d

for the corresponding fractional linear transformation.

3.2. Trace functions over A1(Fqn). In fact an ℓ-adic sheaf lisse on UFq give rise to a whole
family of trace functions on U(Fqn) for n > 1. For this we repeat the exact same construction

replacing P1
Fq

by P1
Fqn

, K = Fq(X) by Kn = Fqn(X), Garith by Garith
n = Gal(Ksep/Kn) (of index

n.) We obtain in that way

KF,n :
U(Fqn) 7→ C

x 7→ tr(Frx |VF)
where Frx denote the conjugacy class of Frgeomkx

acting on VF. As we will see below the existence
of this sequence of auxilliary functions is very important: by the Chebotareff density theorem, the
full sequence (KF,n)n>1 suffice to to characterize the representation ̺F up to semi-simplification.

Remark. As the reader has noticed the Frobenius element at x is relative to the local field at x,
kx of the curve P1

Fqn
(defined over Fqn). In particular, given x ∈ U(Fq) aclosed point of degree 1

with Frobenius element Frx; the point x give rise to a closed point xn of degree 1 in UFqn and its
associated Frobenius conjugacy class (Frxn |VF) is related to the previous one by the relation

(Frxn |VF) = (Frnx |VF).
In particular, if n > 1 the obvious injective map U(Fq) →֒ U(Fqn) does not translate to the trace
function KF on U(Fq) being the restriction of KF,n.

3.3. Purity. We will be interested in the size of these function. For this the notion of purity is
particularly relevant.

Definition 3.6. Given w ∈ Z; an ℓ-adic sheaf lisse on U as above is punctually pure of weight

w if for any x ∈ UFq , the various eigenvalues of (Frx |VF) are complex numbers5 of modulus q
w/2
x .

An ℓ-adic sheaf is said mixed of weight 6 w if (as a representation) it is a successive extension of
sheaves punctually pure of weights 6 w.

In particular, if F is mixed of weight 6 w, one has for any x ∈ U(Fq)

(3.2) |KF(x)| 6 rk(F)qw/2.

Remark 3.7. It is a deep result of Deligne that for a sheaf punctually pure of weight w,for any x

closed point x ∈ P1
Fq
, the eigenvalues of (Frx |V Ix

F
) has modulus 6 q

w/2
x . In particular

| tr(Frx |V Ix
F

)| 6 rk(F)qw/2x .

Remark 3.8. It is always possible to reduce to the case of ℓ-adic sheaves of weight w = 0. For any
w ∈ Z there exist an ℓ-adic sheaf noted Qℓ(w/2) of rank 1, lisse on P1

Fq
, whose restriction to Ggeom

is trivial and such that whose Frobeniuses act by multiplication by q−w/2 (in particular Qℓ(w/2)
is pure of weight −w). Given F of some weight w′, the tensor product

F(w/2) := F ⊗Qℓ(w/2)

5via the fixed embedding Qℓ →֒ C
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has weight w′ − w and trace function given by

x 7→ q−w/2KF(x).

In the sequel, unless stated otherwise, we will always assume that trace function are associated
to punctually pure sheaves of weight 0.

3.4. Other functions. There are other q-periodic functions of great interest which do not qualify
under our current definition of trace function; for instance the Dirac function at some point6 a ∈ Fq

δa(n) =

{
1 if n ≡ a (mod q)

0 otherwise .

which extended to Z is the characteristic function of the arithmetic progression a+ qZ (obviously
of considerable interest for analytic number theory.) It turn out that such functions can be related
to trace functions in our sense by vary natural transformation and this what will allow to make
progresses on problems from ”classical” analytic number theory.

3.5. Local monodromy representations. Given F some ℓ-adic sheaf, let Dram
F
⊂ P1(Fq) be the

set of points where the representation ̺F is ramified, that is the inertia Ix acts non-trivially. The
restricted representation

̺F,|Ix = ̺F,x

is call the local monodromy representation of F at x. Although Dram
F

is disjoint from U(Fq), the
knowledge of these finite set of representations is fundamental to study F and it trace function.
Let us recall [Kat88, Chap. 1] thatone has an exact sequence

1→ Px → Ix → Itamex → 1

where Itamex is the tame inertia quotient and is isomorphic to
∏
p 6=q Zp while Px is the q-Sylow of

Ix and is called the wild inertia subgroup.

Definition 3.9. The monodromy representation at x is called tamely ramified if Px acts trivially
on VF (so that ̺F,x factors through Itamex ) and is called wildly ramified otherwise.

3.5.1. The Swan conductor. If the representation is wildly ramified one can measure how deep is it
by means of a numerical invariant: the Swan conductor. The wild inertia subgroup Ix is equipped

with a decreasing the upper numbering filtration indexed by the real numbers I
(λ)
x , λ > 0 such that

Px = I
(>0)
x . Given V = VF as above there is a P -stable direct sum decomposition

V =
⊕

λ∈Break(V )

V (λ)

indexed by some finite set of rational numbers Break(V ) ⊂ Q>0 (the set of breaks of the I-module
V ) such that

V (0) = V Px , V (λ)I
(λ)
x = 0, V (λ)I

(λ′)
x = V (λ), λ′ > λ

(see [Kat88, Chap. 1]). The swan conductor is defined as

Swanx(F) =
∑

λ∈Break(V )

λdimV (λ)

and turns out to be an non-negative integer.

6in fact this function could be interpreted as the trace function of a sheaf with punctual support at a but we will
not do this here
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In the decomposition

V = V (0) ⊕
⊕

λ∈Break(V )
λ>0

V (λ) = V (0)⊕ V (> 0) := V tame ⊕ V wild

the first summand is called the tame part and the remaining one the wild part.

4. Summing trace function over Fq

Let KF be the trace function associated to a sheaf F lisse on UFq . We have a function on U(Fq)

which we may extend by zero to A1(Fq) = Fq = Z/qZ.
The Grothendieck-Lefschetz trace formula provides an alternative expression for the sum of KF

over the whole A1(Fq).

Theorem 4.1 (Grothendieck-Lefschetz trace formula). Let F be lisse on U ; there exists three finite
dimensional ℓ-adic representations of Gal(Fq/Fq), H

i
c(UFq

,F) such that

(4.1)
∑

x∈U(Fq)

KF(x) =
∑

x∈U(Fq)

tr(Frx |F) =
2∑

i=0

(−1)i tr(Frq |H i
c(UFq

,F)).

More generally, for any n > 1,

∑

x∈U(Fqn )

KF,n(x) =
∑

x∈U(Fqn )

tr(Frx |F) =
2∑

i=0

(−1)i tr(Frnq |H i
c(UFq

,F)).

The Qℓ-vector spaces H
i
c(UFq

,F) are the so-called compactly supported étale cohomology groups

of F and can also be considered as ℓ-adic sheave over the point Spec(Fq).
The above formula reduce the evaluation of average of trace functions to that of the three

summands

tr(Frq |H i
c(UFq

,F)), i = 0, 1, 2.

we need netherfore to controle the size of these spaces as well as the size of the eigenvalues. We
start with the former.

4.1. Bounding the dimension of the cohomology groups. The extremal cohomology groups
have a simple interpretation

H0
c (UFq

,F) =

{
0 if U 6= P1

Fq

V Ggeom

F
if U = P1

Fq
.

As a Gal(Fq/Fq)-representation, one has the isomorphism

(4.2) H2
c (UFq

,F) ≃ VF,Ggeom(−1)

(ie H2
c (UFq

,F) is isomorphic to the subquotient of Ggeom-coinvariants of VF twisted by Qℓ(−1)).
In particular if F is geometrically irreducible (non geometrically trivial) or more generally geomet-
rically isotypic (the underlying geometric irreducible representation being non trivial) one has

H2
c (UFq

,F) = 0.

In any cases, one has

dimH0
c (UFq

,F), dimH2
c (UFq

,F) 6 rk(F).

The dimension of the middle cohomology group is now controlled by the
9



Theorem 4.2 (The Grothendieck-Ogg-Shafarevich formula).

χ(u|F) =
2∑

i=0

(−1)i dimH i
c(UFq

,F) = rk(F)(2 − |P1(Fq)− U(Fq)|)−
∑

x∈P1(Fq)−U(Fq)

Swanx(F).

Observe that the quantities that occurs are local geometric data associated to the sheaf yet this
collection of local data provides global informations.

We then define the following ad-hoc numerical invariant which serves as a measure of the com-
plexity of the sheaf F:

Definition 4.1. The conductor of F is defined via the following formula

C(F) = rk(F) + |P1(Fq)− U(Fq)|+
∑

x 6∈U(Fq)

Swanx(F)

In view of this definition we have

(4.3)
2∑

i=0

dimH i
c(UFq

,F)≪ C(F)2.

4.2. Examples.

4.2.1. The trivial sheaf. The trivial representation Qℓ is everywhere lisse, pure of weight 0, of rank
1 and conductor 1 and

KQℓ
(x) = 1.

4.2.2. Kummer sheaf [SGA41
2 ]. For any non-trivial Dirichlet character χ : (F×

q ,×) → C× there
exists an ℓ-adic sheaf (the Kummer sheaf) noted Lχ which is of rank 1, pure of weight 0, lisse on
Gm,Fq = P1

Fq
− {0,∞} with trace functions

KLχ(x) = χ(x), KLχ,n(x) = χ(NrFqn/Fq(x)) =: χn(x)

and conductor

C(Lχ) = 3;

indeed Swan0(Lχ) = Swan∞(Lχ) = 0.

4.2.3. Artin-Schreier sheaf [SGA41
2 ]. For any additive character ψ : (Fq,+)→ C× there exists an

ℓ-adic sheaf (the Kummer sheaf) noted Lψ which is of rank 1, pure of weight 0, lisse on A1
Fq

=

P1
Fq
− {∞} with trace function

KLψ(x) = ψ(x) KLψ ,n(x) = ψ(trFqn/Fq (x)) =: ψn(x)

and conductor (if ψ is non-trivial)

C(Lψ) = 3.

(indeed Swan∞(Lψ) = 1.) If f ∈ Fq(X)−Fq, the pull-back sheaf Lψ(f) is geometrically irreducible
and has conductor

1 + number of poles + sum of multiplicities of the poles.

More generally a character ψ of (Fqn ,+) is of the shape

x 7→ ψ1(trFqn/Fq (ax))

for ψ1 a character of (Fq,+) and a ∈ Fqn and associated to each such character is an Artin-Schreier
sheaf Lψ.

10



4.2.4. (hyper)-Kloosterman sheaves [Kat88]. Hyper-Kloosterman sums are formed by multiplicative
convolution out of additive characters.

Given K1,K2 : F
×
q → C one define their (normalized) multiplicative convolution:

K1 ⋆ K2 : x ∈ F×
q 7→

1

q1/2

∑

x1,x2∈F
×

q
x1x=x

K1(x1)K2(x2) =
1

q1/2

∑

x1∈F
×

q

K1(x1)K2(x/x1).

Similarly for any n > 1 one defines the multiplicative convolution of K1,n,K2,n : F×
qn → C as

K1,n ⋆ K2,n : x ∈ F×
qn 7→

1

qn/2

∑

x1,x2∈F
×

qn
x1x=x

K1,n(x1)K2,n(x2).

Now, given ψ a non-trivial additive character and k > 2, the hyper-Klooerman sums are defined
by k-times multiplicative convolutions of ψ:

Klk,ψ(x; q) = ⋆k timesψ(x) =
1

q
k−1
2

∑

x1,··· ,xk∈F
×

q
x1.··· .xk=x

ψ(x1 + · · ·+ xk)

and more generally, one defines hyper-Kloosterman sums over F×
qn

Klk,ψ(x; q
n) = ⋆k timesψn(x) =

1

qn
k−1
2

∑

x1,··· ,xk∈F
×

qn
x1.··· .xk=x

ψn(x1 + · · · + xk).

That these are trace functions is the following important theorem of Katz [Kat88]:

Theorem 4.3. For any k > 2, there exists an ℓ-adic sheaf (the Kloosterman sheaf) noted Kℓk,ψ,
of rank k, pure of weight 0, geometrically irreducible, lisse on Gm,Fq with trace function

KKℓk,ψ(x) = Klk,ψ(x; q)

and more generally, for any n > 1

KKℓk,ψ,n(x) = Klk,ψ(x; q
n).

One has Swan0(Kℓk,ψ) = 0 and Swan∞(Kℓk,ψ) = 1 so that the conductor of that sheaf equals

C(Kℓk,ψ) = k + 2 + 1

The Kloosterman sheaves have trivial determinant

detKℓk = Qℓ

and if (and only if) k is even, the Kloosterman sheaf Kℓk is self-dual:

D(Kℓk) ≃ Kℓk.

Remark. When ψ(·) = eq(·) we will not mention the additive character eq in the notations.

4.3. Deligne’s Theorem on the weight. Now that we control the dimension it remains to control
the size of the Frobenius eigenvalues; suppose that F is pure of some weight 0 so that

|KF(x)| 6 rk(F).

As we have seen as long as U 6= P1, H0
c (UFq

,F) = 0.

By (4.2), the eigenvalues of Frq acting on H2
c (UFq

,F) are of the form

qαi, i = 1, · · · , (VF)Ggeom with |αi| = 1.
11



The trace of the middle cohomology group tr(Frq |H1
c (UFq

,F)) is much more mysterious but fortu-

nately we have the following deep result7 of Deligne [Del80].

Theorem 4.4 (Deligne’s theorem on the weight). The eigenvalues of Frq acting on H1
c (UFq

,F)

are complex numbers of modulus 6 q1/2.

We deduce from this

Corollary 4.2. Let F be an ℓ-adic sheaf lisse on some U pure of weight 0; one has
∑

x∈Fq

KF(x)− tr(Frq |H2
c (UFq

,F))≪ C(F)2q1/2.

More generally for any n > 1
∑

x∈Fqn

KF,n(x)− tr(Frnq |H2
c (UFq

,F))≪ C(F)2qn/2.

In particular if F is geometrically irreducible or isotypic with no trivial components, one has
∑

x∈Fq

KF(x)≪ C(F)2q1/2.

In practical application we will be faced with situations where we dispose of a sequence of sheaves
(Fq)q indexed by and infinite set of primes (with Fq a sheaf over over the field Fq) such that the
sequence of conductors (C(Fq))q remains uniformly bounded (by C say). In such situation the
above formula represents an asymptotic formula as q →∞ for the sum of q −O(1) terms

∑

x∈U(Fq)

KF(x)

with main term tr(Frq |H2
c (UFq

,F)) (possibly 0) and up to an error term of size ≪ C2q1/2.

5. Quasi-orthogonality relations

We will often apply the trace formula and Deligne’s theorem to the following sheave: given F and
G two ℓ-adic sheaves both lisse on some non-empty open set U ⊂ A1

Fq
and both pure of weight 0;

consider the tensor product F⊗D(G): this sheave is also lisse on U and pure of weight 0; moreover
from the definition of the conductor (see [Kat88, Chap. 1]) that

(5.1) C(F ⊗D(G)) 6 C(F)C(G).

Its associated trace functions are given by (for x in U)

x→ KF⊗D(G),n(x) = KF,n(x)KG,n(x).

Therefore the trace formula can be used to evaluate the correlation sums between the trace function
of F and G,

C(F,G) :=
1

q

∑

x∈Fq

KF(x)KG(x);

more generally for any n > 1 we set

Cn(F,G) :=
1

qn

∑

x∈Fqn

KF,n(x)KG,n(x).

7which implies the Riemann hypothesis for higher dimensional varieties over finite fields
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Indeed, by Corollary 4.2 one has

(5.2) Cn(F,G) = tr(Frnq |VF⊗D(G),Ggeom) +O(
C(F)C(G)

qn/2
).

In particular if C(F)C(G) are bounded while qn →∞ one obtained as assymptotic formula whose
main terms is given by the traces of the powers of Frobenius acting on the coinvariants of F⊗D(G) =
End(F,G).

5.1. Decomposition of sheaves and trace functions. Using first a weaker version of the for-
mula (with an error term converging to 0 as n→∞) Deligne, on his way to the proof of Theorem
4.4 established that any ℓ-adic sheaf as above pure of some weight 0 is geometrically semisimple
(the representation ̺F|Ggeom decomposes into a direct sum of irreducible representations (of Ggeom));
the irreducible components occuring in the decomposition of ̺F|Ggeom are called the geometric irre-
ducible components of F.

This is not exactly valid for the arithmetic representation but considering its semi-simplification8

one obtains a decomposition

̺ssF =
⊕

i∈I

̺Fi

where the ̺Fi are arithmetically irreducible (and pure) and lisse on U . Regarding geometric re-
ducibility, each ̺Fi is either geometrically isotypic or is induced from a representation of Gal(Ksep/k.K)
for k some finite extension of Fq. Regarding the associated trace function KF on U(Fq), since semi-
simplification does not change the trace function we obtain a decomposition

KF =
∑

i

KFi .

Moreover a computation shows that whenever Fi is induced one has KFi ≡ 0 on U(Fq). Therefore
we obtain

Proposition 5.1. The trace function associated to some punctually pure sheaf F lisse on U can be
decomposed into the sum of 6 C(F) of trace functions whose associated sheaves Fi are lisse on U ,
punctually pure, geometrically isotypic with conductors C(Fi) 6 C(F).

This proposition enable to reduce the study of trace functions to trace functions associated to
geometrically isotypic or (most of the time) geometrically irreducible sheaves. From now (unless
stated otherwise) we will assume that the trace functions are associated to punctually pure of
weight 0, geometrically isotypic sheaves. To ease notations we say that such sheaves are ”isotypic” or
”irreducible” omitting the mention ”geometrically” and likewise will speak of isotypic or irreducible
trace function. In such situation, using Schur lemma, the formula for (5.2) specialize to the

Theorem 5.1 (Quasi-orthogonality relations). Supppose that F and G are both geometrically iso-
typic with nF copies of the irreducible component Firr for F and nG copies of the irreducible com-

ponent Girr for G. There exists nF.nG complex numbers αi,F,G of modulus 1 such that

(5.3) Cn(F,G) = (

nFnG∑

i=1

αni,F,G)δF∼geomG
+O(C(F)2C(G)2q−n/2).

In particular if F and G are both geometrically irreducible there exist αF,G ∈ C1 such that

(5.4) Cn(F,G) = αnF,GδF∼geomG
+O(C(F)2C(G)2q−n/2).

Remark 5.2. Observe that for F and G either the Kummer or Artin-Schreier sheaves these corre-
spond to the orthogonality relations of characters.

8which does not change the trace function
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Remark 5.3. If two geometrically irreducible sheaves F,G are geometrically isomorphic then their
trace functions are proportional: more precisely one has for any n

KF,n = αnF,GKG,n

where αF,G is the complex number of modulus 1 introduced in the previous statement.

Granted that qn is large compared to C(F)2C(G)2 the above formula give a useful criterion to
detect whether F and G have geometric irreducible components in common. While our main focus
is for n = 1 and q → ∞ (while C(F)2C(G)2 remaining bounded) the case n → ∞ may also be
useful. We start we the following easy lemma

Lemma 5.4. Given α1, · · · , αd ∈ C1, d arbitrary complex numbers of modulus 1, one has

lim sup
n→∞

αn1 + · · ·+ αnd = d.

Using this lemma together with the decomposition into irreducible one obtains the following

Corollary 5.5 (Katz’s Diophantine criterion for irreducibility). Let F be an ℓ-adic sheaf lisse on
U pure of weight 0 with decomposition into geometrically irreducible subsheaves noted

Fgeom =
⊕

i

F
⊕ni
i

then

lim sup
n→∞

Cn(F,F) =
∑

Fi

n2i .

In particular, F is geometrically irreducible if and only if

lim sup
n→∞

Cn(F,F) = 1.

5.2. Counting trace functions. These relations enable to obtain upperbounds for the number of
geometric isomorphism classes of ℓ-adic sheaves of bounded conductor (see [FKM13] for the proof)

Theorem 5.2. Given C > 1, The number of geometric isomorphism classes of ℓ-adic sheaves of
conductor 6 C is finite and bounded by

qO(C6)

where the implied constant is absolute.

Proof. The principle of the proof is as follows: the sheaf-to-trace-function map F 7→ tF associate
to the geometric isomorphism class of some sheaf a line in the q-dimensional space CFq of complex
valued functions on Fq which is hermitian under the inner product

〈K,K ′〉 = 1

q

∑

x∈Fq

K(x)K ′(x).

The quasi-orthogonality relations show that these different lines are almost orthogonal to one an-
other and so one obtains a number of almost orthogonal (circles of) unit vector in the corresponding
unit sphere but then a sphere-packing arguments for high-dimensional hermitian spaces (see [KL78])
show that the number of such vectors cannot be too large. �
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6. Trace functions over short intervals

In this section and the next ones we discuss the correlations between trace functions and other
classical arithmetic functions. Indeed given a trace function

KF : A1(Fq) = Fq → C

(extended from U(Fq) to A1(Fq) either by zero or by the middle-extension we obtain a q-periodic
function on Z via the (mod q)-map (which we also denote by KF)

K = KF : Z→ Z/qZ = A1(Fq)→ C.

Given some other arithmetic function g : N→ C it is natural to compare them by evaluating their
correlation sums ∑

n6N

K(n)g(n)

as N →∞ (in suitable ranges depending on C(F) and g.)

6.1. The Polya-Vinogradov method. We start with the basic case of g = 1I is the characteristic
function of an interval I of Z (which we may assume is contained in [0, q−1]). We want to evaluate
non-trivially the sum

S(K; I) :=
∑

n∈I

K(n).

We may assume that F is geometrically isotypic and if I = [0, q − 1] such sum can be dealed with
by Deligne’s theorem.

By Parseval, one has

S(K; I) =
∑

y∈Fq

K̂(y)1̂I(y)

where

(6.1) K̂(y) =
1

q1/2

∑

x∈Fq

K(x)eq(xy)

and

1̂I(y) =
1

q1/2

∑

x∈I

eq(xy)

are the (normalized) Fourier transform of K and 1I (for the abelian group (Fq,+)). One has

|1̂I(y)| ≪
1

q1/2
min(|I|, ‖x

q
‖−1)≪ 1

q1/2
min(|I|, q|x|)

which implies that

‖1̂I‖1 ≪
|I|
q1/2

+ q1/2 log q.

Therefore one has ∑

n∈I

K(n)≪ ‖K̂‖∞q1/2 log q.

We need therefore to look as the size of the Fourier transform y 7→ K̂(y). As is well know if K is
of the shape eq(ax) for some a ∈ Fq its Fourier transform is a Dirac type function

K̂(y) = q1/2δy=a (mod q)

Definition 6.1. An isotypic sheaf F is Fourier if its geometric irreducible component is not (geo-
metrically) isomorphic to any Artin-Schreier sheaf Lψ.
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In particular if K is Fourier of conductor C(F), it follows from Theorem 5.1 that for any y ∈ Fq

K̂(y)≪ C(F)2.

In that way we obtain the

Theorem 6.1 (Polya-Vinogradov bound). Let K be an isotypic Fourier trace function of conductor
C(F), for any interval I of length 6 q, one has

∑

x∈I

K(x)≪ C(F)2q1/2 log q.

Remark. This statement was obtained for the first time by Polya and Vinogradov in the case of
Dirichlet characters χ. In that case the Fourier transform is the normalized Gauss sum

χ̂(y) = g(χ, y) =
1

q1/2

∑

x∈Fq

χ(x)eq(xy)

which is bounded in absolute value by 1.

Observe that this bound is better than the trivial bound

|
∑

x∈I

K(x)| 6 C(F)|I|

as long as
|I| ≫C(F) q

1/2 log q.

Such range is called the Polya-Vinogradov range and the question of bounding non-trivially trace
functions non over shorter intervals is an fundamental problem in analytic number theory which
would have many striking applications. For now the sproblem is solved in a very limited number
of cases starting from the celebrated work of Burgess on Dirichlet characters [Bur62] which we
will describe in §16.1. A lot of the forthcoming lectures will indeed be concerned with breaking
this barrier in specific cases or in different contexts and to describe applications. For now we will
content ourselves with

6.1.1. Bringing the Polya-Vinogradov range. The following argument improves slightly the Polya-
Vinogradov range:

Theorem 6.2. [FKM+17] Let K be some Fourier trace function; and I ⊂ Z be an interval of
length

√
q < |I| 6 q; one has

∑

x∈I

K(x)≪ C(F)2q1/2(1 + log(|I|/q1/2)).

Proof. Given r ∈ Z let Ir = r+ I; this is again an interval and S(K; I) and S(K; Ir) differ only by
O(‖K‖∞r) which is will be useful for r not too large; moreover

1̂Ir(y) = eq(ry)Î(y).

We have therefore

S(K; I) =
∑

|y|6q/2

K̂(y)1I(y)
1

R

∑

06r6R−1

eq(−ry).

We choose R = [q1/2] + 1; using the bounds

|1I(y)| ≪ q−1/2 min(|I|, q/|y|),
∑

06r6R−1

eq(−ry)≪ min(R, q/|r|)

and
‖K‖∞ + ‖K̂‖∞ ≪ C(F)2
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we obtain the result. �

6.2. A smoothed version of the Polya-Vinogradov method. Often in analytic number theory
one is not faced with summing a trace function over an interval but instead against some smooth
compactly supported function, for instance one has to evaluate sums of the shape

∑

n∈Z

K(n)V (
n

N
), V ∈ C∞

c (R) fixed.

By the Poisson summation formula one has the identity

(6.2)
∑

n∈Z

K(n)V (
n

N
) =

N

q1/2

∑

n∈Z

K̂(n)V̂ (
nN

q
)

where

V̂ (y) =

∫

R

V (x)e(xy)dx

is the Fourier transform of V (x) (over R).

Observe that V̂ (y) is not compactly supported but at least is of rapid decay:

∀A > 0, V̂ (y)≪V,A (1 + |y|)−A;
therefore the dual sum decays rapidly for n≫ q/N and we obtain

Proposition 6.2.

(6.3)
∑

n∈Z

K(n)V (
n

N
)≪V q1/2‖K̂‖ ≪V,C(F) q

1/2.

6.3. The Deligne-Laumon Fourier transform. The Fourier transform

K 7→ K̂ : y 7→ 1

q1/2

∑

x∈Fq

K(x)eq(−xy)

is a well known and very useful operation on the space of function on (Z/qZ,+). It serve to realize
the spectral decomposition of the functions on Z/qZ in terms of eigenvectors of the irreductible
representations (characters) of Z/qZ. Let us recall that the Fourier transform is

– Essentially involutive:
̂̂
K(x) = K(−x);

stated otherwise , one has the Fourier decomposition:

K(x) =
∑

y∈Fq

K̂(y)eq(yx).

– The Fourier transform is an isometry on L2(Z/qZ); stated otherwise , one has the Plancherel
formula ∑

x∈Fq

K(x)K ′(x) =
∑

y∈Fq

K̂(y)K̂ ′(y).

– The Fourier transform behaves well wrt to additive and multiplicative shifts: for a ∈ Fq, z ∈
F×
q ,

[̂+a]K(y) = eq(ay)K̂(y), [̂×z]K(y) = [×z−1]K̂(y) = K̂(y/z).

A remarkable fact due to Deligne is that, to the Fourier transform at the level of trace function
correspond a geometric version of Fourier transform at the level of ℓ-adic sheaves. The following
theorem is due to G. Laumon [Lau87]:
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Theorem 6.3. Let F be a Fourier sheaf lisse on U pure of weight 0, there exists a Fourier sheaf

F̂ lisse on some open set Û , pure of weight 0 such that if KF,n denote the (middle-extension of

the) trace function of F, the (middle extension of the) trace function of F̂ is given by the Fourier

transform K̂F,n where

K̂F,n(x) = q−n/2
∑

y

KF,n(y)eq(trFqn/Fq (xy)).

The map9 F 7→ F̂ is called the geometric Fourier transform. The geometric Fourier transform
satisfies (for a ∈ Fq, z ∈ F×

q )

̂̂
F = [×− 1]∗F, ̂[+a]∗F = Leq(a.) ⊗ F̂, ̂[×z]∗F = [×z−1]∗F̂.

In addition Laumon defined local version of the geometric Fourier transform making it possible

to compute the local monodromy representation of F̂ in terms of that of F; using these result one
deduce

Proposition 6.3. Given F as above, one has

C(F̂) 6 10C(F)2.

Also the Fourier transform preserve irreducibility:

Proposition 6.4. The Fourier transform maps irreducible (resp. isotypic) sheaves to irreducible
(resp. isotypic) sheaves.

Proof. Given Ff a geometrically irreducible sheaf, to prove that F̂ is irreducible it is sufficient to
show that

lim sup
n

Cn(F̂, F̂) = lim sup
n

1

qn

∑

x∈Fqn

|K̂F,n(x)|2 = 1

but by Plancherel formula

1

qn

∑

x∈Fqn

|K̂F,n(x)|2 =
1

qn

∑

y∈Fqn

|KF,n(y)|2

and

lim sup
n

1

qn

∑

y∈Fqn

|KF,n(y)|2 = 1

by Katz irreducibility criterion applied in the reverse direction.
�

Exercise 6.5. Prove that the hyper-Kloosterman sheaves are geometrically irreducible ( hint: ob-
serve that the hyper-Kloosterman sums Klk+1 can be expressed in terms of the Fourier transform
of Klk.)

7. Autocorrelation of trace functions; the automorphism group of a sheaf

The next couple of appplications we are going to discuss involve a special type of correlation
sums between a trace function and its transform by an automorphism of the projective line.

9This is in fact a functor on the derived category of constructible ℓ-adic sheaves
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Let F be an ℓ-adic sheaf lisse on U ⊂ P1
Fq
, pure of weight 0, geometrically irreducible but

non trivial, with conductor C(F). Let γ be an automorphism of P1
Fq
: γ is a fractional linear

transformation:

γ : z 7→ γ.z =
az + b

cz + d
,

(
a b
c d

)
∈ PGL2(Fq).

Let γ∗F be the associated pull-back sheaf; it is lisse on γ−1.U and its trace function is

γ∗K(z) = K(γ.z) = K(
az + b

cz + d
).

Moreover since γ is an automorphism of P1
Fq
, one has C(γ∗F) = C(F).

The correlations sums we will consider are the one of K and γ∗K(z)

C(F, γ) := C(K, γ∗K) =
1

q

∑

z

K(z)K(γ.z)

and

Cn(F, γ) := Cn(K, γ
∗K) =

1

qn

∑

z∈Fqn

Kn(z)Kn(γ.z)

which are associated to the tensor product sheaf

F ⊗ γ∗D(F)

which is lisse on Uγ = U ∩ γ.U.

7.1. The automorphism group. The question of the size of these sums is largely determined by
the following invariant of F (see [FKM15,FKM14])

Definition 7.1. Given F as above the group of automorphisms of F, AutF(Fq) ⊂ PGL2(Fq) is the
group of γ ∈ PGL2(Fq) such that

γ∗F ≃geom F.

The group AutF(Fq) is the group of Fq-points of an algebraic subgroup, AutF →֒ PGL2 defined
over Fq. Let B ⊂ PGL2 the sub-group generated by upper-triangular matrices; we define

BF := AutF ∩B
the subgroup of AutF generated by upper-triangular matrices of that group and BF(Fq) the group
of Fq-points.

The relevance of this notion for the above correlations sums is the following

Proposition 7.2. For γ 6∈ AutF(Fq), one has

C(K, γ) = OC(F)(q
−1/2).

In view of this proposition it is important to determine how large AutF(Fq) and BF(Fq) could
be.

Example 7.3. Obviously any element of AutF has to leave P1(Fq) − U(Fq) invariant and all
the points in the same orbit have isomorphic local monodromies. This may impose rather strong
constraints on AutF.

– If F is geometrically trivial then AutF = PGL2.

– If ψ : (Fq,+)→ C1 is non trivial then GLψ
= N = {

(
1 x

1

)
⊂ PGL2}
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– If χ : (Fq,+)→ C1 is non trivial then

GLχ = T 0,∞ = {
(
a 0
0 d

)
⊂ PGL2}

is the diagonal torus unless χ is quadratic in which case GLχ = NT 0,∞ is the normalizer of
the diagonal torus.

– For the Kloosterman sheaves one can show that GKℓk is trivial: since Kℓk is not lisse at 0
and∞, with Swan conductor 0 and 0 and 1 at ∞ one has GKℓk ⊂ T 0,∞. One can then show
(see [Mic98]) that [×a]∗Kℓk ≃geom Kℓk iff a = 1.

Given x 6= y ∈ P1(Fq) we denote by T x,y the pointwise stabilizer stabilizer of the pair (x, y)
(this is a maximal torus defined over some finite extension of Fq) and N(T x,y) its normalizer. The
torus T x,y is defined over Fq is x, y below to P1(Fq) or to P1(Fqn) and are Galois conjugates.

Proposition 7.4. Suppose q > 7. Given F as above. One of the following holds

– C(F) > q.
– q does not divide |AutF(Fq)| and either AutF(Fq) is of order 6 60 or is a subgroup of the
normalizer of some maximal torus N(T xi,yi) defined over Fq.

– q divides AutF(Fq)| and then F ≃ σ∗Lψ for some ψ and K(x) = αψ(σ.x) for for some
σ ∈ PGL2(Fq) and AutF(Fq) = σNσ−1

Remark 7.5. Observe that in the later case

C(K, γ) = |K(0)|2C(ψ(σ.x), γ)

Concerning the size of the group BF(Fq) one can show that

Theorem 7.1. Let F be an isotypic sheaf whose geometric components are not isomorphic to
[+x]∗Lχ for some x ∈ Fq and some multiplicative character χ and such that

C(F) < q

then

|BF(Fq)| 6 C(F).

The proof of this theorem involves the following rigidity theorems (proven in [Kat96])

Proposition 7.6. Les L be irreducible.

– If for some x ∈ F×
q , [+x]

∗L ≃ L then either

C(L) > q or L ≃ Lψ for someψ.

– If AutL(Fq) contains a subgroup of order m of Diag2(Fq) then either

c(L) > m or L ≃ Lχ for someχ.

8. Trace functions vs. primes

After the consideration of short intervals, another possible question to look at (natural from the
viewpoint of analytic number theory at least) is how trace functions interact with the primes. In
this section, we discuss the structure of the proof of the following result:

Theorem 8.1 (Trace function vs. primes, [FKM14]). Let K be a trace function associated to an
isotypic sheaf F, pure of weight 0 and whose geometric components are not of the shape Lψ ⊗ Lχ.
V ∈ C∞

c (R>0), one has for X ≪ q and any η < 1/24
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∑

p prime
p6X

K(p)≪ X(1 + q/X)1/12p−η/2,(8.1)

∑

p prime

K(p)V
( p
X

)
≪ X(1 + q/X)1/6q−η,(8.2)

for any η < 1/24. The implicit constants depend only on η, C(F) and V . Moreover, the dependency
on C(F) is at most polynomial.

Remark. This result exhibit cancellations in summing trace functions along the primes in intervals
of length larger than q3/4. It is really a pity that Dirichlet characters are excluded by our hypothe-
ses: such a bound in that case would amount to a quasi generalized Riemann hypothesis for the
corresponding Dirichlet character L-function !

We discuss the proof for X = q.

8.1. Combinatorial decomposition of the characteristic function of the primes. As is
well know the problem is equivalent to bounding the sum

∑

n

Λ(n)K(n)V
(n
q

)

where

Λ(n) =

{
log p if n = pα

0 otherwise,

is the von Mangolt function. A standard method in analytic number theory is a combinatorial
decomposition of this function as a sum of Dirichlet convolution functions; one way to achieve this
is to use the celebrated Heath-Brown identity:

Lemma 8.2 (Heath-Brown). For any integer J > 1 and n < 2X, we have

Λ(n) = −
J∑

j=1

(−1)j
(
J

j

) ∑

m1,··· ,mj6Z

µ(m1) · · ·µ(mj)
∑

m1···mjn1···nj=n

log n1,

where Z = X1/J .

Hence splitting the range of summation of the various variables appearing (using partition of
unity) and separating these variables, our preferred sum decomposes (essentially) into O(J) sums
of the shape

Σ(M1, · · · ,M2j) =
∑∑

m1,···m2j

µ(m1) · · · µ(mj)K(m1. · · · .m2j)V1

(m1

M1

)
· · ·V2j

(m2j

M2j

)

for j 6 J ; here Vi, i = 1, · · · 2j are smooth functions compactly supported in ]1, 2[, (M1, · · · ,M2j)
is a tuple satisfying

Mi =: qµi , ∀i 6 j, µi 6 1/J,
∑

i62j

µi = 1 + o(1);

the objective is to show that
Σ(M1, · · · ,M2j)≪ q1−η

for some fixed η > 0. We will take J = 3 so that Z = q1/3. Wlog wma

µ1 6 · · · 6 µj 6 1/3, µj+1 6 · · · 6 µ2j .

We will bound these sums differently depending on the vector (µ1, · · · , µ2j).
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Let δ > 0 be some small fixed parameter to be choosen optimally later.
1) Suppose that for some δ ∈]0, 1/6[, µ2j > 1/2 + δ, then m2j is a long an ”smooth variable”

(because the weight attached to it is smooth); therefore using 6.3 we obtain summing over m2j and
fixing the other variables

Σ(M1, · · · ,M2j)≪ qµ1+···µ2j−1q1/2+o(1) = q1−δ+o(1).

In the litterature, sum of that shape are called ”type I” sums.
2) We may therefore assume that

mj+1 6 · · · 6 µ2j 6 1/2 + δ;

in other terms, there is no very long smooth variable. What one can do is group variables together
to form long ones: for this one partition, the indexing set into two blocks

{1, · · · , 2j} = I ⊔ I′,

form the variables

m =
∏

i∈I

mi, n =
∏

i′∈I′

mi′

so that denoting by αm the Dirichlet convolutions of either µ(·)V ( ·
Mi

) or V ( ·
Mi

) for i ∈ I and

similarly for βn for i′ ∈ I′ we are led to bound bilinear sums of the shape

(8.3) B(K;α, β) =
∑∑

m≪M,n≪N

αmβnK(mn).

where

M = qµ, µ =
∑

i∈I

µi, N = qν , ν =
∑

i′∈I′

µi′ .

The weights αm, βn are rather irregular and it is difficult to exploit their structure. Such sums are
called ”type II”.

Assuming that the irreducible component of F is not of the shape Lχ ⊗ Lψ, we will prove in
Theorem 9.1 below the following bound

Σ(M1, · · · ,M2j) = B(K;α, β)≪C(F) ‖αM‖2‖βN‖2(MN)1/2(
1

M
+
q1/2 log q

N
)1/2.

Assuming that

µ > δ and ν > 1/2 + δ

we obtain that

B(K;α, β)≪ q1−δ/2+o(1).

3) It remains to treat the sums for which neither µ2j 6 1/2+δ nor a decomposition as in 2) exist.
This necessarily implies that

∑
i6j µi 6 1/3, j > 2 and µ2j−1 + µ2j > 1 − δ. Setting M = M2j−1

and N =M2j

a = m1 · · ·m2j−2,

it will be sufficient to obtain a bound of the shape
∑

m,n>1

K(amn)V (
m

M
)W (

n

N
)≪V,W (MN)1−η

for some η > 0 whenever MN is sufficiently close to q. What we have are is a sum involving two
smooth variables who are too short for the Polya-Vinogradov method to work but whose product
is rather long. We call these sums ”type I1/2”. In Section 10 we discuss the proof of
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Theorem 8.1. Let K be a trace function associated to an isotypic Fourier sheaf and V,W ∈
C∞
c (R>0), one has for M,N > 1 and any η < 1/8

∑

m,n>1

K(mn)V (
m

M
)W (

n

N
)≪V,W MN(1 +

q

MN
)1/2q−η/2.

Observe that this bound is non trivial as long as MN > q3/4; as we will see this result will be a
special case of a more general one on the correlation between trace functions and Fourier coefficients
of modular forms.

Optimizing parameters in these three approaches one obtains Theorem 8.1.

9. Bilinear sums of trace functions

Let K be a trace function associated to some sheaf isotypic F, pure of weight 0 and let (αm)m6M ,
(βn)n6N be arbitrary complex numbers; in this section we bound for the ”type II” bilinear sum we
encountered in the previous section (of course such estimates are application beyond the correlation
problem for trace function vs. the primes):

B(K;α, β) =
∑∑

m6M,n6N

αmβnK(mn).

Using the Cauchy-Schwarz inequality, the trivial bound is

|B(K;α, β)| 6 ‖αM‖2‖βN‖2(MN)1/2.

We which to improve over this bound.

Theorem 9.1 (Bilinear sums of trace functions). Notations as above; assume that 1 6 M,N < q
and that the irreducible component of F is not of the shape Lχ ⊗ Lψ, then

B(K;α, β)≪C(F) ‖αM‖2‖βN‖2(MN)1/2(
1

M
+
q1/2 log q

N
)1/2.

Remark 9.1. This bound is non-trivial as soon as M ≫ 1 and N ≫ q1/2 log q.

We now give an idea of the

Proof. By Cauchy-Schwarz we have

(9.1) |B(K;α, β)|2 6 ‖βN‖22
∑

m1,m26M

αm1αm2

∑

n6N

K(mn1)K(mn2)

We do not expect to gain anything from the diagonal terms m1 ≡ m2 (mod q) (equivalent to
m1 = m2 since M < q) and the contribution of such terms is bounded trivially by

(9.2) ≪C(F) ‖αM‖2‖βN‖2N.

As for the non-diagonal terms their contribution is

‖βN‖22
∑

m1 6=m2 (mod q)

αm1αm2

∑

n6N

K(mn1)K(mn2).

Using the Polya-Vinogradov method, we are led to evaluate the Fourier transform of

n 7→ K(mn1)K(mn2).
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By the Plancherel formula, this Fourier transform equals

y 7→ 1

q1/2

∑

x∈Fq

K(m1x)K(m2x)eq(−yx) =
1

q1/2

∑

z∈Fq

K̂((z − y)/m1)K̂(z/m2)

=
1

q1/2

∑

z∈Fq

K̂((m2z − y)/m1)K̂(z)

=
1

q1/2

∑

z∈Fq

K̂(γz)K̂(z)

with

γ =

(
m2/m1 −y/m1

0 1

)
∈ B(Fq).

This sum is the correlation sum is q times C(F̂, γ) the correlation sum associated to the isotypic

sheaves F̂ and γ∗F̂ whose conductors are controlled in terms of C(F).
If γ 6∈ BF(Fq) we have

(9.3) C(F̂, γ)≪C(F)
1

q1/2
.

The condition that the irreducible component of F is not of the shape Lχ ⊗ Lψ translate into the

irreducible component of F̂ not being of the shape [+x]∗Lχ. In that case by Theorem 7.1 there is
a set SF ⊂ F×

q such that for any (m1,m2, y) ∈ F×
q × F×

q × Fq for which m2/m1 6∈ SF one has

C(F̂, γ)C(F)q
−1/2

Returning to (9.1), we bound trivially (by (9.2)) the contribution of the pairs OF(M) pairs
(m1,m2) such that the ratio m2/m1 (mod q) is in SF. For the other terms we may use the Polya-
Vinogradov method and bound these terms by

≪C(F) ‖αM‖22‖βN‖22Mq1/2 log q.

Combining these bounds leads to the final result. �

10. Trace functions vs. modular forms

In this section we discuss the proof of Theorem 8.1. This theorem is a special case of the
resolution of another problem: the question of the correlation between trace functions and the
Fourier coefficients (̺f (n))n of some modular Hecke eigenform. Given some trace function we may
then consider the correlation sum ∑

n6X

̺f (n)K(n)

or its smooth version ∑

n

̺f (n)K(n)V (
n

X
).

These sums are bounded trivially (using the ranking Selberg method) by

OC(F),f (X log3X).

It turns out that the problem of bounding such sums non-trivially start being interesting for N of
size q (or smaller).

In this section, we sketch the proof of the following
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Theorem 10.1 (Trace function vs. modular forms, [FKM15]). Let K be a trace function associated
to an irreducible Fourier sheaf (of weight 0); let (̺f (n))n>1 be the sequence of Fourier coefficients
of some modular form f and let V ∈ C∞

c (R>0), one has for X > 1 and any η < 1/8

S(K, f ;X) :=
∑

n6X

̺f (n)K(n)≪ X(1 +
q

X
)1/2q−η/2,

and

SV (K, f ;X)
∑

n>1

̺f (n)K(n)V (
n

X
)≪ X(1 +

q

X
)1/2q−η.

The implicit constants depend only on η, f C(F) and V . Moreover, the dependency on C(F) is at
most polynomial.

This result show the absence of correlation for range X ≫ q1−1/8. The proof which use the
amplification method, the Petersson-Kuznetzov trace formula, will ultimately be a consequence of
Theorem 7.4.

We give below an idea of the proof. To simplify matters we will assume that X = q and we wish
to bound non-trivially the sum

SV (K, f) :=
∑

n>1

̺f (n)K(n)V (
n

q
)

for V a fixed smooth function; moreover to simplify things further we will assume that f has level
1 and is cuspidal and holomorphic of very large (but fixed) weight.

10.1. Trace functions vs. the divisor function. An important special case of Theorem 10.1 is
when f is an Eisenstein series: for instance when

f(z) =
∂

∂s
E(z, s)|s=1/2 for E(z, s) =

1

2

∑

(c,d)=1

ys

|cz + d|2s

is the non-holomorphic Eisenstein series at the central point. In that case

̺f (n) = d(n)

is the divisor function and so one has

(10.1)
∑

m,n>1

K(mn)V (
mn

X
)≪V X(1 +

q

X
)1/2q−η

whenever K is the trace function of a Fourier sheaf. This bound holds similarly for the unitary
Eisenstein series E(z, s) at any s = 1

2 + it where the divisor function is replaced by

dit(n) =
∑

ab=n

(a/b)it.

Such general bounds make it possible to separate the variables m,n in (10.1) and eventually to
prove Theorem 8.1.

Remark 10.1. As we will see below the proof of Theorem 10.1 is not a ”modular form by modular
form” analysis; instead the proof is global involving the full automorphic spectrum and establishes
the required bound ”for all modular forms f at once”.
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10.2. Functional equations. Our first objective is to understand why the range X = q is inter-
esting; this come from the functional equations satisfied by modular forms as a consequence of their
automorphic properties. These equations present themselves in various forms. One is the Voronoi
summation formula which in its simplest forme is the following

Proposition 10.2 (Voronoi summation formula). Let f be an holomorphic modular form of weight
k and level 1 with Fourier coefficients (̺f (n))n; let V be a smooth compactly supported function,
q > 1 and (a, q) = 1, one has we have for X > 0

∑

n>1

̺f (n)V
( n
X

)
e
(an
q

)
= ε(f)

X

q

∑

n>1

̺f (n)e
(
−an
q

)
Ṽ
(Xn
q2

)

where ε(f) = ±1 denotes the sign of the functional equation of L(f, s),

Ṽ (y) =

∫ ∞

0
V (u)Jk(4π

√
uy)du,

with

Jk(u) = 2πikJk−1(u).

There are several possible proofs of this proposition: one can proceed classically from the Fourier
expansion of the modular form f using automorphy relations (see [KMV02, Theorem A.4]). Another
more conceptual approach is to working with the Whittaker model of the underlying automorphic
representation; this approach offer natural extension to higher rank automorphic forms (see [IT13]).
One could also point out other related works like [MS06] as well as the recent paper [KZ16]. We
can extend this formula to general functions modulo q. Given K : Z → C a q-periodic function,
combining the above formula with the Fourier decomposition

K(n) =
1

q1/2

∑

a (mod q)

K̂(a)eq(−an).

We define the Voronoi transform K

∧

of K as

K

∧

(n) =
1√
q

∑

h mod q
(h,q)=1

K̂(h)eq(hn) =
1√
q

∑

h mod q
(h,q)=1

K̂(h−1)eq(hn).

We obtain

Corollary 10.3. Notations are above, given K a q-periodic arithmetic function we have for N > 0

∑

n>1

̺f (n)K(n)V
( n
X

)
=

K̂(0)

q1/2

∑

n>1

̺f (n)V
( n
X

)
+

ε(f)
X

q

∑

n>1

̺f (n)K

∧

(−n)Ṽ
(nX
q2

)
.

Remark. Another way to obtain such result is to consider the Mellin transform of (the restriction
to F×

q of) K:

K̃(χ) =
1

(q − 1)1/2

∑

x∈F×

q

K(x)χ(x)

so that for x ∈ F×
q

K(x) =
1

(q − 1)1/2

∑

χ

K̃(χ)χ−1(x).
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One can then use (archimedean) inverse-Mellin transformation and the functional equation satisfied
by the Hecke L-function

L(f ⊗ χ, s) =
∑

n>1

̺f (n)χ(n)

ns

to obtain the formula: for this one observe that the Mellin transform of K

∧

|F×

q
is proportional to

χ 7→ ε(χ)K̃(χ−1)

where ε(χ) is the normalized Gauss sum. This method extends easily to automorphic forms of
higher rank but uses the fact that q is prime (so that F×

q is not much smaller that Fq).

This identity is formal and has nothing to whether K is a trace function or not. In particular
applying it to the Dirac function δa(n) = δn≡a (mod q) for some a ∈ F×

q we obtain

δ̂a(h) =
1

q1/2
eq(ah), δ

∧

a(n) =
1

q1/2
Kl2(an)

so that

q1/2
∑

n≡a (mod q)

̺f (n)K(n)V
( n
X

)
=

1

q1/2

∑

n>1

̺f (n)V
( n
X

)
+(10.2)

ε(f)
X

q

∑

n>1

̺f (n)Kl2(−an)Ṽ
(nX
q2

)
.(10.3)

This is an example of a natural transformation which starting from the elementary function δa
produces a genuine trace function (Kl2).

Besides this case we would like to use the formula for K a trace function: we observe that the
Voronoi transform K

∧

is ”essentially” the Fourier transform of the function h ∈ F×
q 7→ K̂(h−1) =

K̂(wh) with w =

(
0 1
0 1

)
; it is therefore essentially involutive. It would be useful to know that

K

∧

is a trace function. Suppose that K is associated to some isotypic fourier sheaf F, then K

∧

is a

(isotypic) trace function as long as long as [w]∗F̂ is a Fourier trace function. This mean that F̂ has
not irreducible constituent of the shape w∗Lψ which (by involutivity of the Fourier transform mean

that F has no irreducible constituent isomorphic to some Kloosterman sheaf Kℓ2. This reasoning
10

is essentially the reverse of the one leading to (10.2).

Let us assume that K

∧

is also a trace function; integration by parts show that for V smooth

compactly supported, Ṽ has rapid decay for x≫ 1, Corollary 10.3 is an equality between a sum of

length X and a sum of length about q2/X (up to the term K̂(0)

q1/2

∑
n>1 ̺f (n)V

(
n
X

)
which is easy to

understand). The two length are the same when X = q.

10.3. The amplification method. As mentionned above Theorem 10.1 is proven ”for all modular
forms at one” as a consequence of the amplification method.

The principle of the amplification method (invented by H. Iwaniec and which in the special case
K = χ was used first by Bykovskii) consist in evaluating the following moments: for L > 1 and
(xl)l6L real numbers we consider the following average over orthogonal bases of modular forms
(holomorphic or general) of level q:

(10.4) Mk(K) :=
∑

g∈Bk(q)

|A(g)|2|SV (g,K)|2

10by involutivity of the Voromoi transform
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and

(10.5) M(K) :=
∑

k≡0 (mod 2), k>0

φ̇(k)(k − 1)
∑

g∈Bk(q)

|A(g)|2|SV (g,K)|2

+
∑

g∈B(q)

φ̃(tg)
4π

cosh(πtg)
|A(g)|2|SV (g,K)|2

+
∑∑

χ
g∈B(χ)

∫ ∞

−∞
φ̃(t)

1

cosh(πt)
|A(g, t)|2|SV (Eχ,g(t),K, p)|2 dt,

where Bk(q), B(q), B(χ) denote orthonormal bases of Hecke-eigen modular forms of level q (either

holomorphic of weight k or Maass or Eisenstein series), φ̇, φ̃ are weights constructed from some
smooth function, φ, rapidly decreasing at 0 and ∞, which depend only on the spectral parameters
of the forms and for each form g, A(g) (”A” is for amplifier) denote a suitable linear form in the
Hecke eigenvalues (λg(n))(n,q)=1

A(g) =
∑

l6L

xlλg(l)

with suitable coefficients xl and of length some parameter L. The weights φ̃ are positive while the
weight φ̇(k) is positive at least for k large enough; one can then has to this moment a finite linear
combination of the M(K) from which one can bounds

(10.6) |M |(K) :=
∑

k≡0 (mod 2), k>0

|φ̇(k)|(k − 1)
∑

g∈Bk(q)

|A(g)|2|SV (g,K)|2

+
∑

g∈B(q)

φ̃(tg)
4π

cosh(πtg)
|A(g)|2|SV (g,K)|2

+
∑∑

χ
g∈B(χ)

∫ ∞

−∞
φ̃(t)

1

cosh(πt)
|A(g, t)|2|SV (Eχ,g(t),K, p)|2 dt,

As we explain below one will be able to prove the following bound

M(K),Mk(K)≪C(F) q
o(1)(q

∑

l6L

|xl|2 + q1/2L(
∑

l6L

|xl|)2).

Now if f is a Hecke-eigenform of level 1 (of L2 norm 1 for the usual inner product on the level one

modular curve) then f/(q + 1)1/2 embeds in an orthonormal basis of forms of level q.
Since all the terms in |M |(K) are non-negative, |M |(K) is a bound for any single term occuring

discretely in the above sum (ie. when f is a cusp form); therefore we obtain

1

q + 1
|A(f)|2|SV (f,K)|2 ≪C(F),f q

o(1)(q
∑

l6L

|xl|2 + q1/2L(
∑

l6L

|xl|)2).

Now we perform amplification by choosing some absolutely bounded sequence (xl)l6L taylor made
for f such that A(f) is large

|A(f)| ≫ L1+o(1);

specifically choosing

xl = sign(λf (l))

we obtain

|A(f)| ≫ L1+o(1).
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Dividing by L we obtain

|SV (f,K)|2 ≪ qo(1)(q2/L+ q3/2L2)

and the optimal choice is L = q1/6 giving us

SV (f,K)≪ q1−1/12+o(1).

10.4. Computing the moments. We now bound M(K). Opening squares and using the multi-
plicative properties of Hecke eigenvalue we are essentially reduced to bounding sums of the shape

(10.7)
∑∑

m,n

V (
m

q
)V (

n

q
)K(m)K(n)∆q,φ(lm, n)

and

(10.8)
∑∑

m,n

V (
m

q
)V (

n

q
)K(m)K(n)∆q,k(lm, n)

where 1 6 l 6 L2 and

∆q,k(lm, n) =
∑

g∈Bk(q)

̺g(lm)̺g(n)

and

∆q,φ(lm, n) =
∑

k≡0 (mod 2), k>0

φ̇(k)(k − 1)
∑

g∈Bk(q)

̺g(lm)̺g(n)

+
∑

g∈B(q)

φ̃(tg)
4π

cosh(πtg)
̺g(lm)̺g(n)

+
∑∑

χ
g∈B(χ)

∫ ∞

−∞
φ̃(t)

1

cosh(πt)
̺g(lm, t)̺g(n, t) dt.

The Petterson-Kuznetzov formula express ∆q,k(m,n) ∆q,φ(m,n) as a sum of Kloosterman sums:

(10.9) ∆q,k(m,n) = δm=n + 2πi−k
∑

c

1

cq
S(m,n; cq)Jk−1

(
4π
√
mn

cq

)
.

(10.10) ∆q,φ(m,n) =
∑

c

1

cq
S(m,n; cq)φ

(
4π
√
mn

cq

)

where

S(m,n; cq) =
∑

(x,cq)=1

ecq(mx+ nx)

is the non-normalized Kloosterman sum of modulus cq (x.x ≡ 1 (mod cq)). In (10.8), Because m

and n are of size q and φ is rapidly decreasing at 0 the contribution of the c≫ l1/2 is small we will
simplify further by evalauting only the contribution of c = 1, that is

1

q

∑∑

m,n

V (
m

q
)V (

n

q
)K(m)K(n)S(lm, n; q)φ(

4π
√
lmn

q
).

Our next step will be to open the Kloosterman sum and apply the Poisson summation formula on
the m and n variables: we obtain

1

q

q2

(q1/2)2

∑∑

m∗,n∗

Ŵ (m∗, n∗)
∑

x∈F×

q

K̂(lx+m∗)K̂(x−1 + n∗)
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where

W (x, y) = V (x)V (y)φ(4π
√
lxy).

In particular the Fourier transform Ŵ (m∗, n∗) is very small unless m∗ + n∗ ≪ l so the above sum
is over m∗, n∗ ≪ l. Setting

γ1 =

(
l m∗

1

)
, γ2 =

(
n∗ 1
1 0

)

we see that the x-sum is the correlation sum qC(K, γ2.γ
−1
1 ) which is ≪ q1/2 iff γ2.γ

−1
1 6∈ G

F̂
. Now

by Theorem 7.4 (which says that GF̂ is constrained) shows if l is a sufficiently small fixed (positive)

power of q that γ2.γ
−1
1 belong to G

F̂
for ≪ lo(1) pairs (m∗, n∗). To obtain the main result once has

to combine such an argument with an averaging over the l parameter.

11. The ternary divisor function in large arithmetic progression

Given λ = (λ(n))n>1 some arithmetic function a natural question in analytic number theory is
to understand how well λ is distributed in arithmetic progressions, ie. how it correlates with the
characteristic function: given q > 1 and (a, q) = 1 one would like to evaluate the sum

∑

n6X
n≡a (mod q)

λ(n)

as X →∞ and for q as large as possible with respect to X. It is natural to evaluate the difference

E(λ; q, a) :=
∑

n6X
n≡a (mod q)

λ(n)− 1

ϕ(q)

∑

n6X
(n,q)=1

λ(n)

and assuming that λ is ”essentially” bounded the target would be to obtain a bound of the shape

(11.1) E(λ; q, a)≪A
X

q
(logX)−A

for any A > 0, as X → +∞ and for q as large as possible compared to X.
The emblematic case is when λ = 1P is the characteristic function of the primes. In that case

the problem can be approached through the analytic properties of Dirichlet L-functions and in
particular the localization of their zeros. The Hadamard-de la Vallee-Poussin method (adapted to
this setting by Landau) and the Laudau-Siegel theorem show that (11.1) is satisfied for q 6 (logX)B

for any given B while the validity of the generalized Riemann hypothesis would give (11.1) for
q ≪ X1/2−δ for any fixed δ > 0. Considering averages over q it is possible to reach the GRH range
and this is the content of the Bombieri-Vinogradov theorem

Theorem 11.1 (Bombieri-Vinogradov). For any A > 0 there exist B = B(A) such that for

Q 6 X1/2/ logBX ∑

q6Q

max
(a,q)=1

|E(1P; q, a)| ≪ X/ logAX.

Passing the GRH/Bombieri-Vinogradov range and reaching the inequality Q 6 x1/2+η for some
η > 0 is a fundamental problem in analytic number theory with many major applications. For
instance, Y. Zhang breakthrough on the existence of bounded gaps between primes went by estab-
lishing a version of the BV theorem going beyond the Q = X1/2 range11 [Zha14]; we will discuss
some of the techniques entering his proof below.

11on average over smooth moduli.
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Several arithmetic functions are of interest besides the characteristic fonctions. One the the
simplest are the divisor functions

dk(n) =
∑

n1.···nk=n

1.

For k = 2, Selberg established the following (still unsurpassed) result

Theorem 11.2 (The divisor function in large arithmetic progressions). For every non-zero integer
a, every ε,A > 0, every X > 2 and every prime q, coprime with a, satisfying

q 6 X2/3−ε,

we have

E(d2; q, a)≪
X

q
(logX)−A,

where the implied constant only depends on ε and A (and not on a).

Proof. (Sketch) To simplify matter we replace the problem by evaluating the model sum
∑

n1n2≡a (mod q)

V (
n1
N1

)V (
n2
N2

)

for N1N2 = X and V ∈ C∞
c (]1, 2[). We apply the Poisson summation formula to the n1 variable

and again on the n2 variable. The n1n2 ≡ a (mod q) condition get transformed into

δn1n2≡a (mod q) → q−1/2eq(an1/n2)→ q−1/2 Kl2(an1n2).

Regarding ranges the ranges N1, N2 are transformed into

N∗
1 = q/N1, N

∗
2 = q/N2

and the whole model sum is transformed into a sum of the shape

MT (a; q) +ET (a; q)

where MT (a; q) is a main term which we will not specify but is of the right order of magnitude,
ET (a; q) is an error term of the shape

ET (a; q) =
1

q1/2
N1

q1/2
N2

q1/2

∑

n1,n2

Kl2(an1n2)Ṽ (
n1
N∗

1

)Ṽ (
n2
N∗

2

)

where Ṽ is a rapidly decreasing function. By Weil bound for Kloosterman sums the error term is
bounded by q1/2+ǫ which smaller that X(logX)−A/q as long as X 6 q2/3−2ε. �

Remark 11.1. Improving the exponent 2/3 is tantamount to detect cancellation in the sum of
Kloosterman sums above. We have given such an improvment in (10.1); unfortunately in the
present case the range of the variable n1n2 is N∗

1N
∗
2 = q2/X 6 q1/2 which is too short with current

technology. See however the [FI92] for an improvement beyond the q = x2/3 limit on average over
a family of moduli q admitting a specific factorisation.

We now show how to pass the Bombieri-Vinogradov range for the ternary divisor function

d3(n) =
∑

n1n2n3=n

1

when q is a prime. The very first result of that kind is due to Friedlander-Iwaniec [FI85] (with
1
2 + η = 1

2 +
1

231 ) and was later improved by Heath-Brown (with 1
2 + η = 1

2 +
1
81 ) [HB86]. The best

result to date is to be found in [FKM15]
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Theorem 11.3 (The ternary divisor function in large arithmetic progressions). For every non-zero
integer a, every A > 0, every X > 2 and every prime q, coprime with a, satisfying

q 6 x
1
2
+ 1

47 ,

we have

E(d3; q, a)≪
x

q
(log x)−A,

where the implied constant only depends on A (and not on a).

Remark. One may wonder why these higher order divisor functions are that interesting: one rea-
son is that these problems can be considered as approximations for the case of the von Mangolt
function. Indeed, the Heath-Brown identity (Lemma 8.2) express the von Mangolt function as a
linear combination of arithmetic functions involving higher divisor functions, therefore studying
higher divisor functions in large arithmetic progressions will enable to progress on the von Mangolt
function.12

Proof. We consider again a model sum of the shape
∑

n1n2n3≡a (mod q)

V (
n1
N1

)V (
n2
N2

)V (
n3
N3

)

for N1N2N3 = X and V ∈ C∞
c (]1, 2[). We apply the Poisson summation formula to the n1 n2 and n3

variable. The n1n2n3 ≡ a (mod q) condition is this time transformed into the hyper-Kloosterman
sum

1

q1/2
Kl3(an1n2n3).

The model sum is transformed into a main term (of the correct order of magnitude) and an error
term

ET3(a; q) =
1

q1/2
N1

q1/2
N2

q1/2
N3

q1/2

∑

n1,n2,n3

Kl2(an1n2n3)Ṽ (
n1
N∗

1

)Ṽ (
n2
N∗

2

)Ṽ (
n3
N∗

3

)

with

N∗
i = q/Ni, i = 1, 2, 3.

The objective is obtain a bound of the shape

(11.2) Σ3 :=
∑

n1,n2,n3

Kl3(an1n2n3)Ṽ (
n1
N∗

1

)Ṽ (
n2
N∗

2

)Ṽ (
n3
N∗

3

)≪ q

logA q

for x of the shape x = q2−η for some fixed η > 0 (small) or equivalently for

N∗
1N

∗
2N

∗
3 = q1+η.

We will show that when η = 0 (11.2) holds with the stronger bound ≪ q1−δ for some δ > 0. A
variation of this argument will show (11.2) for some positive η. Write

N∗
i = qνi , i = 1, 2, 3, ν1 + ν2 + ν3 = 1;

we assume that

0 6 ν1 6 ν2 6 ν3.

Suppose that ν3 > 1/2 + δ then the Polya-Vinogradov method applied to the n3 variable yield to
a bound of the shape

Σ3 ≪ q1−ν3+1/2 log q ≪ q1−δ log q.

12This was formalised by Fouvry [Fou85].
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Otherwise we have ν3 6 1/2 + δ. We assume now that ν1 > 2δ then ν1 6 1/3 so that grouping

the variable n2n3 into a single variable n of size > q2/3 (weighted by a divisor like function) and
applying Theorem 9.1 we obtain the bound

Σ3 ≪ log q1−δ log3 q.

We may therefore assume that

ν1 6 2δ, ν2 + ν3 > 1− 2δ.

The n2n3-sum is similar to the sum in (10.1) (for K(n) = Kl3(an1n)) and indeed the same bound
holds so that for any ε > 0

Σ3 ≪ε q
ν1+

ν2+ν3
2

+ 1
2
− 1

8
+ǫ ≪ε q

2δ+1− 1
8
+ǫ

which gives the required bounds if δ is chosen < 1/24. �

12. The geometric monodromy group and Sato-Tate laws

In this section we discuss an important invariant attached an ℓ-adic sheaf: its geometric mon-
odromy group. This will be crucial in the next section to study more advanced sums of trace
functions (multicorrelation sums).

Definition 12.1 ([Kat88][Chap. 3). ] Let F be a sheaf pure of weight 0 and let ̺F the associated
Galois representation. The geometric (resp. arithmetic) monodromy group GF,geom (resp. GF,arith)

be the Zariski closure of ̺F(G
geom) (resp. ̺F(G

arith)) inside GL(VF); in particular

GF,geom ⊂ GF,arith.

It follows from the work of Deligne that its connected component G0
F,geom is semisimple.

In the works [Kat88, Kat90a, Kat90b, Kat05a, Kat05b, Kat12] Katz computed the monodromy
groups of various classes of sheaves: for instance, he proved in [Kat88] that for Kloosterman sheaves
one has (for q large enough)

GKℓk,geom = GKℓk,arith =

{
SLk if k is odd

Spk if k is even.

12.1. Sato-Tate laws. This group is a fundamental invariant of the sheaf. One of the most
appealing consequence of its determinantion is the Sato-Tate law which describe the distribution
of the set

{K(x), x ∈ Fqn} in the disk D(0, rk(F)) ⊂ C

as qn →∞. Let us make the simplifying hypothesis that

(12.1) GF,geom = GF,arith.

Before presenting the Sato-Tate law in general let us see how the knowledge of the geometric
monodromy group allows to evaluate at least one multiple correlation sum, that is the case γi =
γ′i = Id and y = 0. This sum is the average of the trace function associated to the sheaf

F⊗l ⊗D(F)⊗l.

Consider the representation ̺l,l = (Std ⊗ Std∗)⊗l of the group GF,geom where Std : GF,geom →֒
GL(VF) denote the standard representation, then the compositum ̺l,l(F)” = ”̺l,l ◦ ̺F defines an
ℓ-adic sheaf pure of weight 0 whose trace function is

x 7→ |K(x)|2l.
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The decomposition of this representation into irreducible

̺l,l = m1(̺l,l)⊕
⊕

16=r∈Irr(GF,geom)

mr(̺l,l)r

yields a decomposition of ̺l,l(F) into a sum of geometrically irreducible sheaves

̺l,l ◦ F = m1(̺l,l)Qℓ ⊕
⊕

16=r∈Irr(GF,geom)

mr(̺l,l)r ◦ F

and a decomposition of |K(x)|2l a sum of irreducible trace functions

|K(x)|2l = m1(̺l,l) +
∑

16=r

mr(̺l,l)Kr◦F(x).

From Deligne’s theorem one deduce

1

q

∑

x

|K(x)|2l = m1(̺l,l) +OC(F),l(q
−1/2)

where m1(̺l,l) is the multiplicity of the trivial representation in the representation (Std ⊗ Std∗)⊗l

of GF,geom.
The values of the trace function Kr◦F are given as follows: given x ∈ U(Fq) let

θx,F = (Frx |VF)ss ⊂ GF,arith = GF,geom;

be the (semisimplifications of the) Frobenius conjugacy class of x acting on VF, then

Kr◦F(x) = tr(r(θx,F)).

Let K be a maximal compact subgroup of GF,geom(C), as explained in [Kat88][Chap. 3], the

conjugacy class θx,F ∈ GF,geom(C)♮ defines a unique conjugacy class of K also noted θx,F ∈ K♮.

The Sato-tate laws describe the distribution of the set {θx,F, x ∈ U(Fq)} inside K♮.

More precisely, let G be some connected semisimple algebraic groupover Qℓ; suppose we are
given a sequence of primes q → ∞ and for each such prime some ℓ-adic sheaf F, satisfying (12.1),
whose conductor C(F) is bounded independently of q, such that

GF,geom = G.

For every non-trivial irreducible representation r, it follows from Deligne’s theorem (and the irre-
ducibility of r ◦ F) that

1

U(Fq)

∑

x∈Fq

tr(r(θx,F)) = OC(F),dim r(q
−1/2)→ 0, q →∞;

By Peter-Weyl, the characters

θ ∈ K♮ 7→ tr(r(θ)), r ∈ Irr(G)

generate a dense subspace in the space of continuous functions on K♮. Let µST be the image of
the Haar measure µHaar on K by the projection K → K♮; this measure is the Sato-tate measure.
Since the characters form an orthonormal family wrt µST one deduce that for any f ∈ C(K♮)

(12.2)
1

U(Fq)

∑

x∈Fq

f(θx,F)→
∫

K♮

f(θ)dµST (θ), q →∞.

In other terms one has that
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Theorem 12.1 (Sato-Tate law). As q →∞ the sets of conjugacy classes

{θx,F, x ∈ U(Fq)}
become equidistributed wrt to the Sato-Tate measure: the probability measure

1

U(Fq)

∑

x∈Fq

δθx,F

weak-⋆ converge to the Sato-Tate measure.

12.1.1. The case of Kloosterman sums. In [Kat88], Katz computed the monodromy groups of the
Kloosterman sheave (Kℓk,q)q≫1: one has

GKℓk,geom = GKℓk,arith = SLk or Spk

depending on the parity of k. In particular for the case of Kloosterman sums, k = 2, G = Sp2 = SL2,
K = SU2(C) and on has the identification K♮ ≃ [0, π] given by

θ ∈ [0, π] 7→ the conjugacy class of the matrix

(
eiθ 0
0 e−iθ

)

and the Sato-Tate measure is the probability measure with density

dµST =
2

π
sin2(θ)dθ.

Regarding Kloosterman sums one has

Kl2(x; q) =

(
eiθq,x 0
0 e−iθq,x

)
= 2cos(θq,x), θq,x ∈ [0, π]

The Sato-Tate law become the following explicit statement (due to Katz):

Theorem 12.2 (Sato-Tate law for Kloosterman sums). For any interval [a, b] ⊂ [0, π]

1

q − 1
|{x ∈ F×

q , θq,x ∈ [a, b]}| → 2

π

∫ b

a
sin2(θ)dθ, q →∞.

The above Sato-Tate law is called ”Vertical” as is describe the distribution of Kloosterman angles
with varying parameters x ∈ F×

q as q → ∞. Another possibility discussed by Katz is to consider
the Kloosterman angles for a fixed value of the parameter (say x = 1) and by varying the modulus q
over the primes. The distribution of the angle is a conjecture again due to Katz called the horizontal
Sato-Tate law

Conjecture 12.2 (Horizontal Sato-Tate conjecture for Kloosterman sums). As X → ∞, the
multiset of Kloosterman angles {θq,1, q 6 X, prime} become equidistributed wrt to the Sato-Tate
measure: for any [a, b] ⊂ [0, π]

1

π(X)
|{q 6 X, q prime, θq,1 ∈ [a, b]}| → 2

π

∫ b

a
sin2(θ)dθ

as X →∞.

This conjecture is very similar to feu Sato-Tate conjecture13 for a given elliptic curve established
recently by Taylor and his collaborators, it is also very similar to the equidistribution problem for
cubic Gauss sums solved by Heath-Brown and Patterson[HBP79], however prospects for proving
this one look much more distant. In particular this conjecture implies the following two simple
statements which look as out of reach as the full conjecture.

– There exist infinitely many primes q such that |Kl2(1; q)| > 2017−2017,

13it also admits a vertical version much simpler to prove
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– There exist infinitely many primes q such that Kl2(1; q) > 0 (resp. Kl2(1; q) < 0).

In the next section we will explain how some of the results discussed so far enable to say something
non-trivial as the constant of replacing the prime moduli q by almost prime moduli14

12.2. Towards the horizontal Sato-Tate conjecture for almost prime moduli. We now
describe an application going back to [Mic95] combining Sato-Tate laws together with the results
of Section 8 and another ingredient. For c > 1 a squarefree integer and (a, c) = 1 the Kloosterman
sum of modulus c and parameter a is defined as

Kl2(a; c) =
1

c1/2

∑

x∈(Z/cZ)×

e(
x+ ax

c
).

By the Chinese remainder theorem, Kloosterman sums satisfy the twisted multiplicativity relation:
for c = c1c2, (c1, c2) = 1 one has

(12.3) Kl2(a; c) = Kl2(ac2
2; c1)Kl2(ac1

2; c2)

so that by Weil’s bound one has

|Kl2(a; c)| 6 2ω(c)

where ω(c) is the number of prime factors of c. One has the following result

Theorem 12.3. There exist k > 2 such that

(1) for infinitely many square-free integers c with at most k prime factors,

|Kl2(1; c)| > 2017−2017.

(2) for infinitely many square-free integers c with at most k prime factors,

Kl2(1; c) > 0.

(3) for infinitely many square-free integers c with at most k prime factors,

Kl2(1; c) < 0.

The first statement above was proven in [Mic95] for k = 2 (and 2017−2017 replaced by 4/25; the
second and the third were first proven in [FM07] for k = 23; this value was subsequently improved
by Sivak, Matomaki and Ping who holds the current record with k = 10[SF09,Mat11,Xi15].

12.2.1. Kloosterman sums can be large. We start with the first statement which we prove for c = pq
a product of two distinct primes: the main idea is to use the twisted multiplicatity relation

Kl2(1; pq) = Kl2(p
2; q)Kl2(q

2; p)

and to establish the existence of some κ for which there exist infinitely many pairs of distinct primes
(p, q) such that

|Kl2(p
2; q)|&|Kl2(q

2; p)| > κ;

for such pairs we have
|Kl2(1; pq)| > κ2.

Given X large, we will consider pairs (p, q) such that p, q ∈ [X1/2, 2X1/2[ and will show that for κ
small enough the two sets

{(p, q), p 6= q ∈ [X1/2, 2X1/2[, p, q primes |Kl2(p
2; q)| > κ}

{(p, q), p 6= q ∈ [X1/2, 2X1/2[, p, q primes |Kl2(q
2; p)| > κ}

are large enough to have a non-empty (and in fact large) intersection as X → ∞. This is a
consequence of the following equidistribution statement

14squarefree-integers with an absolutely bounded number of prime factors.

36



Proposition 12.3. Given X > 1, q ∈ [X, 2X] some prime then the (multi)-set of Kloosterman
angles

{θq,p−2 , p ∈ [X1/2, 2X1/2[, p prime, p 6= q}
is equidistributed wrt the Sato-Tate measure: for any interval [a, b] ⊂ [0, π]

|{p ∈ [X1/2, 2X1/2[, p 6= q prime, θq,p2 ∈ [a, b]}|
|{p ∈ [X1/2, 2X1/2[, p 6= q prime}| → 2

π

∫ b

a
sin2(θ)dθ

as X →∞.

Proof. We consider the pull-back sheaf K := [x → x−2]∗Kℓ2 whose trace function is given by
x→ Kl2(x

2; q): as a representation of the geometric Galois group it corresponds to restricting the
representation Kℓ2 to an subgroup of index 2. Since the geometric monodromy group of Kℓ2 is SL2

the same is true for the pull-back; therefore

GK,geom = GK,arith = SL2 .

The non-trivial irreducible representations of SL2 are the symetric powers of the standard repre-
sentation, Symk(Std), k > 1. Given k > 1 the composed sheaf

Kk = Symk ◦K
is by construction geometrically irreducible, has rank k+1 with conductor is bounded by a multiple
of k and its trace function equals

Kk(x) = tr(Symk

(
eiθq,x2 0

0 e−iθq,x2

)
) =

k∑

j=0

ei(k−j)θq,x2e−ijθq,x2 =
sin((k + 1)θq,x2)

sin(θq,x2)
.

In particular Kk cannot be geometrically isomorphic to any tensor product of an Artin-Schreier
sheaf and a Kummer sheaf (as they have rank 1). Hence by a simple variant of Thm. 8.1 we obtain
that

1

π(2X1/2)− π(X1/2)

∑

p 6=q
p∼X1/2

Kk(p)→ 0 =
2

π

∫ π

0

sin((k + 1)θ)

sin(θ)
sin2(θ)dθ

�

Averaging over q, we deduce the existence of some κ > 0 (κ = 0, 4) such that for X large enough

|{(p, q), p 6= q ∈ [X1/2, 2X1/2[, p, q primes, |Kl2(p
2; q)| > κ}|

|{(p, q), p 6= q ∈ [X1/2, 2X1/2[, p, q primes}| > 0, 51

hence

(12.4) |{(p, q), p 6= q ∈ [X1/2, 2X1/2[, p, q primes |Kl2(1; pq)| > κ2}| > (0, 01 + o(1))
X

(12 logX)2
.

12.2.2. Kloosterman sums change sign. We now discuss briefly the proof the remaining two state-
ments: to establish the existence of sign changes is suffice to prove that given V ∈ C∞

c (]1, 2[) some
non-negative smooth function, there exist u > 0 such that, for X large enough

(12.5)
∣∣ ∑

c>1
p|c⇒p>X1/u

Kl2(1; c)V (
c

X
)
∣∣ <

∑

c>1
p|c⇒p>X1/u

|Kl2(1; c)|V (
c

X
).

which will shows the existence of sign changes for Kloosterman sums Kl2(1; c) whose modulus has
at most 1/u prime factors. Using sieve methods and the Kuznetzov formula (expressing sums of
Kloosterman sums in terms of fourier coefficients of modular forms) one can show that (we refer
to [FM07] for a proof)
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Proposition 12.4. For any η > 0, there exists u = u(η) > 0 such that

∣∣ ∑

c>1
p|c⇒p>X1/u

Kl2(1; c)V (
c

X
)
∣∣ 6 η

X

logX

for X large enough (depending on η and V ).

To conclude it is sufficient to show that for some u = u0, one has

(12.6)
∑

c>1
p|c⇒p>X1/u

|Kl2(1; c)|V (
c

X
)≫V

X

logX

(the left-hand side is an increasing function of u so the above inequality remains valid for any
u > u0.) The inequality (12.4) points in the right direction (for u0 = 2), however as stated it is off
by a factor logX. One can however recover this factor logX entierely and prove the lower bound

∑

c>1
p|c⇒p>X3/8

|Kl2(1; c)|V (
c

X
)≫V

X

logX

the reason is Thm. 8.1 applies also when p is significantly smaller than q ( if q ≃ X1/2+δ on can
obtain a non-trivial bound in (8.2) for p of size X1/2−δ for δ ∈ [0, 1/8[). The details involve making
a partition of unity and we leave it to the interested reader. Another possibility (the one followed
originally in [FM07]) is to establish the lower bound (12.6) for a suitable u by restricting to moduli
c which are products of exactly three prime factors) using the techniques discussed so far.

13. Multicorrelation of trace functions

So far we have mainly discussed the evaluation of correlation sums associated to two trace
functions K1 and K2 (especially the case K1 = K and K2 = γ∗K)

C(K1,K2) =
1

q

∑

x

K1(x)K2(x).

In several applications, multiple correlation sums occur: sums of the shape

C(K1,K2, · · · ,KL) :=
1

q

∑

x

K1(x)K2(x) · · ·KL(x)

where the Ki, 1 = 1 · · ·L are trace functions; of course rewriting the inner term of the sum above
as a product of two factors reduce to evaluating a double correlation sum, say associated to the
sheaves

F = K1 ⊗ · · ·Kl, G = Kl+1 ⊗ · · ·KL

but it would remain to determine if F and G share a common irreducible component and this may
be a hard task. In practice the multicorrelation sums that occur (due to the application of some
Hölder inequality and of the Polya-Vinogradov method) are of the shape

C(K, γ, h) =
1

q

∑

x

K(γ1.x) · · ·K(γl.x)K(γ′1.x) · · ·K(γ′l .x)eq(xh)

for K the trace function of some geometrically irreducible, pure of weight 0, sheaf F,

γ = (γ1, · · · , γl, γ′1, · · · , γ′l) ∈ PGL2(Fq)
2l

and h ∈ Fq.
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This sum is the correlation associated to the trace functions of the sheaves

γ∗1F ⊗ · · · ⊗ γ∗l F and γ′
∗
1F ⊗ · · · ⊗ γ′

∗
l F ⊗ Lψ

whose conductors are bounded polynomially in C(F). If F has rank one, the two sheaves above have
rank one and it is not difficult to determine whether these sheaves are geometrically isomorphic or
not.

For F of higher rank we describe a method due to Katz [FI92] which has been axiomatized in
[FKM15]: this method rest on the notion of geometric monodromy group which we discussed in
the previous section.

13.1. A theorem on sums of products of trace functions. In this section we discuss some
general result making it possible to evaluate multicorrelations sums of trace function of interest
for analytic number theory. The method is basically due to Katz ([FI92]) and was used on several
occasions, for instance in [Mic95, FM98] and the general result presented here is a special case
of the results of [FKM15]. For this we need to introduce the following variants of the group of
automorphism of a sheaf: one is the group of projective automorphisms

Autp
F
(Fq) = {γ ∈ PGL2(Fq), ∃ some rank one sheaf L s.t. γ∗F ≃geom F ⊗ L},

the other is the right Autp
F
(Fq)-orbit

AutdF(Fq) = {γ ∈ PGL2(Fq), ∃ some rank one sheaf L s.t. γ∗F ≃geom D(F)⊗ L}.
Let F be a weight 0, rank k, irreductible sheaf: we assume that

– the geometric monodromy group equals GF,geom = SLk or Spk, (we then say that F is of
SL or Sp type),

– the inclusion (12.1) holds,
– Autp

F
(Fq) = {Id}; in particular AutdF(Fq) is either empty or is reduced to a single element,

ξF which is a possibly trivial involution (ξ2
F
= Id) and is called the special involution.

Example 13.1. The Kloosterman sheaves Kℓk have this property [Kat88]. The special involution

is either Id if k is even (Kℓk is self-dual) or the matrix ξ =

(
−1

1

)
for k odd.

Finally we introduce the following ad-hoc definition:

Definition 13.2. Given

γ = (γ1, · · · , γl, γ′1, · · · , γ′l) ∈ PGL2(Fq)
2l,

one say that

– γ is normal if there is γ ∈ PGL2(Fq) such that

|{i, γi = γ}|+ |{j, γ′j = γ}| ≡ 1 (mod 2).

– For k > 3, γ is k-normal if there exist γ ∈ PGL2(Fq) such that

|{i, γi = γ}| − |{γ′j = γ}| 6≡ 0 (mod k).

– For k > 3, and ξ ∈ PGL2(Fq) a non-trivial involution, γ is k-normal w.r.t. ξ if there exist
γ ∈ PGL2(Fq) such that

|{i, γi = γ}|+ |{j, γ′j = ξγ}| − |{j, γ′j = γ}| − |{i, γi = ξγ}| 6≡ 0 (mod k).

Theorem 13.1. Let K be the trace function of a sheaf F as above, l > 1 γ ∈ PGL2(Fq)
2l and

h ∈ Fq. We assume that either h 6= 0 or
(1) the sheaf F is self-dual (so that K is real-valued) and γ is normal
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(2) the F is of SLk-type with k > 3, q > r, and γ is k-normal or k-normal w.r.t. the special
involution of F, if it exists. We have

C(K, γ, h) =
1

q

∑

x

K(γ1.x) · · ·K(γl.x)K(γ′1.x) · · ·K(γ′l.x)eq(xh)≪l,C(F)
1

q1/2
.

Proof. We discuss the proof only in the self-dual case for simplicity. We group together identical
γi, γ

′
j and the sum becomes

1

q

∑

x

K(γ′′1 .x)
m1 · · ·K(γ′′r .x)

mreq(xh)

where the γ′′i are distinct and by hypothesis one of the mi is odd. The above sum is associated to
the trace function of the sheaf ⊗

Std(γ′′
∗
iF)

⊗mi ⊗ Lψ

where ψ(·) = eq(h·) and Std is the tautological representation. We decompose each representation
into irreducible

̺m,0 = Std(G)⊗m =
∑

r

mr(̺m,0)r

and are reduced to consider the sheaves
⊗

i

ri(γ
′′∗
iF)⊗ Lψ

where the ri range over irreducible representations of G; by our hypothesis, we know that either
Lψ is not trivial or at least one of the ri is non trivial (any necessarily of dimension > 1).

It is then sufficient to show that under these hypotheses, these sheaves are irreducible. For this
we consider the direct sum sheaf ⊕

i

γ′′
∗
iF

and let G⊕,geom ⊂
∏
iG be the Zariski closure of the image of Ggeom under the sum of representa-

tions. The following very criterion is due to Katz

Theorem 13.2 (Goursat-Kolchin-Ribet criterion). Let (Fi)i be a tuple of geometrically irreducible
sheaves lisse on U ⊂ A1

Fq
, pure of weight 0 each with geometric monodromy groups Gi. We assume

that

– For every i, Gi = Spki or SLki,
– for any rank 1 sheaf L and any i 6= j there is no geometric isomorphism between Fi ⊗ L

and Fj ,
– for any rank 1 sheaf L and any i 6= j there is no geometric isomorphism between Fi ⊗ L

and D(Fj),

then the geometric monodromy group of the sheaf
⊕

i Fi equals
∏
iGi (obviously it is contained in

that product).

Our assumptions (the projective automorphism group of F is trivial, γ is normal and the geo-
metric monodromy group is either SL or Sp) imply that the above criterion hold and this implies
that ⊗

i

ri(γ
′′∗
iF)⊗ Lψ

is always irreducible. �
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13.2. Application to non-vanishing of Dirichlet L-functions. We now discuss a beautiful
result involving of these techniques due to R. Khan and H. Ngo [KN16] and concern the proportion
of non-vanishing of Dirichlet L-functions at the central point 1/2. The interest in this kind of
problems from analytic number theory was renewed with the work of Iwaniec and Sarnak in their
celebrated attempt to prove the non-existence of a Landau-Siegel zero [IS00]. Their approach was
based on the following general problem: given

{L(f, s) =
∑

n>1

λf (n)

ns
, f ∈ F}

a family of L-function indexed by a ”reasonable” family of automorphic forms F15, show that for
many f ∈ F, one has

L(f, 1/2) 6= 0.

Indeed their work [IS00], Iwaniec and Sarnak showed specifically that when F = S2(q) the set of
holomorphic new-forms of weight 2 and prime level q (with trivial nebentypus) if one could show
that for q large enough at least 25% + 2017−2017 of the Hecke L-values L(f, 1/2) do not vanish16

then there is no Landau-Siegel zero; unfortunately they eventually proved

Theorem 13.3 ([IS00]). As q →∞ along the primes on has

|{f ∈ S2(q), L(f, 1/2) 6= 0}|
|S2(q)|

> 1/4 − o(1).

which is ”just” at the limit.
The possibility of producing a positive proportion of non-vanishing is not limited to this specific

family and one of the most powerful and general method to achieve this is via the mollification
method. The principle of mollification method is as follows: given the family F, one consider for
some parameter L > 1 and some suitable vector xL = (xℓ)ℓ6L ∈ Cℓ the linear form

(13.1) L(F,xL) :=
1

|F|
∑

f∈F

L(f, 1/2)M(f,xL)

and the quadratic form

(13.2) Q(F,xL) :=
1

|F|
∑

f∈F

|L(f, 1/2)M(f,xL)|2

where M(f,xL) is the linear form (called ”mollifier”)

M(f,xL) =
∑

ℓ6L

λf (ℓ)

ℓ1/2
xℓ

and the xℓ are almost bounded coefficients to be chosen in an optimal way:

∀ε > 0, xℓ ≪ |F|o(1).
By Cauchy’s inequality one has

|{f ∈ F, L(f, 1/2) 6= 0}|
|F| >

|L(F,xL)|2
Q(F,xL)

.

15a reasonable definition of the notion of ”reasonable” can be found in [Kow13,SST16]
16in fact something slightly stronger is necessary
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For suitable families one can evaluate asymptotically L(F,xL) and Q(F,xL) (the hard case being
Q) where L = |F|λ for λ > 0 some fixed constant and (upon minimizing Q(F,xL) with respect to
L(F,xL)) one usually shows that

|L(F,xL)|2
Q(F,xL)

= F (λ) + o(1)

for F some increasing rational fraction with F (0) = 0. Before [IS00], Iwaniec and Sarnak had
implemented this strategy for the (simpler) family of Dirichlet L-functions of modulus q

{L(χ, s) =
∑

n>1

χ(n)

ns
, χ ∈ ̂(Z/qZ)×}

and were able to evaluate (13.1) and (13.2) for any λ < 1/2 with

F (λ) =
λ

λ+ 1

hence

Theorem 13.4 ([IS99]). As q →∞ along the primes on has

|{χ (mod q), L(χ, 1/2) 6= 0}|
|{χ (mod q)}| > 1/3− o(1).

proving that the proportion of non-vanishing can be taken arbitrarily close to 33%. Shortly
after, Michel and Vanderkam [MV00] obtained the same proportion by a slightly different method:
taking into account the fact that for a complex character, the L-function L(χ, s) is not self-dual
(L(χ, s) 6= L(χ, s)) and has root number

εχ = ia
τ(χ)

q1/2
, a =

χ(−1)− 1

2

were τ(χ) is the Gauss sum, they introduced a symmetrized mollifier of the shape

M s(χ,xL) =M(χ,xL) + εχM(χ,xL) =
∑

ℓ6L

χ(ℓ) + εχ.χ(ℓ)

ℓ1/2
xℓ.

Because of the oscillation of the root number εχ, they could evaluate (13.2) only in the shorter
range λ < 1/4. However this weaker range is offset by the fact that the symmetrized mollifier is
more effective: indeed the rational fraction F (λ) is then replaced by

F s(λ) =
2λ

2λ+ 1

which takes value 1/3 at λ = 1/4. Recently R. Khan and H. Ngo founds a better method to bound
the exponential sums considered in [MV00] building on Theorem 13.1. In that way they increased
the allowed range of the mollifier M s(χ,xL) from the range λ < 1/4 to λ < 3/10 and obtained the
following improvement on the proportion:

Theorem 13.5 ([KN16]). As q →∞ along the primes on has

|{χ (mod q), L(χ, 1/2) 6= 0}|
|{χ (mod q)}| > 3/8− o(1).

the keystep in the proof is the asymptotic evaluation of the second mollified moment

(13.3)
1

ϕ(q)

∑

χ (mod q)

|L(χ, 1/2)|2|M s(χ,xL)|2
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for L = qλ, and any fixed λ < 3/10. By (now) standard methods17 the L-value L(χ, 1/2) can be
written as a sums of rapidly converging series (cf. [IK04, Thm. 5.3]): for q prime and χ 6= 1

|L(χ, 1/2)|2 = 2
∑

n1,n2>1

χ(n1)χ(n2)

(n1n2)1/2
V (
n1n2
q

)

where V is a rapidly decreasing function which depends on χ only through its parity χ(−1) = ±1.
Plugging this expression in the second moment (13.3) and unfolding, one finds that the key point
is to obtain a bound of the following shape18

(13.4)
∑∑

ℓ1,ℓ26L,n1,n2
(l1l2n1n2,q)=1

xl1xl2
(ql1l2n1n2)1/2

V (
n1n2
q

)e(
n2l1l2n1

q
)≪ q−δ

for some δ = δ(λ) > 0 for any fixed λ < 3/10. This sum can then be decomposed in various
subs-ums in which the variables are localized to specific ranges: The becomes essentially that of
bounding by O(q−δ) the family of bilinear sums

Σ(L1, L2, N1, N2) =
1

(qL1L2N1N2)1/2

∑∑

li∼Li,i=1,2
n1,n2

xl1xl2W (
n1
N1

)W (
n2
N2

)e(
n2l1l2n1

q
)

where W ∈ Cc(]1/2, 2[), L1, L2 6 L and N1N2 6 q.
The n2 sum is essentially a geometric series bounded by

≪ min(N2, ‖l1l2n1/q‖−1)

where ‖ · ‖ is the distance to the nearest integer. Hence

Σ(L1, L2, N1, N2)≪
qε

(qL1L2N1N2)1/2

∑

m≈L1L2N1

min(N2, ‖m/q‖−1)

≪ q2ε

(qL1L2N1N2)1/2

∑

m≈L1L2N1

min(N2, ‖m/q‖−1)

≪ q3ε

(qL1L2N1N2)1/2
max

16U6q/2
min(N2,

q

U
)|{(m,u), m ≈ L1L2N1, u ∼ U, um ≡ ±1 (mod q)}|

≪ q3ε

(qL1L2N1N2)1/2
max

16U6q/2
min(N2,

q

U
)(
L1L2N1U

q
+ 1)

≪ q3ε

(qL1L2N1N2)1/2
max

16U6q/2
min(N2,

q

U
)
L1L2N1U

q
≪ q3ε

L

q1/2
(
N1

N2
)1/2.(13.5)

(observe that for L1L2N1U
q ≪ 1 the equation um ≡ ±1 (mod q) has no solution unless L1L2N1U ≪ 1

Alternatively, applying the Poisson summation formula to the n1 variable we obtain a sum of
the shape

Σ(L1, L2, N1, N2) =
1

(qL1L2N1N2)1/2
N1

q1/2

∑∑

li∼Li,i=1,2
n1,n2

xl1xl2W̃ (
n1
q/N1

)W (
n2
N2

)Kl(l1l2n1n2; q)

17inappropriately called ”approximate function equation”
18for simplicity we ignore the dependency of V in the parity of the χ’s
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where W̃ is bounded and rapidly decreasing. Bounding this sum trivially (using that |Kl(m; q)| 6 2)
yields

(13.6) Σ(L1, L2, N1, N2)≪ qεL(
N2

N1
)1/2.

The expression min( L
q1/2

(N1
N2

)1/2, L(N2
N1

)1/2) is maximal for N1
N2

= q1/2 and equals L/q1/4 which is

O(q−δ) if λ < 1/4.
The bound (13.6) did not exploit cancellation from the n1, n2, l1, l2 averaging and indeed this is

not evident because in the limiting case N1 = q3/4, N2 = q/N1 = q1/4, L1 = L2 = L = q1/4, one
has

n1 ≈ n2 ≈ l1 ≈ l2 ≈ q1/4

which is pretty short. Nevertheless Khan and Ngo where able to detect further cancellation from
summing of these short variables. The idea, which we have met already, is to group some of these
variables to form longer variables. One possibility could be to group together n1, n2 on the one
hand and l1, l2 on the other hand with the idea of applying the methods of §9. Unfortunately
the new variables would have size q1/2 which is the Polya-Vinogradov range at which point the
standard completion method just fails-. Instead one group n1, n2 and l2 together and leave l1
alone. The variable r = n1n2l2 (mod q) takes essentially q3/4 distinct values but over all of F×

q and
does not vary along an interval. To counter this defect one uses the Holder inequality instead of
Cauchy-Schwarz.

Proceeding as above we write

Σ(L1, L2, N1, N2) =
1

(qL1L2N1N2)1/2
N1

q1/2

∑∑

r∈F×

q ,l1

xl1ν(r)Kl(l1r; q)

where

ν(r) =
∑∑

l2∼L2
n1,n2

xl2W̃ (
n1
q/N1

)W (
n2
N2

).

Under the assumption

(13.7) L2
q

N1
N2 < q/100 =⇒ L

N2

N1
< 1/100

we have ∑

r

|ν(r)|+
∑

r

|ν(r)|2 ≪ qεL2
q

N1
N2.

Indeed under (13.7) one has

l2n1n2 ≡ l
′
2n

′
1n

′
2 (mod q)⇐⇒ l′2n1n2 ≡ l2n′1n′2 (mod q)⇐⇒ l′2n1n2 = l2n

′
1n

′
2

and the choice of l′2, n1, n2 determine l2, n
′
1, n

′
2 up to O(qε) possibilities. Hence, applying Cauchy’s

inequality twice we obtain

Σ(L1, L2, N1, N2) =
qε

(qL1L2N1N2)1/2
N1

q1/2
(L2

q

N1
N2)

3/4(
∑

r∈F×

q

|
∑

l∼L1

xlKl(lr; q)|4)1/4.

Now (using that Kl(n; q) ∈ R)

∑

r∈F×

q

|
∑

l∼L1

xlKl(lr; q)|4 ≪ qε
∑

l

|
∑

r∈F×

q

4∏

i=1

Kl(lir; q)|

where l = (l1, l2, l3, l4) ∈ [L1, 2L1[
4.
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The Theorem 13.1 applied to the Kloosterman sheaf gives

∑

r∈F×

q

4∏

i=1

Kl(lir; q)≪ q1/2

unless there exist a partition {1, 2, 3, 4} = {i, j} ⊔ {k, l} such that

li = lj , lk = ll

in which case we use the trivial bound

∑

r∈F×

q

4∏

i=1

Kl(lir; q)≪ q.

Hence
∑

l

|
∑

r∈F×

q

4∏

i=1

Kl(lir; q)| ≪ L2
1q + L4

1q
1/2

and

Σ(L1, L2, N1, N2)≪
qε

(qL1L2N1N2)1/2
N1

q1/2
(L2

q

N1
N2)

3/4(L
1/2
1 q1/4 + L1q

1/8)

≪ qεL(
N2

N1
)1/2(Lq

N2

N1
)−1/4(L−1/2q1/4 + q1/8).(13.8)

For L > q1/4 (the range one would like to improve) one obtains under (13.7)

(13.9) Σ(L1, L2, N1, N2)≪ qεL(
N2

N1
)1/2(Lq1/2

N2

N1
)−1/4.

Suppose now we are in a limiting case for (13.6), L2N2/N1 = 1; then (13.7) holds as long as

L≫ 1 and (13.9) improves over (13.6) by a factor (q1/2/L)1/4 which is < 1 as long as L < q1/2.
A more detailed analysis combining (13.5), (13.6) and (13.9) shows that (13.4) holds for any

fixed λ < 3/10 and hence to Theorem 13.5.

14. Advanced completions methods: the q-van der Corput method

In this section and the next ones, we discuss general methods to evaluate trace function along
intervals of length smaller than the Polya-Vinogradov range discuss in §6.

14.1. The q-van der Corput method. The next method we are going to describe is an arithmetic
analog of the above technique : the q-Van der Corput method due to Heath-Brown. That method
concern c-periodic functions for c a composite number. Suppose (to simplify the presentation) that
c = pq for two primes p and q and let

Kc = KpKq : Z/cZ→ C

somme function modulo c which is the product of two trace functions modulo p and q (of conductor
bounded by some constant C). We consider the partial sum

SV (K,N) :=
∑

n

Kc(n)V (
n

N
) =

∑

n

Kp(n (mod p))Kq(n (mod q))V (
n

N
)

where V ∈ C∞(]1, 2[) and 2N < pq. We will explain the proof of the following result
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Theorem 14.1 (q van der corput method). Assume that F is geometrically irreducible and not
geometrically isomorphic to a linear or quadratic phase (ie. not of the shape [P ]∗Lψ for P a
polynomial of degre 6 2) then

SV (K,N)≪C N
1/2(p+ q1/2)1/2

Remark. This bound is non trivial as long as

N > max(p, q1/2)

which is a weaker condition than N > (pq)1/2 as long as

1 < p < q.

We have therefore improved over the Polya-Vinogradov range; moreover the range of non triviality
is maximal when p ≈ c1/3 and q ≈ c2/3 and in that case one has

(14.1) SV (K,N)≪C N
1/2c1/6

which is non-trivial as long as

N > c1/3.

Proof. The proof make use of the (semi-)invariance of K under translations:

K(n+ ph) = Kp(n)Kq(n + qh).

For H 6 N/100p we have

SV (K,N) =
1

2H + 1

∑

|h|6H

∑

n

Kp(n)Kq(n+ ph)V (
n+ ph

N
)

=
1

2H + 1

∑

|n|63N

Kp(n)
∑

|h|6H
n

Kq(n+ ph)V (
n + ph

N
)

≪ 1

2H + 1
N1/2

( ∑

|n|63N

∣∣ ∑

|h|6H

Kq(n+ ph)V (
n + ph

N
)
∣∣2)1/2

=
N1/2

H

(∑∑

|h|,|h′|6H

∑

n

Kq(n+ ph)Kq(n+ ph′)Wp,h,h′(
n

N
)
)1/2

where

Wp,h,h′(
n

N
) = V (

n+ ph

N
)V (

n+ ph′

N
).

We split the h, h′-sum into its diagonal and non-diagonal contribution
∑∑

|h|,|h′|6H

· · · =
∑∑

|h|,|h′|6H
h=h′

· · ·+
∑∑

|h|,|h′|6H
h 6=h′

· · · .

The diagonal sum contributes by O(NH) and it remains to consider the correlation sum

C(Kq, h, h
′) :=

∑

n

Kq(n+ ph)Kq(n+ ph′)W (
n

N
,
ph

N
,
ph′

N
)

for h 6= h′.
Observe that this is the sum of a trace function of modulus q of length ≈ N . By comparison

with the initial sum, we had a trace function of modulus pq of length ≈ N so the relative length
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of n compared to the modulus has increased ! By the Polya-Vinogradov method, it is sufficient to
determine whether the sheaf

[+ph]∗F ⊗ [+ph′]∗D(F)

has an Artin-Schreier sheaf in its irreducible components; this is equivalent to whether one has an
isomorphism

[+p(h− h′)]∗F ≃ F ⊗ Lψ

for some Artin-Schreier sheaf. We will answer this question in a slighly more general form:

Definition 14.1. A polynomial phase sheaf of degree d is a sheaf of the shape [P ]∗Lψ for P a
polynomial of degree d and ψ a non-trivial additive character. It is lisse on A1

Fq
, ramified at infinity

with Swan conductor equal to d and its trace function equals

x 7→ ψ(P (x)).

We can now invoque the following

Proposition 14.2 ([Pol14]). Suppose that F is geometrically irreducible, not isomorphic to a poly-
nomial phase of degree 6 d and that C(F) 6 q1/2, then for any h ∈ Fq − {0} and any polynomial
P of degree 6 d− 1 there is no geometric isomorphism of the shape

[+h]∗F ≃ F ⊗ [P ]∗Lψ.

Proof. We will only give the easiest part of it and refer to [Pol14] for the complete argument.
Suppose that F is ramified at some point x0 ∈ A1(Fq), since polynomial phases are ramified only
at ∞ the isomorphism

[+h]∗F ≃ F ⊗ [P ]∗Lψ

restricted to the inertia group Ix implies that F is ramified at x0 − h and iterating at x0 − nh for
any n ∈ Z, this would imply that C(F) > q which is excluded. It remains to deal with the case
where F is ramified only at ∞. �

Under our assumptions the above proposition implies that for h 6= h′

C(Kq, h, h
′) = O(q1/2)

and that

SV (K,N)≪ N1/2(
N

H
+ q1/2)1/2

and we choose H = N/100p to conclude the proof.
�

14.2. iterating the method. Suppose more generally that c is a squarefree number and that

Kc =
∏

q|c

Kq

is a product of trace functions associated to sheaves not containing any polynomial phases. One
can repeat the above argument after factoring c into a product of squrefree coprime moduli r.s and
decompose accordingly

Kc = Kr.Ks.

By the exact same method we reach sums of the shape

(14.2)
∑

n

Ks(n+ rh)Ks(n+ rh′)Wr,h,h′(
n

N
)
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This time we need to be a bit more careful and decompose the h, h′ sum according to the gcd
(h − h′, s). After applying the Poisson summation formula (cf. (6.2)) we can factor the resulting
Fourier transform modulo s into sums over prime moduli q|s:

K̂s(y) =
∏

q|c

K̂q(sqy (mod q)), y ∈ Z/sZ, sq = s/q.

If q|h− h′ we use the trivial bound K̂q(sqy (mod q))≪ q1/2 and if q 6 |h− h′ we use the non-trivial

bound K̂q(sqy (mod q))≪ 1. We eventually obtain (see [Pol14])

Theorem 14.2. Let C > 1 and let c be squarefree and Kc : Z/cZ → C be a product of trace
functions Kq such that for any prime q|c the underlying sheaf Fq is of conductor 6 C, geometrically
irreducible, not isomorphic to geometrically isomorphic to any polynomial phase of degree 6 2 then

SV (K,N)≪C c
εN1/2(r + s1/2)1/2

for any ε > 0.

If s is not a prime we could also iterate, factor s into s = r2s2 and instead of applying the
Polya-Vinogradov completion method to the sum (14.2) one could also apply the q-van der Corput
method with the trace functions

n→ Kq(n + rh)Kq(n+ rh′), q|s1.
This lead us to the quadruple correlation sum

C(Kq, γ, α) =
1

q

∑

x

Kq(γ1.x)K(γ2.x)K(γ′1.x)K(γ′2.x)eq(α.x)

where the γi, γ
′
j , i, j = i, 2 are unipotent matrices

γi =

(
1 hi
0 1

)
, γ′i =

(
1 h′j
0 1

)

In suitable situations we can then apply Theorem 13.1 from the previous section.
An important example is when

Kc(n) = Klk n; c)

is an hyper-Kloosterman sums: for any q|c, one has

Kq(y) = Klk(cq
ky; q), cq = c/q

and the sheaf underlying sheaf is the multiplicatively shifted Kloosterman sheaf Fq = [×cqk]∗Kℓk:
in that case Theorem 13.1 and we eventually obtain the bound

SV (Klk(·; c), N) ≪k c
εN1/2(r + (N1/2(s1 + s

1/2
2 ))1/2)1/2.

for any factorisation c = rs1s2. In particular, if there exists a factorisation c = rs1s2 such that

r ≈ c1/4, s1 ≈ c1/4, s2 ≈ c1/2

we obtain

SV (Klk(·; c), N)≪k N
1−η

for some η = η(δ) > 0 as long as

N > c1/4+δ .

Iterating once more we see that for any factorisation c = rs1s2s3 one has

(14.3) SV (Klk(·; c), N) ≪k,ε c
εN1/2(r + (N1/2(s1 + (N1/2(s2 + s

1/2
3 ))1/2))1/2)1/2
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so if there exists a factorisation c = rs1s2s3 such that

r ≈ c1/5, s1 ≈ c1/5, s2 ≈ c1/5, s3 ≈ c2/5

then

SV (Klk(·; c), N) ≪k,ε N
1−η

for some η = η(δ) > 0 as long as

N > c1/5+δ

and we can cary-on that way as long as enough factorisation for c are available. Such availability
is garanteed by the notion of smoothness:

Definition 14.3. An integer c 6= 0 is ∆-smooth if

q|c (q prime )⇒ q 6 ∆.

Using the reasoning above Irving [Irv15] proved (for k = 2) the following result (in a quantitative
form):

Theorem 14.3. For any L > 2 there exists l = l(L) > 1 and η = η(L) > 0 such that for c a

squarefree integer which is c1/l-smooth and any k > 2, one has,

SV (Klk(·; c), N) ≪k,V N
1−η

whenever N > c1/L.

Therefore one can obtain non-trivial bounds for extremely short Kloosterman sums as long as
their modulus is smooth enough. In particular for k = 2 we have seen in Remark 11.1 that
improving on Selberg’s 2/3-exponent for the distribution of the divisor function in large arithmetic
progression (Theorem 11.2) was essentially equivalent to bounding non-trivially sums of the shape

∑∑

n1,n2

Kl2(an1n2; c)V (
n1
N∗

1

)V (
n2
N∗

2

)

for

N∗
1N

∗
2 ≈ c1/2.

If N∗
1N

∗
2 ≈ c1/2 then max(N∗

1 , N
∗
2 ) ≫ c1/4 and we can use the (14.3) to bound non-trivially the

above sum granted that c is smooth enough:

Theorem 14.4. [Irv15] There exists L > 4 and η > 0 such that for any c > 1 which is squarefree
and c1/L-smooth and any a coprime with c, one has for x > c2/3+η and any A > 0

E(d2; c, a)≪A
x

c
(log x)−A.

See [Irv16] and [XW16] for further applications.

15. Around Zhang’s theorem on bounded gaps between primes

the methods of the previous chapter have been applied in a spectacular way by Yitang Zhang
on his proof of the existence of bounded gaps between primes:

Theorem 15.1 ([Zha14]). Let (pn)n>1 be the sequence of primes in increasing order (p1 = 2, p2 =
3, p3 = 5, · · · ) there exists an absolute constant C such that

pn+1 − pn 6 C

for infinitely many n.
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Besides Zhang’s original paper, we refer to [Gra15,Kow15] for a detailed description of Zhang’s
proof and the methods involved and historical background. Let us however mention a few important
facts

– The question of the existence of small gaps between primes has occupied analytic number
theorists for a while and has been the motivations for the invention of many techniques
in analytic number theory in particular the sieve method to detect primes with additional
constraints. A conceptual breakthrough occurred with the work of Goldston, Yildirim and
Pintz [GPY09] who proved the weaker result

lim inf
n

pn+1 − pn
log pn

= 0

and who on this occasion provided a technique which is be key to Zhang’s approach (see
Soundararajan’s account of their works [Sou07b].)

– Zhang’s theorem can be seen as an approximation to the twin prime conjecture:

There exists infinitely many primes p such that p+ 2 is prime.

Indeed Zhang’s theorem with C = 2 is equivalent to the twin prime conjecture.
– A value for the constant C can be explicited : Zhang himself gave

C = 70.106

and mentioning this could certainly be improved. Improving the value of this constant
was the objective of the Polymath8 project: following and optimizing Zhang’s method on
several aspect (some to be explained below) the value was reduced to

C = 4680.

However James Maynard [May16] made independently another conceptual breakthrough,
simplifying the whole proof, making it possible to obtain stronger result and improving the
constant to

C = 600.

Eventually the Polymath8 project jointed with Maynard and optimizing Maynard argument
reached

C = 246.

A side effect of Maynard result is that what we are going to describe plays no role anymore
in this specific application. Nevertheless it adresses another important question in analytic
number theory.

15.1. The Bombieri-Vinogradov theorem and beyond. The breakthrough of Goldston, Yildirim
and Pintz itself at the origin of Zhang’s works builds on the use of sieve methods to detect the
existence of infinitely many pairs of primes at distance 6 C from one another. The fuel to be put
in this sieve machine are results concerning the distribution of primes in arithmetic progressions of
moduli large with respect to the size of the primes which are sought after: given x > 2, q > 1 and
integer and a ∈ Z coprime to q, let

ψ(x; q, a) :=
∑

n6x
n≡a (mod q)

Λ(n), ψ(x; q) :=
∑

n6x
(n,q)=1

Λ(n) ∼ x

where Λ(n) is the von Mangolt function: one seek the equivalence

(15.1) ψ(x; q, a) ∼ ψ(x; q)

ϕ(q)
, x→∞
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for q as large as possible compared to x. The very first result in that direction is of course Dirichlet’s
theorem (on which occasion the concept of L-function was invented) and the prime number Theorem

in arithmetic progressions shows (15.1) as long as q 6 (log x)O(1). The Generalized Riemann

Hypothesis (GRH) would provide the much stronger uniformity q ≪ε x
1/2−ε, for any fixed ε > 0 but

this is highly conditional. Fortunately the Bombieri-Vinogradov theorem provides an unconditional
substitute to GRH, on average over q, which is essentially as strong for most sieve purposes:

Theorem 15.2 (Bombieri-Vinogradov). For any A > 0 there is B = B(A) > 0 such that for x > 2

∑

q6x1/2/ logB x

max
(a,q)=1

|ψ(x; q, a) − ψ(x; q)

ϕ(q)
| ≪ x

logA x
.

The exponent 1/2 in the constraint q 6 x1/2/ logB x turns out to be crucial in Zhang’s approach to
the existence of small gaps: Goldston-Yildirim-Pintz had already pointed out that this statement
with 1/2 replaced by any strictly larger exponent would be sufficient to show the existence of
infinitely many bounded gaps between primes. This is not unexpected as the Elliott-Halberstam
conjecture predicts that any fixed exponent < 1 could replace 1/2.

That this is not hopeful thinking comes from the work of Fouvry, Iwaniec and Bombieri-
Friedlander-iwaniec from the late 80’s [FI92,?BFI] who proved analogs of the Bombieri-Vinogradov
theorem with exponents > 1/2 but unfortunately for ”fixed congruences” classes (for instance with

the sum involving the difference |φ(x; q, 1)−ψ(x;q)
ϕ(q) | instead of the max max(a,q)=1 |ψ(x; q, a)−ψ(x;q)

ϕ(q) |.)
Zhang’s groundbreaking insight has been to nailed down a post-Bombieri-Vinogradov type theo-
rem that could be established unconditionally and would be sufficient to establish the existence of
bounded gaps between primes. The following theorem is a variant of Zhang’s beyond-Bombieri-
Vinogradov theorem ([Pol14, Thm 1.1]). Let us recall that an integer q > 1 is ∆-smooth if any
prime p dividing it is 6 ∆.

Theorem 15.3. Let (a) = (ap)p∈P be a sequence of integers indexed by the primes such that for
any p ∈ P (ap, p) = 1; for any squarefree integer q =

∏
p|q p let aq (mod q) be the unique congruence

class modulo q such that

∀p|q, aq ≡ ap (mod p);

in particular aq ∈ (ZqZ)
×. There exists absolute constants θ > 1/2 and δ > 0 (independent of a)

such that for any A > 0, x > 2 one has

∑

q6xθ, sqfree
q xδ−smooth

|ψ(x; q, aq)−
ψ(x; q)

ϕ(q)
| ≪ x

logA x
.

Here the implicit constant depends only on A, k (but not on (a).

Remark. Zhang essentially proved this theorem for θ = 1/2 + 1/585 and in an effort to improve
Zhang’s constant, the Polymath8 project improved 1/585 to 7/301.

We will now describe some of the principles of the proof of this theorem and especially at the
points algebraic exponential sums occur. We refer to the introduction of [Pol14] and to E. Kowalski’s
account in the Bourbaki seminar [Kow15].

Let us write c(q) for µ2(q) times the sign of the difference ψ(x; q, aq) − ψ(x;q)
ϕ(q) . The above sum

equals ∑

q6xθ

q xδ−smooth

c(q)
∑

n6x

Λ(n)∆a(n; q).
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where

∆a(n) := δn≡aq (mod q) −
δ(n,q)=1

ϕ(q)
As is usual when counting primes numbers, the next step is to decompose the vom Mangolt function
Λ(n) into a sum of convolution of arithmetic functions (for instance by using Heath-Brown’s identity

Lemma 8.2 as in §8): we essentially arrive at the problem of bounding (log x)OJ(1) of the following
model sums (for j 6 J and J is a fixed and large integer)

Σ(M;a, Q) :=
∑

q∼Q

q xδ−smooth

c(q)
∑∑

m1,···m2j

µ(m1) · · · µ(mj)V1

(m1

M1

)
· · · V2j

(m2j

M2j

)
∆aq (m1. · · · .m2j)

where Vi, i = 1, · · · 2j are smooth functions compactly supported in ]1, 2[, M = (M1, · · · ,M2j) is a
tuple satisfying

Q 6 xθ, Mi =: xµi , ∀i 6 j, µi 6 1/J,
∑

i62j

µi = 1 + o(1).

Our target is the bound

(15.2) Σ(M;a, Q)
?≪ x

logA x
.

The most important case is when
Q = xθ = x1/2+̟

for some fixed sufficiently small ̟ > 0.
The variables with index i ∈ {j + 1, 2j} are called smooth because they are weigthed by smooth

functions and this makes it possible to use Poisson summation formula on them to analyse the
congruence condition mod q. This is going to be efficient if the range Mi is sufficiently big relative
to q ∼ Q. The variables with indices i ∈ {1, j} are weighted by the Moebius function but (at
least as long as some strong form of Generalized Riemann Hypothesis is not available) we cannot
exploit this information and we will consider these like arbitrary bounded functions. The tradeoff
to non-smoothness is that the range of these variables is pretty short Mi 6 x1/J especially if J is
choosen large.

As we did before we will regroup some the variables mi, i = 1, · · · , 2j so as to form two new
variables whose ranges are located adequately (similarly to what we did in §8) and will use different
methods to bound the sums depending on the size and the type of these new variables.

More precisely we define

αi(m) =




µ(m)Vi

(
m
Mi

)
1 6 i 6 j

Vi

(
m
Mi

)
j + 1 6 i 6 2j

Given some partition of the set of m-indices

{1, · · · , 2j} = I ⊔ J

let
M =

∏

i∈I

Mi, N =
∏

j∈J

Mj

and
µI :=

∑

i∈I

µi, µJ :=
∑

i∈J

µi;

we have
µI + µJ = 1 + o(1), M = xµI , N = xµJ ;

in the sequel we will always make the convention that N 6M or equivalently µI > µJ .
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Finally we define the Dirichlet convolution functions

α(m) := ⋆i∈Iαi(m), β(n) := ⋆i∈Jαi(n).

We are reduced to bound sums of the shape

(15.3)
∑

q∼Q
xδ−smooth

c(q)
∑∑

m∼M
n∼N

α(m)β(n)∆aq (mn)
?≪ x

logA x
.

Observe that the functions α, β are essentially bounded

∀ε > 0, α(m), β(n) ≪ xε

so we need only to improve slightly over the trivial bound.

15.2. Splitting into types. These sums will subdivided into three different types and their treat-
ment will depend on which type the sum belong.

This subdivision is along the following simple combinatorial Lemma (cf. [Pol14, Lem. 3.1]):

Lemma 15.1. Let 1/10 < σ < 1/2 and let µi, i = 1, · · · 2j be some non-negative real numbers such
that

2j∑

i=1

µi = 1.

One of the following holds

– Type 0: there exist i such that µi > 1/2 + σ.
– Type II: there exists a partition

{1, · · · , 2j} = I ⊔ J

such that

1/2 − σ 6
∑

i∈J

µi 6
∑

i∈I

µi < 1/2 + σ.

– Type III: there exist distincts i1, i2, i3 such that

2σ 6 µi1 6 µi2 6 µi3 6 1/2 − σ and µi1 + µi2 > 1/2 + σ.

Remark 15.2. If σ > 1/6 the Type III situation never occurs since 2σ > 1/2− σ.

Given σ such that

1/10 < σ < 1/2

we assume that J is choosen large enough such that

(15.4) 1/J 6 min(1/2 − σ, σ).
We call a sum as above of

– Type 0, if there exists some i0 such that µi0 > 1/2 + σ. We choose

I = {i0} and J the complement.

Since for any i 6 j, one has µi 6 1/J < 1/2 + σ, necessarily i0 > j + 1 corresponds to a
smooth variable; the corresponding sum therefore equals

(15.5)
∑

q∼Q

xδ−smooth

c(q)
∑∑

m>1,n∼N

V (
m

Mi0

)β(n)∆aq (mn).
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– Type I/II if one can partition the set of indices

{1, · · · , 2j} = I ⊔ J

in a way that the corresponding ranges

M =
∏

i∈I

Mi = xµI > N =
∏

i∈J

Mi = xµJ

satisfy

(15.6) 1/2 − σ 6 µJ =
∑

i∈J

µi 6 1/2

– Type III if we are neither in the Type 0 or Type I/II situation: there exists distincts indices
i1, i2, i3 such that

2σ 6 µi1 6 µi2 6 µi3 6 1/2 − σ and µi1 + µi2 > 1/2 + σ.

We choose

I = {i1, i2, i3} and J to be the complement.

Again, since 1/J < 2σ by (15.4), the indices i1, i2, i3 are associated to smooth variables and
the Type III sums are of the shape

∑

q∼Q

xδ−smooth

c(q)
∑∑

m1,m2,m3
n∼N

V (
m1

Mi1

)V (
m2

Mi2

)V (
m3

Mi3

)β(n)∆aq (m1m2m3n).

Remark. In the paper [Pol14] the ”Type II” sums introduced here were split into two further Types
called ”Type I” and ”Type II” there. These are the sums for which the N variable satisfies

Type I: x1/2−σ 6 N < x1/2−̟−c

Type II: x1/2−̟−c
6 N 6 x1/2

for c some extra parameter satisfying

1/2− σ < 1/2−̟ − c < 1/2.

This distinction was necessary for optimisation purposes and especially to achieve the exponent
1/2 + 7/301 in Theorem 15.3.

Zhang’s theorem now essentially follows from

Theorem 15.4. There exists ̟,σ > 0 with 1/10 < σ < 1/2 such that the bound (15.3) holds for
the Type 0, II and III sums.

For the rest of this section we will succinctly describe how each type of sum is handled.
The case of Type 0 sums (15.5) is immediate: one apply the Poisson summation formula to

the m variable to decompose the congruence mn ≡ aq (mod q). The zero frequency contribution
is cancelled up to an error terms by the second term of ∆aq (mn) while the non-zero frequencies
contribution a negligible error term as long as the range of them variable is larger than the modulus

1/2 + σ > 1/2 +̟

which can be assumed.

15.3. Treatment of type II sums.
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15.3.1. The art of applying Cauchy-Schwarz. The Type II sums are more complicated to deal with
because we have essentially no control on the shape of the coefficients α(m), β(n) (excepted for
being essentially bounded). The basic principle is to consider the largest variable m ∼M , to make
it smooth smooth using the Cauchy-Schwarz inequality and then resolve the congruence

m ≡ naq (mod q)

using the Poisson summation formula. This is the essence of the dispersion method of Linnik.
When implementing this stratgy one has to decide which variables to put ”inside” the Cauchy-

Schwarz inequality and which to leave ”outside”: to be more specific, suppose we need to bound a
general trilinear sum (K some function)

∑∑

m∼M,n∼N,q∼Q

αmβnγqK(m,n, q)

and wish to smooth the m variable using Cauchy-Schwarz. There are two possibilities, either
∑∑

m∼M,n∼N,q∼Q

αmβnγqK(m,n, q)≪ ‖α‖2‖γ‖2(
∑∑

n,q

|
∑

n∼N

βnK(m,n, q)|2)1/2

or ∑∑

m∼M,n∼N,q∼Q

αmβnγqK(m,n, q)≪ ‖α‖2(
∑

n

|
∑∑

n∼N,q∼Q

βnγqK(m,n, q)|2)1/2

In the first case the inner sum of the second factor equals
∑∑

n1,n2∼N

βn1βn2

∑∑

m∼M,q∼Q

K(m,n1, q)K(m,n2, q)

and in the second case∑∑

n1,n2∼N,q1,q2∼Q

βn1γq1βn2γq2
∑

m∼M

K(m,n1, q1)K(m,n2, q2)|2.

In either case, one expect to be able to detect cancellation from the m-sum, at least when
the other variables (n1, n2) or (n1, n2, q1, q2) are not located on the diagonal (ie. n1 = n2 or
n1 = n2, q1 = q2). If the other variables are the diagonal, no cancellation is possible but the
diagonal is small compared to the space of variables.

We are faced with the following tradeoff:

– For the first possibility, the m-sum is simpler (it involves two parameters n1, n2) but the
ratio ”size of the diagonal”/”size of the set of parameters” is N/N2 = N−1.

– For the second possibility, the m-sum is more complicated as it involves more auxiliary
parameters n1, n2, q1, q2 but the ratio ”size of the diagonal”/”size of the set of parameters”
NQ/N2Q2 = 1/NQ is smaller (hence more saving can be obtained from the diagonal part.)

15.3.2. The Type II sums. We illustrate this discussion in the base of Type II sums. If we apply
Cauchy with the q variable outside the diagonal n1 = n2 would not provide enough saving. If
onthe other hand we apply Cauchy with q inside the diagonale is large but we have to analysize
the congruence

mn1 ≡ a (mod q)1, mn2 ≡ a (mod q)2

which is a congruence modulo [q1, q2]. Assuming weare in the generic case of q1, q2 coprime the

resulting modulus is q1q2 ∼ Q2 = x1+2̟ while m ∼ M 6 x1/2 which is too small for the Poisson
formula to be efficient.

They is fortunately a middleground: we can use the extra flexibility (due to Zhang’s wonderful
insight) that our problem involves smooth moduli: by the greedy algorithm, one can factor q ∼ Q
into a product q = rs where r and s ∼ Q/r vary over ranges that we can essentially choose as we
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which (up to a small indeterminacy of xδ for δ small). In over terms we are reduced to bound sums
of the shape

Σ(M,N ;a, R, S) =
∑

r∼R, s∼S
rs xδ−smooth

c(rs)
∑∑

m∼M
n∼N

α(m)β(n)∆ars(mn)

for any factorisation RS = Q fitting with our needs; but now, when applying Cauchy-Schwarz, we
have the extra flexibility of having the r variable ”out” and the s variable ”in”.

We apply the Cauchy-Schwarz getting

∑

s

c(rs)
∑∑

m∼M
n∼N

α(m)β(n)∆ars(mn) =
∑

r∼r

∑

m∼M

α(m)
∑

s

c(rs)
∑

n∼N

β(n)∆ars(mn)

≪ε R
1/2M1/2+ε(

∑

r

∑∑

s1,s2,n1,n2

c(rs1)c(rs2)β(n1)β(n2)
∑

m

V (
m

M
)∆ars1

(mn1)∆ars2
(mn2))

1/2

for V a smooth function compactly supported in [M/4, 4M ]. We choose R of the shape

R = Nx−ε 6Mx−ε

for ε > 0 but small.
Expanding the square we reach a sum involving four terms the most important one coming from

the product

(15.7) ∆ars1
(mn1)∆ars2

(mn2) = (δmn1≡ars1 (mod rs1) −
δ(n,rs1)=1

ϕ(rs1)
)(δmn2≡ars2 (mod rs2) −

δ(n,rs2)=1

ϕ(rs2)
)

We will concentrate on the contribution of these terms from now on.
The generic and main case is when (s1, s2) = 1 so that m satisfies a congruence modulo rs1s2 ∼

RS2 =Mx2̟+ε which is not much larger than M if ̟ is small. Observe that

mni ≡ arsi (mod rsi), i = 1, 2 =⇒ n1 ≡ n2 (mod r).

We can therefore write n1 = n, n2 = n + rl with |l| ≪ N/R = xε. By the Poisson summation
formula we have

∑

m

V (
m

M
)δm≡b (mod rs1s2) =

M

rs1s2
V̂ (0) +

M

rs1s2

∑

h 6=0

V̂ (
h

rs1s2/M
)e(

hb

rs1s2
)

where b = b(n, l) (mod rs1s2) is such that

b ≡ ars1s2n (mod r), b ≡ ars1s2n (mod s1), b ≡ ars1s2n+ lr (mod s2).

The h = 0 contribution provide a main term is cancelled up to an admissible error term by the
main contributions coming from the other summands of (15.7). The contribution of the frequencies
h 6= 0 will be prove to be error terms:

∑

r

∑∑

s1,s2,n,l

c(rs1)c(rs2)β(n)β(n + rl)
M

rs1s2

∑

h 6=0

V̂ (
h

rs1s2/M
)e(

hb

rs1s2
)

?≪ MN2

R
x−η = x1−η+ε

for some fixed η > 0. The length of the h sum is essentially

H = RS2/M = Q2N/(xR) = x2̟+ε

56



which is small (if ̟ and ε are). We essentially need to prove that

(15.8)
1

H

∑

r∼R

∑

l≪N/R

∑

n

β(n)β(n + lr)
∑

06=h≪H

|
∑

s1,s2

c(rs1)c(rs2)e(h
ars1s2n

rs1
+ h

ars1s2n+ lr

rs2
)|

?≪ x1−η+ε.

We can now exhibit cancellation in the n-sum by smoothing out the n variable using the Cauchy-
Schwarz inequality for any fixed r, l: letting the h variable ”in” we obtain exponential sums of the
shape

∑

n∼N

e(h
ars1s2n

rs1
− h′

ars′1s′2n

rs′1
+ h

ars1s2n+ lr

rs2
− h′

ars′1s′2n+ lr

rs′2
).

The generic case is when h− h′, s1, s2, s′1, s′2 are all coprime. In that case the above exponential
sum has length

N ∈ [x1/2−σ , x1/2]

and the involved moduli are of size

RS4 = Q4/R3 = xO(ε)Q4/N3 = [x1/2+4̟+O(ε), x1/2++4̟+3σ+O(ε)].

Therefore if σ,̟, ε are small, the length N is not much smaller than the modulus so we could
apply completion methodsto improve over the trivial bound O(N) for the n-sum. If we apply the

Polya-Vinogradov method the trivial bound is replaced by O((RS4)1/2+o(1)) and we find that we
obtain that the lefthand side of (15.8) is bounded by

1

H
R.
N

R
N1/2(H2S4(RS4)1/2+o(1))1/2 = xO(ε)+o(1)N3/2S3R1/4 = x

7
8
+3̟+ 5

4
σ+O(ε)+o(1)

which is ≪ x1−η for some η > 0 whenever σ < 1/10 and ̟ and ε are small enough.
Instead of using the Polya-Vinogradov bound we could take advantage of the fact that the

modulus rs1s
′
1s2s

′
2 is xδ-smooth (again we can take δ > 0 as small as we need) and applythe q-van

der Corput method from the previous section. Factoring rs1s
′
1s2s

′
2 into a product r′s′ such that

r′ ∼ (rs1s
′
1s2s

′
2)

1/3+O(δ), s′ ∼ (rs1s
′
1s2s

′
2)

2/3+O(δ) a suitable variant of (14.1) bounds the n-sum by

O(N1/2(RS4)1/6+O(δ)+o(1)) and the lefthand side of (15.8) is bounded by

R

H

N

R
N

1
2 (H2S4N1/2(RS4)1/6)

1
2
+o(1)+O(δ) = xO(ε+δ)+o(1)N7/4S7/3R1/12 = x

11
12

+ 7
3
̟+ 1

2
σ+O(ε+δ)+o(1)

which is ≪ x1−η for some η > 0 whenever σ < 1/6 and ̟ and ε are small enough.

15.4. Treatment of type III sums. Our objective for the Type III sums is the following bound:
for some η > 0

(15.9)
∑

q∼Q

xδ−smooth

c(q)
∑

n∼N

β(n)
∑

m

τ3,M(m)∆aq (m1m2m3n)
?≪ x1−η;

here M = (Mi1 ,Mi2 ,Mi3) and

τ3,M(m) :=
∑

m1m2m3=m

V (
m1

Mi1

)V (
m2

Mi2

)V (
m3

Mi3

)

and Mi1 ,Mi2 ,Mi3 satisfy

M =Mi1Mi2Mi3 > x1/2+3σ .

The function
m 7→ τ3,M(m)

57



is basically a smoothed version of the ternary divisor function m 7→ τ3(m) we have discussed in
§11.

In fact, while describing the proof of Thm. 11.3, we have shown that for M = x, and for q a
prime satisfying

q ∼ x1/2+̟, ̟ = 1/47

one has
∑

m

τ3,M(m)∆aq (m1m2m3n)≪
x1−η

q

for some η > 0. We have therefore the required bound but for individual moduli instead of having
it on average.

As we have observed when discussing Type II sums, the parameter σ can be taken as close to

1/6 as we wish and in particular M ∈ [x1+3(σ− 1
6
), x] can be made as close as we wish from x and

N ∈ [1, x3(
1
6
−σ)] as we wish from x (in the logarithmic scale) and in particular this establishes

(15.9) for prime moduli q ∼ Q for some value of σ (close enough to 1/6), some value of ̟ (close
enough to 0) and some η > 0.

The case of xδ-smooth moduli uses similar methods and (besides some elementary technical
issues) is maybe simpler than in the prime modulus case because of the extra flexibility provided
by the smooth moduli.

Remark. By a more elaborate treatment, involving different uses of the Cauchy-Schwarz inequality
and iterations of the q-van der Corput method, it is possible to bounds succesfuly all the Type II
sums associated to some explicit parameter σ > 1/6. As pointed out in Remark 15.2, this makes the
section devoted to Type III sums and in particular the theory of hyper-Kloosterman sums Kl3(x; q)
unnecessary. The interest of this remark comes from the fact that the trace functions occurring in
the treatment the sums of Type II are exclusively algebraic exponentials:

x 7→ eq(f(x)), for f(X) ∈ Fq(X)

and for such trace function Corollary 4.2 ”only” uses Weil’s resolution of the Riemann Hypothesis
for curves over finite fields [Wei41] and not the full proof of the Weil conjectures by Deligne [Del80].

16. Advanced completions methods: the +ab shift

In this last section we describe another method allowing to break the Polya-Vinogradov barrier
for prime moduli. this method has its origins in the celabrated work of Burgess on short sums of
Dirichlet characters [Bur62]

16.1. Burgess’s bound. Let q be a prime and χ : F×
q → C× be a non trivial multiplicative

character;

SV (χ,N) :=
∑

n

χ(n)V (
n

N
)

where V ∈ C∞(]1, 2[).

Theorem 16.1 (Burgess). For any N > 1, l > 1 such that

(16.1) q1/2l 6 N <
1

2
q1/2+1/4l

one has

SV (χ,N)≪V,l q
o(1)N(N/q1/4+1/4l)−1/l.
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Remark. Observe that this bound is non trivial (sharper than SV (χ,N)≪ N) whenever

q1/4+1/4l+o(1)
6 N <

1

2
q1/2+1/4l.

Moreover for N > 1
2q

1/2+1/4l, the Polya-Vinogradov bound SV (χ,N) ≪ q1/2 is non trivial, there-
fore, we see taking l large enough that (16.1) yield a non-trivial bound for SV (χ,N) as long as

N > q1/4+δ

for any fixed δ > 0.

Proof. Burgess’s argument exploit two features in a critical way: the first one is that an interval is
”essentially” invariant under sufficiently small additive translations; the second is the multiplica-
tivity of the Dirichlet character.

Let A,B > 1 be parameters such that AB 6 N/2; we will also assume that 2B < q.
We have (a ∼ A⇐⇒ a ∈ [A, 2A[)

SV (χ,N) =
1

AB

∑

|n|62N

∑∑

a∼A,b∼B

χ(n+ ab)V (
n+ ab

N
).

The next step is to invoque the Fourier inversion formula to make the variable n and ab independent:
one has

V (
n+ ab

N
) =

∫

R

V̂ (t)e(
tn

N
)e(

tab

N
)dt.

Plugging this formula in our sum, we obtain

SV (χ,N) =
1

AB

∫

R

∑

|n|62N

e(
tn

N
)
∑∑

a∼A,b∼B

χ(n+ ab)e(
tab

N
)V̂ (t)dt

6
1

AB

∫

R

∑

|n|62N

∑

a∼A

∣∣χ(a)
a

V̂ (
t

a
)
∣∣∣∣∑

b∼B

χ(an+ b)e(
tb

N
)
∣∣dt

6
1

AB

∫

R

∑

|n|62N

∑

a∼A

∣∣∑

b∼B

χ(an+ b)e(
tAb

N
)
∣∣|W (t)|dt

for W some bounded rapidly decaying function.

Remark. Observe that the factor χ(a) coming from the identity

(16.2) χ(n+ ab) = χ(a(an+ b)) = χ(a)χ(an+ b)

has been absorbed in the absolute value of the first inequality above.

The innermost sum can be rewritten
∑

|n|62N

∑

a∼A

∣∣∑

b∼B

χ(an+ b)e(
tAb

N
)
∣∣ =

∑

r∈F×

q

ν(x)|
∑

b∼B

ηbχ(r + b)
∣∣

where ηb = e( tAbN ) and

ν(r) := |{an = r (mod q), a ∈ [A, 2A[, |n| 6 2N}|.

Consider the map

(a, n) ∈ [A, 2A[×[−2N, 2N ] → an (mod q) = r ∈ Fq.
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the function ν(r) is the size of the fiber of that map above r. We will show that this map is
essentially injective (has small fibers on average): suppose that A is chosen such that 4AN < q;
one has ∑

r

ν(r)≪ AN,
∑

r

ν2(r)≪ (AN)1+o(1)

the first bound is obvious while for the second∑

r

ν2(r) = |{(a, a′, n, n′), an′ ≡ an (mod q) a, a′ ∈ [A, 2A[, |n|, |n′| ≪ N}|

uses the fact that AN < q and that the integer an′ has at most (an′)o(1) decomposition of the
shape an′ = a′n.

This map however is not surjective nor even close so in general so that the change of variable
a.n↔ x is not very effective. A way to moderate ineffectiveness is to use Hölder inequality.

Let l > 1 be some integer parameter, applying Hölder inequality with p = 1 − 1/2l, q = 1/2l
and the above estimate one obtains

∑

x∈F×

q

ν(x)|
∑

b∼B

ηbχ(x+ b)
∣∣ 6 (

∑

x

ν(x)
2l

2l−1 )1−1/2l(
∑

x

|
∑

b∼B

ηbχ(x+ b)
∣∣2l)1/2l

≪ (AN)1−1/2l+o(1)(
∑

x

|
∑

b∼B

ηbχ(x+ b)
∣∣2l)1/2l

The x-sum in the rightmost factor equals

∑

b

εb
∑

r∈Fq

χ(

∏l
i=1(r + bi)∏l
i=i(r + bk+i)

)

where b = (b1, · · · , b2l) ∈ [B, 2B[2l. Consider the fraction

Fb(X) :=

∏l
i=1(X + bi)∏l
i=i(X + bk+i)

∈ Q(X)

and the function on Fq
r ∈ Fq 7→ χ(Fb(r))

(extended by 0 for r = −bi (mod q), i = 1, · · · , 2l). This function is the trace function of the rank
one sheaf [Fb]

∗Lχ whose conductor is bounded in terms of l only and (because it is of rank 1) is
geometrically irreducible if not-geometrically constant. If not geometrically constant one has19

∑

r∈Fq

χ(Fb(r))≪l q
1/2.

If q > max(l, 2B) this occurs precisely when Fb(X) is not constant nor a k-th power where k is the
order of χ: this occursfor b outside an explicit set Bbad ⊂ [B, 2B[2l of size bounded by O(Bl). If
b ∈ Bbad one then use the trivial bound

|
∑

r∈Fq

χ(Fb(r))| 6 q.

All in all we eventually obtain

∑

b

εb
∑

x

χ(

∏l
i=1(x+ bi)∏l
i=i(x+ bk+i)

)≪ |Bbad|q + |B−Bbad|q1/2 ≪ Blq +B2lq1/2.

19if is not necessary to invoque Deligne’s main theorem here: this follows from A. Weil’s proof of the Riemann
hypothesis for curves [Wei41]
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Choosing B = q1/2l (so as to equal the two terms in the bound above) and A ≈ Nq−1/2l and such
that 4AN < q (which is equivalent to (16.1)) we obtain that

SV (χ,N)≪l
qo(1)

AB
(AN)1−1/2l(q3/2)1/2l ≪ qo(1)N1−1/lq3/4l−(1−1/2l)/2l = qo(1)N(N/q1/4+1/4l)−1/l

�

16.2. The +ab-shift for type I sums. It is natural to try to extend this method to other trace
functions; unfortunately the above argument breaksdown because the identity (16.2) is not valid in
general. It is however possible mitigate this problem by introducing an extra average in the above
sum.

This technique goes back to Karacuba and Vinogradov (for the function x 7→ χ(x + 1)); it was
also used by Friedlander-Iwaniec [FI85] (for the function x 7→ e(xq )), Fouvry-Michel [FM98] and

Kowalski-Michel-Sawin [KMS17,KMS18].
Instead of a single sum SV (K,N), one considers instead the following average of multiplicative

shifts
BV (K,α, N) :=

∑

m∼M

αm
∑

n

V (
n

N
)K(mn)

where 1 6 M < q and (αm)m∼M is a sequence of complex numbers of modulus 6 1 (this includes
the averaged sum

∑
m∼M

∣∣∑
nK(mn)V ( nN )

∣∣ = ∑
m |SV ([×m]∗K,N)|). The objective here is to

improve over the trivial bound
BV (K,α, N)≪MN.

Proceeding as above we have

BV (K,α, N) =
1

AB

∑

m

αm
∑

n

∑∑

a∼A,b∼B

K(m(n+ ab))V (
n+ ab

N
)

6
1

AB

∫

R

∑

m∼M

αm
∑

|n|62N

∑

a∼A

∣∣∑

b∼B

K(am(an+ b))e(
tAb

N
)
∣∣|W (t)|dt

We have
∑

m∼M

αm
∑

|n|62N

∑

a∼A

∣∣∑

b∼B

K(am(an+ b))e(
tAb

N
)
∣∣ =

∑∑

r,s∈Fq
ν

(r, s)
∣∣∑

b∼B

ηbK(s(r + b))
∣∣

with
ν(r, s) =

∑

m∼M

∑

|n|62N

∑

a∼A

αmδan=r,am=s (mod q).

Assuming that 4AN < q and evaluating the number of solutions to the equations

am = a′m′, an ≡ a′n′ (mod q), (a,m, n) ∈ [A, 2A[×[M, 2M [×[N, 2N [

one finds that ∑∑

r,s∈Fq

|ν(r, s)| ≪ AMN,
∑∑

r,s∈Fq

|ν(r, s)|2 ≪ qo(1)AMN

which we interpret as saying that the map

(a,m, n) ∈ [A, 2A[×[M, 2M [×[N, 2N [→ (r, s) = (a.n, am) ∈ Fq × [AM, 4AM [

is essentially injective (ie. has small fibers on average). As above this map is far from being
surjective but one can dampen this with Hölder inequality:
∑∑

r∈Fq
16s64AM

ν(r, s)
∣∣∑

b∼B

ηbK(s(r + b))
∣∣≪ (

∑∑

r,s

|ν(r, s)|
2l

2l−1 )1−1/2l(
∑∑

r,s

∣∣∑

b∼B

ηbK(s(r + b))
∣∣2l)1/2l
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≪ qo(1)(AMN)1−1/2l
(∑

b

ηb
∑

r,s

l∏

i=1

K(s(r + bi))K(s(r + bi+l))
)1/2l

.

We are now reduced to the problem of bounding the two variable sum

(16.3)
∑

r,s

l∏

i=1

K(s(r + bi))K(s(r + bi+l)) =
∑

r

∑

s

K(sr, sb) =
∑

r

R(r, b)

(say) where

(16.4) K(r, b) :=

l∏

i=1

K(r + bi)K(r + bi+l), R(r, b) =
∑

s

K(sr, sb).

The bound will depend on the vector b ∈ [B, 2B[2l. To get a feeling of what is going on, let us
consider one of the very special cases of [FM98]: let

K(x) = eq(x+ x).

We have

R(sr, sb) =
∑

s∈F×

q

eq(s(
l∑

i=1

r + bi − r + bi+l) + s(
l∑

i=1

bi − bi+l)).

This sum is either

– Equal to q − 1 if and only if the vector (b1, · · · , bl) equals the vector (bl+1, · · · , b2l) up to
permutation of the entries

– Equals to −1 if b is not as above but is in the hyperplane with equation
∑l

i=1 bi− bi+l = 0,
– The Kloosterman sum

R(r, b) = q1/2 Kl2(

∑l
i=1 r + bi − r + bi+l∑l

i=1 bi − bi+l
; q)

otherwise.

The last case is the most interesting: given b as in the last situation we have to evaluate

q1/2
∑

r

Kl2(Gb(r); q)

where Gb(X)

Gb(X) =

∑l
i=1X + bi −X + bi+l∑l

i=1 bi − bi+l
.

Lemma 16.1. For b = (b1, · · · , b2l) ∈ Fq
2l such that

(16.5) (b1, · · · , bl) is not equal to (bl+1, · · · , b2l) up to permutation and
l∑

i=1

bi − bi+l 6= 0,

one has ∑

r

Kl2(Gb(r); q)≪l q
1/2.

Proof. The function
r 7→ Kl2(Gb(r); q)

is the trace function of the rank 2 sheaf [Gb]
∗Kℓ2 obtained by pull-back from the Kloosterman

sheaf Kℓ2 of the non constant (because of our assumptions) map on P1

x→ Gb(x).
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One can show that the conductor of [Gb]
∗Kℓ2 is bounded in terms of l only more over the geometric

monodromy group of [Gb]
∗Kℓ2 is obtained as the (closure of the) image of the representation ̺Kℓ2

restricted to a finite index subgroup of Gal(Ksep/Fq.K). Since the geometric monodromy group
of Kℓ2 is SL2 which has no finite index subgroup geometric monodromy group of [Gb]

∗Kℓ2 is SL2

as well. It follow that the sheaf [Gb]
∗Kℓ2 is geometrically irreducible (and not geometrically trivial

because of rank 2) and the estimate follows by Deligne’s theorem. �

It follows from this analysis that
∑∑

r,s

∣∣∑

b∼B

ηbK(s(r + b))
∣∣2l ≪ Blq2 +B2lq

hence choosing B = q1/l, AB ≈ N and A ≈ Nq−1/l we obtain

BV (K,α, N)≪ qo(1)

AB
(AMN)1−1/2lq3/2l = qo(1)MN(

N2M

q1+1/l
)−1/2l

To resume we have therefore proven the

Theorem 16.2. Let K(x) = eq(x + x) and M,N, l > 1 and (αm)m∼M be a sequence of complex
numbers of modulus bounded by 1, assuming that

q1/l 6 N <
1

2
q1/2+1/2l

on a has
∑

m∼M

αm
∑

n

V (
n

N
)K(mn)≪ qo(1)MN(

N2M

q1+1/l
)−1/2l.

Observe that this bound is non trivial (sharper than ≪MN) as long as20

N2M > q1+1/l.

For instance if M = qδ for some δ > 0, the above bound is nontrivial for l large enough and
N > q1/2+δ/3; alternatively if M = N , this bound is non trivial as long as

N =M > q1/3+δ

(if l is large enough). Therefore this method improves the range of non-triviality in Theorem 9.1.

16.3. The +ab-shift for type II sums. With the above method it is also possible to deal with
the more general (type II) bilinear sums

B(K,α,β) =
∑∑

m∼M,n∼N

αmβnK(mn)

where (αm)m∼M , (βn)n∼N are sequences of complex numbers of modulus bounded by 1.
We leave it to the interested reader to fill the details (or to look at [FM98, KMS17] or the

forthcoming [KMS18]. The first step is to apply Cauchy-Schwarz to smooth out the n variable: for
a suitable smooth, compactly supported in [1/2, 5/2], bounded by 1 function V one has

∑∑

m∼M,n∼N

αmβnK(mn) 6
( ∑

m1,m2∼M

αm1αm2

∑

n

V (
n

N
)K(mn1)K(mn2)

)1/2
;

the next step is to perform the +ab-shift on the n variable and to make the change of variables

(a,m1,m2, n) ∈ [A, 2A[×[M, 2M [2×[N, 2N [←→ (an, am1, am2) (mod q) = (r, s1, s2) ∈ Fq
3.

20if N > 1
2
q1/2+1/2l the Polya-Vinogradov inequality is non trivial already
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Considering the fiber counting function for that map

ν(r, s1, s2) :=
∑∑

(a,n,m1,m2)
a∼A,|n|62N, mi≃M

αm1αm2δan=r, ami=si (mod q)

one show that for AN < q/2 one has
∑∑

(r,s1,s2)∈Fq
3

|ν(r, s1, s2)| ≪ AM2N,
∑∑

(r,s1,s2)∈Fq
3

|ν(r, s1, s2)|2 6 qo(1)AM2N.

Applying Hölder’s inequality lead us to the problem of bounding the following complete sum index
by the parameter b

(16.6)
∑

r∈Fq

|R(r, b)|2 − q
∑

r∈Fq

|K(r, b)|2.

We will explain what is expect in general in a short moment but let us see what happens for our
previous case K(x) = eq(x+ x): for b = (b1, · · · , b2l) ∈ Fq

2l satisfying (16.5) the sum (16.6) equals

q
∑

r∈Fq
r 6=−bi

|Kl2(Gb(r); q)|2 − q
∑

r∈Fq
r 6=−bi

1 = q
∑

r∈Fq
r 6=−bi

(|Kl2(Gb(r); q)|2 − 1) +Ol(q).

Lemma 16.2. For b = (b1, · · · , b2l) ∈ Fq
2l satisfying (16.5), one has

∑

r

(|Kl2(Gb(r); q)|2 − 1)≪l q
1/2.

Proof. This follows from the fact that [Gb]
∗Kℓ2 is geometrically irreducible with geometric mon-

odromy group equal to SL2: since the tensor product of the standard representation of SL2 with
itself equals the trivial representation plus the symmetric square of the standard representation
which is non-trivial and irreducible,

x→ |Kl2(Gb(r); q)|2 − 1

is the trace function of a geometrically irreducible sheaf. �

Using this bound and trivial estimates for b not stisfying (16.5) one eventually obtains

Theorem 16.3. Let K(x) = eq(x+ x), 1 6M,N < q and l > 1 some integer; assuming that

N <
1

2
q1/2+1/2l

one has

B(K,α,β) =
∑∑

m∼M,n∼N

αmβnK(mn)≪ qo(1)MN(
1

M
+ (

MN

q3/4+3/4l
)−1/4l)1/2.

Remark. For l large enough, this bound is non-trivial as long as M > qδ and MN > q3/4+δ again
improving on 9.1 in this specific case.

16.4. The +ab-shift for more general trace functions. For applications to analytic number
theory it is highly desirable to extend the methods of the previous section to trace functions as
general as possible. the above method be axiomatized in the following way; first we recall some
notations
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For q be a prime, K : Fq → C a complex valued function bounded by 1 in absolute value,
1 6 M,N < q some parameters and α = (αm)m∼M , β = (βn)n∼N sequences of complex number
bounded by 1, we define the type I sum

B(K,α, 1N ) =
∑∑

m∼M,n∼N

αmK(mn)

and the type II sum

B(K,α,β) =
∑∑

m∼M,n∼N

αmβnK(mn).

For l > 1 an integer, let K(r, b) and R(r, b) be the functions in the variable (r, b) ∈ Fq × Fq
2l

given in (16.4). For B > 1 we set

B = Z2l ∩ [B, 2B[2l.

An axiomatic treatment of the type I sums B(K,α, 1N ) is provided by the following

Theorem 16.4. Notations as above, for B,C > 1 and γ ∈ [0, 2] be some real numbers,

– let B∆ ⊂ B be the complement of the set of b ∈ B satisfying

(16.7) ∀r ∈ Fq, |R(r, b)| 6 Cq1/2.

– Let B∆ ⊂ Bbad
I ⊂ B be the complement in B of the set of b ∈ B−B∆ satisfying

(16.8)
∣∣∑

r∈Fq

R(r, b)
∣∣ 6 Cq.

Assume that for any 1 6 B < q/2 one has

(16.9) |B∆| 6 CBl, |Bbad
I | 6 B(2−γ)l

If N satisfies

q1/l 6 N 6
1

2
q1/2+1/2l,

one has for any ε > 0

(16.10) B(K,α, 1N )≪C,l,ε q
εMN(

q1+1/l

MN2
+
q3/2−γ+1/l

MN2
)1/2l.

An axiomatic treatment of the type II sums B(K,α,β) is provided by the following

Theorem 16.5. Notations as above, for B,C > 1 and γ ∈ [0, 2] be some real numbers,

– Let B∆ ⊂ B be the complement of the set of b ∈ B satisfying

∀r ∈ Fq, |R(r, b)| 6 Cq1/2.

– Let B∆ ⊂ Bbad
II ⊂ B be the complement (in B) of the set of b ∈ B−B∆ satisfying

(16.11)
∣∣∑

r∈Fq

|R(r, b)|2 − q
∑

r∈Fq

|K(r, b)|2
∣∣ 6 Cq3/2

Assume that for any B ∈ [1, q/2[ one has

(16.12) |B∆| 6 CBl, |Bbad
II | 6 CB(2−γ)l.

If N satisfies

q3/2l 6 N 6
1

2
q1/2+3/4l,

one has for any ε > 0,

(16.13) B(K,α,β)≪C,l,ε q
εMN

( 1

M
+ (

q1−
3
4
γ+ 3

4l

MN
+
q

3
4
+ 3

4l

MN
)
1
l
)1/2

.
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We conclude these lectures with a few remark concerning these two theorems

(1) In the case K(x) = eq(x + x) we have just verified that the conditions (16.9) and (16.12)
hold with γ = 1. In [FM98] this was shown to hold also for the trace functions

K(x) = eq(x
−k + ax), a ∈ Fq, k > 1.

(2) For more general trace functions, the first condition in (16.9) and (16.12) can be verified
using some variant of the ”sums of products” Theorem 13.1 and does not constitute a main
obstacle. One also should notice that Theorem 13.1 also implies that for any b = (b1, · · · , b2l)
on the ”first” diagonal (ie. b1 = bl+1, · · · , bl = b2l) one has

R(r, b) =
∑

s

l∏

i=1

|K(s(r + bi))|2 = |K(0)|2l +
∑

s 6=0

l∏

i=1

|K(s(r + bi))|2 ≫l q

and therefore

|B∆| > Bl.

It follows that the first bound in (16.9) and (16.12) is sharp and for the second condition
one cannot expect γ to be greater than 1.

(3) That said, in order to reach the best available bound by the above method, it is not necessary
to aim for γ = 1: it is sufficient to establish (16.9) with γ > 1/2 and (16.12) with γ > 1/3.
In such a case the above bounds are non trivial as long as

MN2 > q1+1/l MN > q3/4+3/4l.

(4) Checking the second bound in (16.9) and (16.12) for general trace functions is much more
difficult. In [KMS17], with specific applications in mind, these bounds have been established
for l = 2 and γ = 1/2 for the hyper-Kloosterman sums

K(x) = Klk(x; q), k > 2.

Because l = 2 is too small, this alone is not sufficient to improve over the Polya-Vinogradov
type bound of Theorem 9.1 (one would have needed l > 4). A more refined treatment
is necessary: instead of letting (somewhat wastefully) the variables s = am (mod q) or
s1 = am1, s2 = am2 (mod q) vary freely over the whole interval [0, q − 1] ≃ Fq one use the
fact that s, s1, s2 are varying along the shorter interval [AM, 4AM [. Applying the Polya-
Vinogradov completion method to detect this inclusion through additive characters this
lead to bounds for complete sums analogous to (16.8) and (16.11) but for the additively
twisted variant of R(r, b),

R(r, λ, b) =
∑

s

K(sr, sb)e(
λs

q
), for λ ∈ Fq.

Specifically the bounds are: ∀b ∈ B−B∆,

∀λ ∈ Fq, |R(r, λ, b)| 6 Cq1/2,

and ∀b ∈ B−Bbad
I ,

∀λ ∈ Fq, |
∑

r

R(r, λ, b)| 6 Cq,

and ∀b ∈ B−Bbad
II

∀λ, λ′ ∈ Fq,
∣∣∣
∑

r

R(r, λ, b)R(r, λ′, b)− qδλ=λ′
∑

s

l∏

i=1

|K(s(r + bi))|2
∣∣∣ 6 Cq3/2
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and in [KMS17] these bounds were established for l = 2 and b outside the sets B∆, Bbad
I

and Bbad
II satisfying

|B∆| 6 B2, |Bbad
I,II | 6 CB3.

(5) In the forthcoming paper [KMS18] the bounds (16.9) and (16.12) are established for the
hyper-Kloosterman sums and more general hypergeometric type sums for every l > 2,
γ = 1/2.

16.5. Some applications of the +ab-shift bounds. The problem of estimating bilinear sums of
trace functions below the critical Polya-Vinogradov range has had several applications in analytic
number theory. We list some of them below with references for the interested remaining reader(s).

– This method was used by Karacuba and Vinogradov for the function

K(n) = χ(n+ a)

(a, q) = 1 and χ (mod q) a non-trivial Dirichlet character to bound non-trivially its sum
along the primes over short intervals (now a special case of Theorem 8.1): in particular,
Karacuba [?Kar] proved for any ε > 0, the bound

∑

n6x

χ(n+ a)≪ x1−ε
2/1024

whenever x > q1/2+ε; this bound is therefore non-trivial in a range which is wider than the
x > q3/4+ε established in Theorem 8.1 for general trace functions.

– The method was used by Friedlander-Iwaniec for the function

K(n) = eq(n), n.n ≡ 1 (mod q).

to show that the ternary divisor function d3(n), n 6 n is well distributed in arithmetic

progressions of modulus q 6 x1/2+1/230, passing for the first time the Bombieri-Vinogradov
barrier (see Theorem 11.3).

– The bound in case of the Kloosterman sums

K(n) = Kl2(n; q)

established in [KMS17] (see above) together with [BFK+17] gave a sharp asymptotic formula
for the second moment of character twists of modular L-functions of prime modulus q: for
f a fixed Hecke-eigen cuspform one has

1

q − 1

∑

χ (mod q)

|L(f ⊗ χ, 1/2)|2 =MTf (log q) +Of (q
−1/145)

where MTf (log q) is a polynomial in log q (of degree 6 q) depending on f , completing the
work of Young for f an Eisenstein series [You11] and of Blomer-Milicevic for f cuspidal and
q a suitably composite modulus21.

– Using that method, Nunes [Nun17] obtained non-trivial bounds, below the Polya-Vinogradov
range, for the following (smooth) bilinear sum

∑∑

m6M
n6N

K(mn2)

where K is the Kloosterman-like trace function

K(n; q) :=
1

q1/2

∑

x∈F×

q

eq(ax
2 + bx)

21who used the q-van der Corput method on this occasion.
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(a, b some integral parameters sum that (ab, q) = 1) and deduced from this bound, that the
characteristic function of squarefree integers

n 7→ µ2(n), n 6 x

is well distributed in arithmetic progression of prime modulus

q 6 x2/3+1/57.

The previous best result, due to Prachar [Pra58], was q 6 x2/3−ε (similar to Selberg’s Theorem
11.2 for the divisor function d2(n)) was from 1958 !
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[BM15] V. Blomer and D. Milićević, The second moment of twisted modular L-functions, Geom. Funct. Anal. 25
(2015), no. 2, 453–516.

[BFK+17] Valentin Blomer, Étienne Fouvry, Emmanuel Kowalski, Philippe Michel, and Djordje Milićević, On mo-
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