Problems on adic spaces and perfectoid spaces Yoichi Mieda

1 Topological rings and valuations

Notation For a valuation $v: A \to \Gamma \cup \{0\}$ on a ring A, we write Γ_v for the subgroup of Γ generated by $\{v(a) \mid a \in A\} \setminus \{0\}$, and call it the value group of v. A subgroup H of Γ_v is said to be convex if $a_1, a_2, a_3 \in \Gamma_v$ with $a_1 \leq a_2 \leq a_3$ and $a_1, a_3 \in H$ implies $a_2 \in H$. The height of v means the supremum of the length r of a chain of convex subgroups $\{1\} = H_0 \subsetneq H_1 \subsetneq \cdots \subsetneq H_r = \Gamma_v$. We write supp v for the prime ideal $v^{-1}(0)$, and call it the support of v.

1.1 Let A be a ring and $v: A \to \Gamma \cup \{0\}$ be a valuation on A. Prove that the height of v is 1 if and only if $\Gamma_v \neq 1$ and there exists an order-preserving injective group homomorphism $\Gamma_v \hookrightarrow \mathbb{R}_{>0}$.

1.2 Let V be a valuation ring with valuation $v: V \to \Gamma \cup \{0\}$, and $K = \operatorname{Frac} V$ its fraction field. Consider the valuation topology on K, i.e., the topology generated by the subsets $\{x \in K \mid v(x) \leq a\}$ with $a \in \Gamma_v$. Prove that the following are equivalent:

- -K is a Tate ring (i.e., a Huber ring which has a topologically nilpotent unit).
- -V has a prime ideal of height 1.

In [Hub96, Definition 1.1.4], such a valuation ring is said to be microbial.

1.3 Let A be a ring, and Spv A the set of equivalence classes of valuations on A. Consider the topology of Spv A generated by the subsets $\{v \in \text{Spv } A \mid v(a) \leq v(b) \neq 0\}$ with $a, b \in A$. Prove that Spv A is quasi-compact.

Hint: consider the map ϕ : Spv $A \to \prod_{A \times A} \{0, 1\} = Map(A \times A, \{0, 1\})$ defined by

$$\phi(v)(a,b) = \begin{cases} 1 & \text{if } v(a) \le v(b), \\ 0 & \text{if } v(a) > v(b). \end{cases}$$

Observe that Im ϕ is a closed subset of $\prod_{A \times A} \{0, 1\}$ with respect to the product topology of the discrete topology on $\{0, 1\}$.

- **1.4** Let the notation be as in 1.3. Let $v: A \to \Gamma \cup \{0\}$ be a valuation on A.
- (i) For a convex subgroup $H \subset \Gamma_v$ containing $\{v(a) \mid a \in A, v(a) \geq 1\}$, let $v|_H \colon A \to H \cup \{0\}$ be a map defined by

$$a \mapsto \begin{cases} v(a) & \text{if } v(a) \in H, \\ 0 & \text{if } v(a) \notin H. \end{cases}$$

Prove that $v|_H$ is a valuation of A, and it is a specialization of v in Spv A. Such a specialization of v is called a primary specialization.

(ii) For a convex subgroup $H \subset \Gamma_v$, let $v/_H \colon A \to \Gamma_v/H \cup \{0\}$ be a map defined by

$$a \mapsto \begin{cases} v(a) \mod H & \text{if } v(a) \neq 0, \\ 0 & \text{if } v(a) = 0. \end{cases}$$

Prove that v_H is a valuation of A, and v is a specialization of v_H (i.e., v lies in the closure of v_H) in Spv A. A valuation $v \in$ Spv A is said to be a secondary specialization of $w \in$ Spv A if there exists a convex subgroup H of Γ_v such that $w = v_H$.

- (iii) Let $w \in \text{Spv} A$ be a specialization of $v \in \text{Spv} A$ such that $\sup v = \sup w$. Observe that w is a secondary specialization of v. (In fact, if A is not necessarily Tate, w is known to be a primary specialization of a secondary specialization.)
- (iv) We put $k_v = \operatorname{Frac}(A/\operatorname{supp} v)$. The valuation v on A induces that on k_v , by which k_v becomes a valuation field. We write k_v^{\sim} for the residue field of k_v . Construct a natural continuous map $\operatorname{Spv} k_v^{\sim} \to \operatorname{Spv} A$ which sends the trivial valuation to v, and prove that it induces a homeomorphism between $\operatorname{Spv} k_v^{\sim}$ and the subset of $\operatorname{Spv} A$ consisting of all secondary specializations of v.

1.5 Let A be a Huber ring. Let $v, w \in \text{Cont } A$ be continuous valuations such that w is a specialization of v. Suppose that $\sup w$ is not open (note that this condition is satisfied if A is Tate). Prove that $\sup v = \sup w$ (hence 1.4 (iii) tells us that w is a secondary specialization of v).

Hint: for $a, b \in A$ with w(a) = 0, show that $v(b) < v(a) \neq 0$ implies w(b) = 0.

- **1.6** Let A be a Huber ring.
- (i) Prove that a subring A_0 of A is a ring of definition if and only if it is open and bounded.
- (ii) Assume that A is Tate and A_0 is a ring of definition of A. Prove that there exists a topologically nilpotent unit ϖ of A belonging to A_0 . Further, observe that $A = A_0[1/\varpi]$ and ϖA_0 is an ideal of definition of A_0 .

1.7 Let A be a Huber ring. We write A° for the subset of A consisting of powerbounded elements, and \widehat{A} for the completion of A.

- (i) Check that A° is an integrally closed open subring of A.
- (ii) Prove that \widehat{A} is a Huber ring.
- (iii) Prove that $(\widehat{A})^{\circ} = \widehat{A^{\circ}}$.
- (iv) Let A^+ be a ring of integral elements; in other words, (A, A^+) forms a Huber pair. Show that $(\widehat{A}, \widehat{A}^+)$ is a Huber pair.

Notation A non-archimedean field k is a complete topological field whose topology is induced from a height 1 valuation $|-|: k \to \mathbb{R}_{\geq 0}$. Note that our convention that k is complete is different from [Hub96, Definition 1.1.3].

It can be easily seen that k° equals the set $\{a \in k \mid |a| \leq 1\}$, where |-| is any height 1 valuation inducing the topology of k.

1.8 Let k be a non-archimedean field. We write $k\langle T_1, \ldots, T_n \rangle$ for the subring of $k[[T_1, \ldots, T_n]]$ consisting of convergent power series

$$\sum_{I \in \mathbb{Z}_{\geq 0}^n} a_I T^I \quad \text{such that } \lim_{|I| \to \infty} a_I \to 0.$$

Here, for $I = (i_1, \ldots, i_n) \in \mathbb{Z}_{\geq 0}^n$, we put $T^I = T_1^{i_1} \cdots T_n^{i_n}$ and $|I| = i_1 + \cdots + i_n$. Further, we write $k^{\circ}\langle T_1, \ldots, T_n \rangle$ for the subring $k\langle T_1, \ldots, T_n \rangle \cap k^{\circ}[[T_1, \ldots, T_n]]$ of $k\langle T_1, \ldots, T_n \rangle$. Take a topologically unipotent unit ϖ of k, and consider the topology on $k\langle T_1, \ldots, T_n \rangle$ such that $\{ \varpi^m k^{\circ} \langle T_1, \ldots, T_n \rangle \}_{m \geq 0}$ is a fundamental system of open neighborhoods of 0.

- (i) Check that $k\langle T_1, \ldots, T_n \rangle$ is a complete Huber ring.
- (ii) Prove that $k\langle T_1, \ldots, T_n \rangle^\circ$ coincides with $k^\circ \langle T_1, \ldots, T_n \rangle$.
- (iii) Check that $k\langle T_1, \ldots, T_n \rangle$ satisfies the following universal property: for any complete Huber k-algebra A and its power-bounded elements $a_1, \ldots, a_n \in A$, there exists a unique continuous k-algebra homomorphism $\phi \colon k\langle T_1, \ldots, T_n \rangle \to A$ such that $\phi(T_i) = a_i$.

1.9 Let k be a non-archimedean field, and fix a norm $|-|: k \to \mathbb{R}_{\geq 0}$. We consider the lexicographic order on $\mathbb{Z}_{\geq 0}^n$. For a non-zero $f = \sum_{I \in \mathbb{Z}_{\geq 0}^n} a_I T^I \in k^{\circ} \langle T_1, \ldots, T_n \rangle$, we write $\nu(f)$ for the maximal element $\nu \in \mathbb{Z}_{\geq 0}^n$ such that $|a_{\nu}| = \max_I |a_I|$. We put $\mathrm{LT}(f) = a_{\nu(f)} T^{\nu(f)}$, and call it the leading term of f.

(i) Let g_1, \ldots, g_m be non-zero elements of $k^{\circ}\langle T_1, \ldots, T_n \rangle$ whose leading terms are monic (i.e., $\operatorname{LT}(g_i) = T^{\nu(g_i)}$). We put $M = \bigcup_{1 \le i \le m} (\nu(g_i) + \mathbb{Z}_{\ge 0}^n)$. For every $f \in k^{\circ}\langle T_1, \ldots, T_n \rangle$, find $h_1, \ldots, h_m \in k^{\circ}\langle T_1, \ldots, T_n \rangle$ such that $f - (h_1g_1 + \cdots + h_mg_m)$ has no exponent in M. Hint: choose $a \in k^{\circ}$ so that the leading term of a mod ak° equals $T^{\nu(g_i)}$ for

Hint: choose $a \in k^{\circ}$ so that the leading term of $g_i \mod ak^{\circ}$ equals $T^{\nu(g_i)}$ for every i, and consider the division in $(k^{\circ}/ak^{\circ})[T_1, \ldots, T_n]$.

- (ii) Let *I* be an ideal of $k^{\circ}\langle T_1, \ldots, T_n \rangle$. We write LT(I) for the ideal of $k^{\circ}\langle T_1, \ldots, T_n \rangle$ generated by LT(f) for all $f \in I \setminus \{0\}$. Suppose that there exist non-zero elements $g_1, \ldots, g_m \in I$ whose leading terms are monic such that LT(I) = $(LT(g_1), \ldots, LT(g_m))$. Prove that *I* is generated by g_1, \ldots, g_m .
- (iii) Let I be a non-zero ideal of $k^{\circ}\langle T_1, \ldots, T_n \rangle$. We assume that I is saturated for a topologically nilpotent unit ϖ of k, that is, $k^{\circ}\langle T_1, \ldots, T_n \rangle / I$ is ϖ -torsion free. Prove that there exist non-zero elements $g_1, \ldots, g_m \in I$ as in (ii), hence I is finitely generated.

Hint: let *L* be the subset $\{\nu(f) \mid f \in I \setminus \{0\}\}$ of $\mathbb{Z}_{\geq 0}^n$, which is an ideal of the monoid $\mathbb{Z}_{\geq 0}^n$. Use the fact that any ideal of the monoid $\mathbb{Z}_{\geq 0}^n$ is finitely generated.

(iv) Prove that $k\langle T_1, \ldots, T_n \rangle$ is Noetherian.

1.10 A non-archimedean field K is said to be spherically complete if every decreasing sequence $D_1 \supset D_2 \supset \cdots$ of closed disks in K has non-empty intersection.

- (i) Prove that every *p*-adic field (that is, a finite extension of \mathbb{Q}_p) is spherically complete.
- (ii) Let \mathbb{C}_p be the completion of an algebraic closure of \mathbb{Q}_p . Prove that \mathbb{C}_p is not spherically complete.

2 Underlying spaces of adic spaces

- **2.1** Let (A, A^+) be a Tate Huber pair.
- (i) Fix a topologically nilpotent unit ϖ of A. For $v \in \operatorname{Spv} A$ with $v(\varpi) < 1$, we write Γ_v^{ϖ} for the largest convex subgroup of Γ_v such that $v(\varpi)$ is cofinal in Γ_v^{ϖ} (i.e., for any $\gamma \in \Gamma_v^{\varpi}$, there exists $n \ge 0$ such that $v(\varpi)^n < \gamma$). Prove that the map $\phi \colon \{v \in \operatorname{Spv} A \mid v(a) < 1 \ (a \in A^{\circ\circ})\} \to \operatorname{Spv} A; v \mapsto v|_{\Gamma_v^{\varpi}}$ (see 1.4 (i)) is well-defined and continuous.
- (ii) Observe that the image of ϕ in (i) equals Cont A. Deduce that $\text{Spa}(A, A^+)$ is quasi-compact.
- (iii) Recall that a rational subset of $\text{Spa}(A, A^+)$ is a subset of the form

$$U\left(\frac{f_1,\ldots,f_n}{g}\right) = \left\{ v \in \operatorname{Spa}(A,A^+) \mid v(f_i) \le f(g) \ne 0 \right\},\$$

where $f_1, \ldots, f_n, g \in A$ such that $f_1A + \cdots + f_nA = A$. Prove that rational subsets form an open basis of $\text{Spa}(A, A^+)$.

2.2 Let (A, A^+) be a Tate Huber pair. Pick a point x of $\text{Spa}(A, A^+)$, and denote by G(x) the set of all generalizations of x.

- (i) Prove that G(x) forms a chain; namely, for $y, z \in G(x)$, either y specializes to z or z specializes to y. Hint: use 1.5.
- (ii) Prove that G(x) contains a point y which is a generalization of every point in G(x). Such a point is called the maximal generalization of x. Hint: use 1.2.
- (iii) Let $f \in A$ be an element and $Y = \{v \in \text{Spa}(A, A^+) \mid v(f) = 0\}$ the closed subset defined by f. Prove that Y is stable under generalization.

2.3 Fix a norm $|-|: \mathbb{C}_p \to \mathbb{R}_{\geq 0}$ of \mathbb{C}_p . For a closed disk D in $\mathcal{O}_{\mathbb{C}_p}$, we write $v_D: \mathbb{C}_p \langle T \rangle \to \mathbb{R}_{\geq 0}$ for the map $f \mapsto \sup_{x \in D} f(x)$. Further, for a collection \mathcal{E} of closed disks in $\mathcal{O}_{\mathbb{C}_p}$ such that every $D, D' \in \mathcal{E}$ satisfy either $D \subset D'$ or $D \supset D'$, we put $v_{\mathcal{E}} = \inf_{D \in \mathcal{E}} v_D$.

- (i) Check that $v_{\mathcal{E}}$ gives a point of $\mathbb{D}^1 = \operatorname{Spa}(\mathbb{C}_p\langle T \rangle, \mathcal{O}_{\mathbb{C}_p}\langle T \rangle).$
- (ii) Observe that $\bigcap_{D \in \mathcal{E}} D$ is one of the following:

- one point $a \in \mathcal{O}_{\mathbb{C}_p}$,
- a disk $\{z \in \mathcal{O}_{\mathbb{C}_p} \mid |z-a| \leq r\}$ with $r \in |\mathcal{O}_{\mathbb{C}_p}^{\times}|$, a disk $\{z \in \mathcal{O}_{\mathbb{C}_p} \mid |z-a| \leq r\}$ with $r \in \mathbb{R}_{>0} \setminus |\mathcal{O}_{\mathbb{C}_p}^{\times}|$, or
- empty.

In each of the first three cases, describe $v_{\mathcal{E}}$ concretely.

- (iii) In each of the cases above, determine all specializations of $v_{\mathcal{E}}$ by using 1.4 (iv).
- (iv) Let $v: \mathbb{C}_p \langle T \rangle \to \mathbb{R}_{\geq 0}$ be a point with height 1 of \mathbb{D}^1 . For $a \in \mathcal{O}_{\mathbb{C}_p}$, we write D_a for the closed disk $\{z \in \mathcal{O}_{\mathbb{C}_p} \mid |z-a| \leq v(T-a)\}$. Prove that $v = v_{\mathcal{E}}$ for $\mathcal{E} = \{ D_a \mid a \in \mathcal{O}_{\mathbb{C}_p} \}.$
- (v) Find all points in \mathbb{D}^1 .

2.4 An admissible blow-up of a formal scheme \mathcal{X} means the blow-up along a finitely generated open ideal sheaf of $\mathcal{O}_{\mathcal{X}}$. For example, if $\mathcal{X} = \operatorname{Spf} \mathbb{Z}_p \langle T \rangle$, an admissible blow-up is the formal completion along the special fiber of a blow-up $X' \to \mathbb{A}^1_{\mathbb{Z}_n}$ along a closed subscheme which is set-theoretically contained in the special fiber of $\mathbb{A}^1_{\mathbb{Z}_p}$. We write $\Phi_{\mathcal{X}}$ for the set of admissible blow-ups of \mathcal{X} , and put $\langle \mathcal{X}^{\mathrm{rig}} \rangle =$ $\varprojlim_{(\mathcal{X}' \to \mathcal{X}) \in \Phi_{\mathcal{X}}} \mathcal{X}'.$

- (i) Assuming \mathcal{X} is quasi-compact, deduce that $\langle \mathcal{X}^{rig} \rangle$ is quasi-compact. Hint: use the following general result due to Stone: if $\{Y_i\}_{i \in I}$ is a filtered projective system of quasi-compact T_0 topological spaces with closed transition maps, the limit space $\varprojlim_i Y_i$ is quasi-compact.
- (ii) Let $\mathcal{X} = \operatorname{Spf} \mathcal{O}_{\mathbb{C}_p} \langle T \rangle$. Construct a natural map $\mathbb{D}^1 = \operatorname{Spa}(\mathbb{C}_p \langle T \rangle, \mathcal{O}_{\mathbb{C}_p} \langle T \rangle) \to$ $\langle \mathcal{X}^{\mathrm{rig}} \rangle$.

Hint: use the valuative criterion.

- (iii) Describe the image under the map in (ii) of each point of \mathbb{D}^1 found in 2.3 (v).
- (iv) Prove that the map in (ii) is a homeomorphism.

3 Structure (pre)sheaves of adic spaces

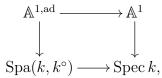
- (i) Prove that $\mathbb{D}^1 = \operatorname{Spa}(\mathbb{C}_p\langle T \rangle, \mathcal{O}_{\mathbb{C}_p}\langle T \rangle)$ is connected. 3.1
- (ii) Let x be a point of \mathbb{D}^1 . When is $\mathbb{D}^1 \setminus \{x\}$ non-connected?

3.2 Let (A, A^+) be a Huber pair. For a rational subset U of Spa (A, A^+) , prove that the natural map $\operatorname{Spa}(\mathcal{O}(U), \mathcal{O}^+(U)) \to \operatorname{Spa}(A, A^+)$ induces a homeomorphism between $\operatorname{Spa}(\mathcal{O}(U), \mathcal{O}^+(U))$ and U. (Together with 2.1, we conclude that every rational subset is quasi-compact.)

Hint: first prove that $\operatorname{Spa}(\widehat{A}, \widehat{A}^+) \to \operatorname{Spa}(A, A^+)$ is a homeomorphism.

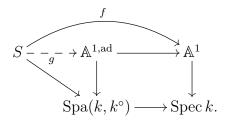
(i) Let $X = \text{Spa}(A, A^+)$ be an affinoid adic space with complete Huber pair 3.3 (A, A^+) and B a ring. Prove that morphisms of locally ringed spaces $(X, \mathcal{O}_X) \to$ Spec B are in bijection with ring homomorphisms $B \to A$. Hint: the map $X \to \operatorname{Spec} B$ corresponding to $\phi \colon B \to A$ is given by $v \mapsto \{b \in$ $B \mid v(\phi(b)) = 0\}.$

(ii) Let k be a non-archimedean field, and $\varpi \in k$ a topologically nilpotent unit. We put $\mathbb{A}^{1,\mathrm{ad}} = \bigcup_{m\geq 1} \operatorname{Spa}(k\langle \varpi^m T \rangle, k^{\circ}\langle \varpi^m T \rangle)$. Check that $\mathbb{A}^{1,\mathrm{ad}}$ fits into a commutative diagram



where the horizontal arrows are morphisms of locally ringed spaces. Further, prove that $\mathbb{A}^{1,ad}$ satisfies the following universal property:

For an adic space S over $\text{Spa}(k, k^{\circ})$ and a morphism of locally ringed spaces $f: S \to \mathbb{A}^1$ which makes the following diagram commute, there exists a unique morphism of adic spaces $g: S \to \mathbb{A}^{1,\text{ad}}$ that makes the diagram commute:



(iii) By extending the construction in (ii), find a definition of the adic space X^{ad} attached to an algebraic variety X over k.

3.4 Let A be a ring and I a finitely generated ideal of A. Assume that A is I-adically complete, and consider the formal scheme $\mathcal{X} = \text{Spf } A$.

- (i) Let $Y = \text{Spa}(B, B^+)$ be an affinoid adic space with complete Huber pair (B, B^+) . Prove that morphisms of locally topologically ringed spaces $(Y, \mathcal{O}_Y^+) \to \mathcal{X}$ are in bijection with continuous ring homomorphisms $A \to B^+$. Hint: the map $Y \to \mathcal{X}$ corresponding to $\phi \colon A \to B^+$ is given by $v \mapsto \{a \in A \mid v(\phi(a)) < 1\}$.
- (ii) Assume that (A, A) is sheafy (this is the case if A is Noetherian), and put $t(\mathcal{X}) = \operatorname{Spa}(A, A)$. Check that the morphism of locally topologically ringed spaces $\lambda \colon (t(\mathcal{X}), \mathcal{O}_{t(\mathcal{X})}^+) \to \mathcal{X}$ corresponding to id: $A \to A$ satisfies the following universal property: for every adic space Y and a morphism of locally topologically ringed spaces $\mu \colon (Y, \mathcal{O}_Y^+) \to \mathcal{X}$, there exists a unique morphism of adic spaces $f \colon Y \to t(\mathcal{X})$ such that $\mu = \lambda \circ f$.

By this property, we can attach to locally Noetherian formal scheme \mathcal{X} an adic space $t(\mathcal{X})$ by gluing.

3.5 Let V be a discrete valuation ring and \mathcal{X} a locally Noetherian formal scheme over Spf V. We put $F = \operatorname{Frac} V$.

(i) Prove that $t(\operatorname{Spf} V) = \operatorname{Spa}(V, V)$ consists of two points s and η , where s is closed and η is open.

We write $\mathcal{X}_{\eta}^{\mathrm{ad}}$ for the fiber of $t(\mathcal{X}) \to \operatorname{Spf} V$ at η , and call it the rigid generic fiber of \mathcal{X} . The composite map $\operatorname{sp}_{\mathcal{X}} \colon \mathcal{X}_{\eta}^{\mathrm{ad}} \hookrightarrow t(\mathcal{X}) \xrightarrow{\lambda} \mathcal{X} = \mathcal{X}_{\mathrm{red}}$ is called the specialization map.

- (ii) Prove that $(\operatorname{Spf} V\langle T \rangle)^{\operatorname{ad}}_{\eta} = \operatorname{Spa}(F\langle T \rangle, V\langle T \rangle).$
- (iii) Observe that $(\operatorname{Spf} V[[T]])_{\eta}^{\operatorname{ad}}$ can be regarded as an open disk. Hint: $(\operatorname{Spf} V[[T]])_{\eta}^{\operatorname{ad}} \subset t(\operatorname{Spf} V[[T]])$ is not a rational subset. Write it as an increasing union of rational subsets.
- (iv) Let X be a scheme of finite type over V, and Y a closed subscheme of the special fiber of X. We write \mathcal{X} (resp. \mathcal{Y}) for the formal completion of X along the special fiber (resp. Y). Prove that $\mathcal{Y}_{\eta}^{\mathrm{ad}}$ is isomorphic to the open adic subspace of $\mathcal{X}_{n}^{\mathrm{ad}}$ whose underlying space is the interior of $\mathrm{sp}_{\mathcal{X}}^{-1}(Y)$ in $\mathcal{X}_{n}^{\mathrm{ad}}$.

When $V = \mathcal{O}_{\mathbb{C}_p}$, I do not know whether $t(\mathcal{X})$ can be defined or not. Nevertheless, for a formal scheme \mathcal{X} locally formally of finite type over $\mathcal{O}_{\mathbb{C}_p}$, one can define its rigid generic fiber $\mathcal{X}_n^{\mathrm{ad}}$, which is an adic space locally of finite type over $\mathrm{Spa}(\mathbb{C}_p, \mathcal{O}_{\mathbb{C}_p})$.

3.6 Let k be a non-archimedean field. We put $A = k\langle T \rangle$, and let A' be the integral closure of $k^{\circ}[A^{\circ\circ}]$ in A (recall that $A^{\circ\circ}$ denotes the set of topologically nilpotent elements in A).

- (i) Show that A' equals $\{\sum_{n=0}^{\infty} a_n T^n \in k^{\circ} \langle T \rangle \mid a_n \in k^{\circ \circ} \ (n \ge 1)\}.$
- (ii) Observe that Spa(A, A') is partially proper over $\text{Spa}(k, k^{\circ})$, and contains $\mathbb{D}^1 = \text{Spa}(A, A^{\circ})$ as an open subset.
- (iii) Prove that $\overline{\mathbb{D}}^1 = \operatorname{Spa}(A, A')$ is the universal compactification of \mathbb{D}^1 in the following sense: for every partially proper adic space Y over $\operatorname{Spa}(k, k^\circ)$, a k-morphism $f : \mathbb{D}^1 \to Y$ extends uniquely to $\overline{f} : \overline{\mathbb{D}}^1 \to Y$.
- (iv) Check that $\mathbb{A}^{1,\mathrm{ad}}$ is partially proper over $\mathrm{Spa}(k, k^{\circ})$. Determine the image of the induced map $\overline{f} : \overline{\mathbb{D}}^1 \to \mathbb{A}^{1,\mathrm{ad}}$.
- (v) Consider the questions (ii), (iii) for more general topologically finitely generated k-algebras.

3.7 Let (A, A^+) is a Tate Huber pair such that A is uniform (i.e., A° is bounded). We put $X = \text{Spa}(A, A^+)$. Let $t \in A$, and consider rational subsets $U = \{v \in X \mid v(t) \leq 1\}$ and $V = \{v \in X \mid v(t) \geq 1\}$. We want to prove the exactness of $0 \to \mathcal{O}_X(X) \to \mathcal{O}_X(U) \oplus \mathcal{O}_X(V) \to \mathcal{O}_X(U \cap V) \to 0$.

Take a ring of definition A_0 of A and a topologically nilpotent unit ϖ of Abelonging to A_0 . We put $B_0 = A_0[t]$ and write B for the ring A with the topology induced from the ϖ -adic topology on B_0 . We put C = A[1/t], $C_0 = A_0[1/t]$ and equip C with the topology induced from the ϖ -adic topology on C_0 . Finally, we put D = A[1/t], $D_0 = A_0[t, 1/t]$ and equip D with the topology induced from the ϖ -adic topology on D_0 . Note that we have $\widehat{A} = \mathcal{O}_X(X)$, $\widehat{B} = \mathcal{O}_X(U)$, $\widehat{C} = \mathcal{O}_X(V)$, and $\widehat{D} = \mathcal{O}_X(U \cap V)$.

(i) We write $\phi: A \to A[1/t]$ for the natural map. Prove that $B_0 \cap \phi^{-1}(C_0) \subset A^\circ$. (In this step we do not need to assume that A is uniform.) Hint: for $a \in B_0 \cap \phi^{-1}(C_0)$, find $f(T), g(T) \in A_0[T]$ and $c \ge \deg g$ such that a = f(t) and $t^c a = g(t)$. Let $d = \deg f + c$, and $n \ge 0$ be an integer such that $\varpi^n t \in A_0$. Prove that $\varpi^{nd} t^i a^m \in A_0$ for every $m \ge 0$ and $0 \le i \le d$ by the induction on m.

- (ii) By (i), there exists an integer $n \geq 0$ such that $\varpi^n(B_0 \cap \phi^{-1}(C_0)) \subset A_0$. By using this fact, prove that the exact sequence $0 \to A \to B \oplus C \to D \to 0$ remains exact after completion. This means that the sequence $0 \to \mathcal{O}_X(X) \to \mathcal{O}_X(U) \oplus \mathcal{O}_X(V) \to \mathcal{O}_X(U \cap V) \to 0$ is exact.
- **3.8** Let (A, A^+) be a stably uniform Tate Huber pair. Put $X = \text{Spa}(A, A^+)$.
- (i) Let $t_1, \ldots, t_n \in A$. For a subset $I \subset \{1, \ldots, n\}$, we put $U_I = \{v \in X \mid v(t_i) \leq 1 \ (i \in I), v(t_i) \geq 1 \ (i \notin I)\}$. They form an open covering $\{U_I\}_{I \subset \{1,\ldots,n\}}$ (such an open covering is called a Laurent covering). Prove that \mathcal{O}_X satisfies the sheaf condition with respect to this covering. Hint: use 3.7.
- (ii) Let $a_1, \ldots, a_n \in A$ with $a_1A + \cdots + a_nA = A$. For $1 \le i \le n$, we put $U_i = \{v \in X \mid v(a_i) \le v(a_j) \ne 0 \ (1 \le j \le n)\}$. They form an open covering $\{U_i\}_{1 \le i \le n}$ (such an open covering is called a rational covering). Assume moreover that $a_1, \ldots, a_n \in A^{\times}$. Prove that there exists a Laurent covering refining $\{U_i\}_{1 \le i \le n}$, and deduce from this fact that \mathcal{O}_X satisfies the sheaf condition with respect to $\{U_i\}_{1 \le i \le n}$.
- (iii) Let $\{U_i\}_{1 \le i \le n}$ be as in (ii), but we do not assume that a_1, \ldots, a_n are units. Prove that there exists a Laurent covering $\mathcal{V} = \{V_J\}$ such that $\{U_i \cap V_J\}_{1 \le i \le n}$ is a rational covering of V_J of the type considered in (ii) for every J.
- (iv) Prove that every open covering of X can be refined by a rational covering.
- (v) Conclude that \mathcal{O}_X is a sheaf.

3.9 Let k be a non-archimedean field, and $\varpi \in k$ a topologically nilpotent unit. We put $A = k[T, T^{-1}, Z]/(Z^2)$. Let A_0 be the k°-submodule of A generated by $\varpi^n T^{\pm n}$, $\varpi^{-n}T^{\pm n}Z$ with $n \geq 0$.

- (i) Check that A_0 is a k° -subalgebra of A and $A = A_0[1/\varpi]$.
- (ii) We equip A with the topology such that $\{\varpi^n A_0\}_{n\geq 0}$ is a fundamental system of open neighborhoods of 0, and consider $X = \operatorname{Spa}(A, A^\circ)$. Let $U = \{v \in X \mid v(T) \leq 1\}$ and $V = \{v \in X \mid v(T) \geq 1\}$, which are rational subsets of X. Prove that $Z \in \mathcal{O}_X(X)$ is non-zero, and the image of Z under the restriction map $\mathcal{O}_X(X) \to \mathcal{O}_X(U) \oplus \mathcal{O}_X(V)$ is zero. This means that the presheaf \mathcal{O}_X on X is not a sheaf.

Hint: consider the intersection of kZ with A_0 , $A_0[T]$ and $A_0[T^{-1}]$.

This problem is taken from [BV16, Proposition 12].

3.10 Let k and ϖ be as in 3.9. Let A_0 be a k° -submodule of $k[T, T^{-1}, Z]$ generated by $(\varpi T)^a (\varpi Z)^b$ with $b \ge 0$ and $a \ge -b^2$.

(i) Check that A_0 is a k° -subalgebra of $k[T, T^{-1}, Z]$.

- (ii) We put A = A₀[1/∞] and consider the topology on it such that {∞ⁿA₀}_{n≥0} is a fundamental system of open neighborhoods of 0. Prove that the natural Z²-grading on k[T, T⁻¹, Z] induces that on A°. Hint: the crucial point is that the ring of definition A₀ is also graded.
- (iii) By using (ii), show that $A^{\circ} = A_0$, hence A is uniform.
- (iv) For a rational subset $U = \{v \in \text{Spa}(A, A^{\circ}) \mid v(T) \leq 1\}$, prove that $\mathcal{O}(U)$ is not uniform. This means that (A, A°) is not stably uniform.

Hint: observe that $\varpi^{-1}Z \notin A_0[T]$ and $(\varpi^{-n}Z)^{n+1} \in A_0[T]$ for every $n \ge 1$.

This problem is taken from [BV16, Proposition 17]. By slight modification, one can also give a uniform Tate ring A such that $\text{Spa}(A, A^{\circ})$ is not sheafy. See [BV16, Proposition 18].

4 Perfectoid spaces

4.1 Let F be a non-archimedean local field. We fix a uniformizer ϖ of F. Let \mathbb{X} be the Lubin-Tate formal group (= 1-dimensional formal \mathcal{O}_F -module of height 1) over \mathcal{O}_F such that $[\varpi]_{\mathbb{X}}(T) = \varpi T + T^q$, where q is the cardinality of the residue field of F. We write F_m for the extension field of F obtained by adjoining all roots of $[\varpi^m]_{\mathbb{X}}(T) = 0$. Let \widehat{F}_{∞} be the completion of $\varinjlim_m F_m$. Prove that \widehat{F}_{∞} is a perfectoid field.

4.2 Let K be a perfectoid field. Prove that if K^{\flat} is algebraically closed, so is K.

Hint: take an irreducible polynomial $P(T) = T^d + a_{d-1}T^{d-1} + \cdots + a_0 \in K^{\circ}[T]$. By changing the variable, we may assume that a_0 is a unit (why?). Take $Q(T) = T^d + b_{d-1}T^{d-1} + \cdots + b_0 \in K^{\flat \circ}[T]$ such that the image of Q(T) in $(K^{\flat \circ}/\varpi^{\flat})[T]$ is equal to that of P(T) in $(K^{\circ}/\varpi)[T]$. Pick a root y of Q(T) and approximate a root of P(T) by y^{\sharp} .

- **4.3** Let A be a uniform complete Tate ring, and p a prime number.
- (i) For a topologically nilpotent unit ϖ of A such that $p \in \varpi^p A^\circ$, prove that the pth power map $\Phi: A^\circ/\varpi A^\circ \to A^\circ/\varpi^p A^\circ$ is injective.
- (ii) Show that the condition that $\Phi: A^{\circ}/\varpi A^{\circ} \to A^{\circ}/\varpi^{p}A^{\circ}$ is surjective is independent of the choice of a topologically nilpotent unit $\varpi \in A$ with $p \in \varpi^{p}A^{\circ}$.

4.4 Let R be a perfect \mathbb{F}_p -algebra, and W(R) the ring of Witt vectors with coefficients in R. Let S be a p-adically complete ring. Let $t: R \to S$ be a multiplicative map such that the composite $R \xrightarrow{t} S \to S/pS$ is a ring homomorphism. Prove that the map $T: W(R) \to S$ defined by

$$T\left(\sum_{n=0}^{\infty} p^n[a_n]\right) = \sum_{n=0}^{\infty} p^n t(a_n) \quad (a_n \in R)$$

becomes a ring homomorphism. Check also that T is surjective if the composite $R \xrightarrow{t} S \to S/pS$ is.

4.5 Let R be a perfectoid \mathbb{F}_p -algebra, and $\xi = \sum_{n=0}^{\infty} p^n[a_n]$ $(a_n \in R^\circ)$ be an element of $W(R^\circ)$. We say that ξ is primitive of degree 1 if a_0 is topologically nilpotent and a_1 is a unit of R° .

- (i) Prove that a primitive element of degree 1 is a non-zero-divisor.
- (ii) Prove that ξ ∈ W(R°) is primitive of degree 1 if and only if there exist u ∈ W(R°)[×], α ∈ W(R°) and a topologically nilpotent unit ϖ ∈ R° such that uξ = p + α[ϖ].
 Hint: note that (ξ [a₀])/p is a unit of W(R°).
- **4.6** Let *A* be a perfectoid ring.
- (i) Use 4.4 to construct a surjective ring homomorphism $\theta \colon W(A^{\flat \circ}) \to A^{\circ}$.
- (ii) Check that $\theta([x]) = x^{\#}$ for $x \in A^{\flat \circ}$.
- (iii) Take topologically nilpotent units $\varpi \in A$ and $\varpi^{\flat} \in A^{\flat}$ such that $p \in \varpi^{p}A^{\circ}$ and $(\varpi^{\flat})^{\sharp} = \varpi$. Pick $\alpha \in W(A^{\flat \circ})$ such that $\theta(\alpha) = p/\varpi$ and put $\xi = p \alpha[\varpi^{\flat}]$. Prove that ξ generates Ker θ .
- 4.7 (i) Let K be the completion of $\mathbb{Q}_p(\mu_{p^{\infty}})$, which is a perfectoid field of characteristic 0. Prove that K^{\flat} is isomorphic to the completion of $\mathbb{F}_p((T^{p^{-\infty}}))$. Find a generator of Ker θ (see 4.6) in this case.
- (ii) Answer the same question for the completion of $\mathbb{Q}_p(p^{p^{-\infty}})$.

4.8 Let $\{X_i\}$ be a filtered projective system of adic spaces whose transition maps are quasi-compact and quasi-separated. For a perfectoid space X, we write $X \sim \lim_{i \to \infty} X_i$ if the following conditions are satisfied:

- A compatible family of morphisms $\phi_i \colon X \to X_i$ is given and the induced map $|X| \to \varprojlim_i |X_i|$ on the underlying spaces is a homeomorphism.
- For each $x \in X$, there exists an affinoid open neighborhood U of x such that the image of $\varinjlim_{(i,U_i \subset X_i)} \mathcal{O}_{X_i}(U_i) \to \mathcal{O}_X(U)$ is dense. Here U_i runs through affinoid open subsets of X_i which contain $\phi_i(U)$.
- (i) For a perfectoid Huber pair (B, B^+) , show that the map

$$\operatorname{Hom}(\operatorname{Spa}(B, B^+), X) \to \varprojlim_i \operatorname{Hom}(\operatorname{Spa}(B, B^+), X_i)$$

is bijective. Conclude that a perfectoid space X satisfying $X \sim \varprojlim_i X_i$ is unique up to isomorphism.

(ii) Let K be a perfectoid field of residue characteristic p. Let us consider the projective system $(\cdots \xrightarrow{\phi^{\mathrm{ad}}} \mathbb{A}^{n,\mathrm{ad}} \xrightarrow{\phi^{\mathrm{ad}}} \cdots \xrightarrow{\phi^{\mathrm{ad}}} \mathbb{A}^{n,\mathrm{ad}})$, where $\phi \colon \mathbb{A}^n \to \mathbb{A}^n$ is given by $(x_1, \ldots, x_n) \mapsto (x_1^p, \ldots, x_n^p)$. Check that there exists a perfectoid space X over K such that $X \sim \varprojlim_{\phi^{\mathrm{ad}}} \mathbb{A}^{n,\mathrm{ad}}$.

4.9 Let $X = \text{Spa}(A, A^+)$ be an affinoid perfectoid space, and Z a closed subset of X defined by $f_1 = \cdots = f_n = 0$ for $f_1, \ldots, f_n \in A$.

- (i) Fix a topologically nilpotent unit $\varpi \in A$. For $m \geq 0$, let U_m be the open neighborhood of Z defined by $\{v \in X \mid v(f_i) \leq v(\varpi^m)\}$. Prove that there exists a perfectoid space \widetilde{Z} such that $\widetilde{Z} \sim \varprojlim_m U_m$.
- (ii) Let Y be a perfectoid space and $\phi: Y \to X$ a morphism whose set-theoretic image is contained in Z. Prove that ϕ uniquely factors through $Y \to \tilde{Z}$. In particular, \tilde{Z} is independent of the choice of f_1, \ldots, f_n and ϖ .

4.10 Let K be a perfectoid field of characteristic 0, and p the residue characteristic of K.

- (i) Let A be a complete Tate K-algebra satisfying the following conditions:
 - (a) Every element of $1 + A^{\circ\circ}$ has a *p*th root in *A*.
 - (b) A is uniform.

Prove that A is a perfectoid K-algebra.

Hint: first observe that a *p*th root of $a \in 1 + A^{\circ \circ}$ can be taken from $1 + A^{\circ \circ}$.

- (ii) Let A be a Tate K-algebra satisfying the condition (a) in (i). Take a topologically nilpotent unit ∞ of K and equip A with the new topology such that {∞^mA°} is a fundamental system of open neighborhoods of 0. Let denote the completion of A with respect to this topology. Prove that satisfies the conditions (a), (b) in (i), hence is a perfectoid K-algebra.
- (iii) Let $X = \text{Spa}(B, B^{\circ})$ be an affinoid adic space of finite type over $\text{Spa}(K, K^{\circ})$. Prove that there exist a filtered projective system $\{X_i\}$ of finite étale covers of X and a perfectoid space X_{∞} over K such that $X_{\infty} \sim \varprojlim_i X_i$.

This problem is taken from [Col02, §2.8] and [Sch13, Proposition 4.8].

4.11 Let K be a perfectoid field of characteristic 0, and G a finite group acting on K. Let us prove that K^G is a perfectoid field. Note that the surjection $\theta: W(K^{\flat \circ}) \to K^{\circ}$ in 4.6 is G-equivariant.

- (i) Prove that for every integer $m \ge 0$ there exists a topologically nilpotent unit ϖ in K^G such that $p \in \varpi^{p^{m+1}} K^{\circ}$. Hint: find ϖ of the form $\theta([u])$ with $u \in K^{\flat \circ}$.
- (ii) Assume first that $|G| = p^m$. Take ϖ as in (i). For $x \in K^{G^\circ}$, pick $y \in K^{\flat^\circ}$ such that $\theta([y]) \equiv x \pmod{pK^\circ}$ and put $z = \prod_{g \in G} g(y)^{1/p^{m+1}}$. Check that $\theta([z]) \in K^{G^\circ}$ and $x \equiv \theta([z])^p \pmod{\varpi^p K^{G^\circ}}$. This shows that K^G is a perfectoid field.

Hint: use 4.3.

- (iii) Prove that K^G is a perfectoid field for general G.
- (iv) Repeat the argument above to prove the following claim: for a perfectoid K-algebra A and a finite group G acting on A, A^G is a perfectoid K^G -algebra.

This problem is taken from [KL16, Theorem 3.3.25].

4.12 Let K be a perfectoid field of characteristic p > 0. Modify 3.9 to construct a Huber K-algebra A satisfying the following condition: $X = \text{Spa}(A, A^{\circ})$ is covered by affinoid perfectoid spaces, but \mathcal{O}_X is not a sheaf.

This problem is taken from [BV16, Proposition 13].

References

- [BV16] K. Buzzard and A. Verberkmoes, *Stably uniform affinoids are sheafy*, to appear in J. Reine Angew. Math., 2016.
- [Col02] P. Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1 (2002), no. 3, 331–439.
- [Hub96] R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30, Friedr. Vieweg & Sohn, Braunschweig, 1996.
- [KL16] K. S. Kedlaya and R. Liu, Relative p-adic Hodge theory, II: Imperfect period rings, preprint, arXiv:1602.06899.
- [Sch13] P. Scholze, p-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi 1 (2013), e1, 77 pp.