
Problems on adic spaces and perfectoid spaces

Yoichi Mieda

1 Topological rings and valuations

Notation For a valuation v : A→ Γ∪{0} on a ring A, we write Γv for the subgroup
of Γ generated by {v(a) | a ∈ A} \ {0}, and call it the value group of v. A subgroup
H of Γv is said to be convex if a1, a2, a3 ∈ Γv with a1 ≤ a2 ≤ a3 and a1, a3 ∈ H
implies a2 ∈ H. The height of v means the supremum of the length r of a chain of
convex subgroups {1} = H0 ( H1 ( · · · ( Hr = Γv. We write supp v for the prime
ideal v−1(0), and call it the support of v.

1.1 Let A be a ring and v : A→ Γ∪{0} be a valuation on A. Prove that the height
of v is 1 if and only if Γv 6= 1 and there exists an order-preserving injective group
homomorphism Γv ↪→ R>0.

1.2 Let V be a valuation ring with valuation v : V → Γ∪ {0}, and K = FracV its
fraction field. Consider the valuation topology on K, i.e., the topology generated by
the subsets {x ∈ K | v(x) ≤ a} with a ∈ Γv. Prove that the following are equivalent:

– K is a Tate ring (i.e., a Huber ring which has a topologically nilpotent unit).

– V has a prime ideal of height 1.

In [Hub96, Definition 1.1.4], such a valuation ring is said to be microbial.

1.3 Let A be a ring, and SpvA the set of equivalence classes of valuations on A.
Consider the topology of SpvA generated by the subsets {v ∈ SpvA | v(a) ≤ v(b) 6=
0} with a, b ∈ A. Prove that SpvA is quasi-compact.

Hint: consider the map φ : SpvA →
∏

A×A{0, 1} = Map(A × A, {0, 1}) defined
by

φ(v)(a, b) =

{
1 if v(a) ≤ v(b),

0 if v(a) > v(b).

Observe that Imφ is a closed subset of
∏

A×A{0, 1} with respect to the product
topology of the discrete topology on {0, 1}.

1.4 Let the notation be as in 1.3. Let v : A→ Γ ∪ {0} be a valuation on A.

(i) For a convex subgroup H ⊂ Γv containing {v(a) | a ∈ A, v(a) ≥ 1}, let
v|H : A→ H ∪ {0} be a map defined by

a 7→

{
v(a) if v(a) ∈ H,

0 if v(a) /∈ H.
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Prove that v|H is a valuation of A, and it is a specialization of v in SpvA. Such
a specialization of v is called a primary specialization.

(ii) For a convex subgroup H ⊂ Γv, let v/H : A→ Γv/H ∪ {0} be a map defined by

a 7→

{
v(a) mod H if v(a) 6= 0,

0 if v(a) = 0.

Prove that v/H is a valuation of A, and v is a specialization of v/H (i.e., v lies in
the closure of v/H) in SpvA. A valuation v ∈ SpvA is said to be a secondary
specialization of w ∈ SpvA if there exists a convex subgroup H of Γv such that
w = v/H .

(iii) Let w ∈ SpvA be a specialization of v ∈ SpvA such that supp v = suppw.
Observe that w is a secondary specialization of v. (In fact, if A is not necessarily
Tate, w is known to be a primary specialization of a secondary specialization.)

(iv) We put kv = Frac(A/ supp v). The valuation v on A induces that on kv, by
which kv becomes a valuation field. We write k∼v for the residue field of kv.
Construct a natural continuous map Spv k∼v → SpvA which sends the trivial
valuation to v, and prove that it induces a homeomorphism between Spv k∼v
and the subset of SpvA consisting of all secondary specializations of v.

1.5 Let A be a Huber ring. Let v, w ∈ ContA be continuous valuations such that
w is a specialization of v. Suppose that suppw is not open (note that this condition
is satisfied if A is Tate). Prove that supp v = suppw (hence 1.4 (iii) tells us that w
is a secondary specialization of v).

Hint: for a, b ∈ A with w(a) = 0, show that v(b) < v(a) 6= 0 implies w(b) = 0.

1.6 Let A be a Huber ring.

(i) Prove that a subring A0 of A is a ring of definition if and only if it is open and
bounded.

(ii) Assume that A is Tate and A0 is a ring of definition of A. Prove that there
exists a topologically nilpotent unit $ of A belonging to A0. Further, observe
that A = A0[1/$] and $A0 is an ideal of definition of A0.

1.7 Let A be a Huber ring. We write A◦ for the subset of A consisting of power-
bounded elements, and Â for the completion of A.

(i) Check that A◦ is an integrally closed open subring of A.

(ii) Prove that Â is a Huber ring.

(iii) Prove that (Â )◦ = Â◦.

(iv) Let A+ be a ring of integral elements; in other words, (A,A+) forms a Huber

pair. Show that (Â, Â+) is a Huber pair.

Notation A non-archimedean field k is a complete topological field whose topology
is induced from a height 1 valuation |−| : k → R≥0. Note that our convention that
k is complete is different from [Hub96, Definition 1.1.3].
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It can be easily seen that k◦ equals the set {a ∈ k | |a| ≤ 1}, where |−| is any
height 1 valuation inducing the topology of k.

1.8 Let k be a non-archimedean field. We write k〈T1, . . . , Tn〉 for the subring of
k[[T1, . . . , Tn]] consisting of convergent power series∑

I∈Zn
≥0

aIT
I such that lim

|I|→∞
aI → 0.

Here, for I = (i1, . . . , in) ∈ Zn≥0, we put T I = T i11 · · ·T inn and |I| = i1 + · · · + in.
Further, we write k◦〈T1, . . . , Tn〉 for the subring k〈T1, . . . , Tn〉 ∩ k◦[[T1, . . . , Tn]] of
k〈T1, . . . , Tn〉. Take a topologically unipotent unit $ of k, and consider the topology
on k〈T1, . . . , Tn〉 such that {$mk◦〈T1, . . . , Tn〉}m≥0 is a fundamental system of open
neighborhoods of 0.

(i) Check that k〈T1, . . . , Tn〉 is a complete Huber ring.

(ii) Prove that k〈T1, . . . , Tn〉◦ coincides with k◦〈T1, . . . , Tn〉.
(iii) Check that k〈T1, . . . , Tn〉 satisfies the following universal property: for any com-

plete Huber k-algebra A and its power-bounded elements a1, . . . , an ∈ A, there
exists a unique continuous k-algebra homomorphism φ : k〈T1, . . . , Tn〉 → A such
that φ(Ti) = ai.

1.9 Let k be a non-archimedean field, and fix a norm |−| : k → R≥0. We consider
the lexicographic order on Zn≥0. For a non-zero f =

∑
I∈Zn

≥0
aIT

I ∈ k◦〈T1, . . . , Tn〉,
we write ν(f) for the maximal element ν ∈ Zn≥0 such that |aν | = maxI |aI |. We put

LT(f) = aν(f)T
ν(f), and call it the leading term of f .

(i) Let g1, . . . , gm be non-zero elements of k◦〈T1, . . . , Tn〉 whose leading terms are
monic (i.e., LT(gi) = T ν(gi)). We put M =

⋃
1≤i≤m(ν(gi) +Zn≥0). For every f ∈

k◦〈T1, . . . , Tn〉, find h1, . . . , hm ∈ k◦〈T1, . . . , Tn〉 such that f−(h1g1+· · ·+hmgm)
has no exponent in M .
Hint: choose a ∈ k◦ so that the leading term of gi mod ak◦ equals T ν(gi) for
every i, and consider the division in (k◦/ak◦)[T1, . . . , Tn].

(ii) Let I be an ideal of k◦〈T1, . . . , Tn〉. We write LT(I) for the ideal of k◦〈T1, . . . , Tn〉
generated by LT(f) for all f ∈ I \ {0}. Suppose that there exist non-zero
elements g1, . . . , gm ∈ I whose leading terms are monic such that LT(I) =
(LT(g1), . . . ,LT(gm)). Prove that I is generated by g1, . . . , gm.

(iii) Let I be a non-zero ideal of k◦〈T1, . . . , Tn〉. We assume that I is saturated for a
topologically nilpotent unit $ of k, that is, k◦〈T1, . . . , Tn〉/I is $-torsion free.
Prove that there exist non-zero elements g1, . . . , gm ∈ I as in (ii), hence I is
finitely generated.
Hint: let L be the subset {ν(f) | f ∈ I \ {0}} of Zn≥0, which is an ideal of the
monoid Zn≥0. Use the fact that any ideal of the monoid Zn≥0 is finitely generated.

(iv) Prove that k〈T1, . . . , Tn〉 is Noetherian.
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1.10 A non-archimedean field K is said to be spherically complete if every decreas-
ing sequence D1 ⊃ D2 ⊃ · · · of closed disks in K has non-empty intersection.

(i) Prove that every p-adic field (that is, a finite extension of Qp) is spherically
complete.

(ii) Let Cp be the completion of an algebraic closure of Qp. Prove that Cp is not
spherically complete.

2 Underlying spaces of adic spaces

2.1 Let (A,A+) be a Tate Huber pair.

(i) Fix a topologically nilpotent unit $ of A. For v ∈ SpvA with v($) < 1, we
write Γ$v for the largest convex subgroup of Γv such that v($) is cofinal in Γ$v
(i.e., for any γ ∈ Γ$v , there exists n ≥ 0 such that v($)n < γ).
Prove that the map φ : {v ∈ SpvA | v(a) < 1 (a ∈ A◦◦)} → SpvA; v 7→ v|Γ$

v

(see 1.4 (i)) is well-defined and continuous.

(ii) Observe that the image of φ in (i) equals ContA. Deduce that Spa(A,A+) is
quasi-compact.

(iii) Recall that a rational subset of Spa(A,A+) is a subset of the form

U
(f1, . . . , fn

g

)
=
{
v ∈ Spa(A,A+)

∣∣∣ v(fi) ≤ f(g) 6= 0
}
,

where f1, . . . , fn, g ∈ A such that f1A + · · · + fnA = A. Prove that rational
subsets form an open basis of Spa(A,A+).

2.2 Let (A,A+) be a Tate Huber pair. Pick a point x of Spa(A,A+), and denote
by G(x) the set of all generalizations of x.

(i) Prove that G(x) forms a chain; namely, for y, z ∈ G(x), either y specializes to
z or z specializes to y.
Hint: use 1.5.

(ii) Prove that G(x) contains a point y which is a generalization of every point in
G(x). Such a point is called the maximal generalization of x.
Hint: use 1.2.

(iii) Let f ∈ A be an element and Y = {v ∈ Spa(A,A+) | v(f) = 0} the closed
subset defined by f . Prove that Y is stable under generalization.

2.3 Fix a norm |−| : Cp → R≥0 of Cp. For a closed disk D in OCp , we write
vD : Cp〈T 〉 → R≥0 for the map f 7→ supx∈D f(x). Further, for a collection E of
closed disks in OCp such that every D,D′ ∈ E satisfy either D ⊂ D′ or D ⊃ D′, we
put vE = infD∈E vD.

(i) Check that vE gives a point of D1 = Spa(Cp〈T 〉,OCp〈T 〉).
(ii) Observe that

⋂
D∈E D is one of the following:
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– one point a ∈ OCp ,
– a disk {z ∈ OCp | |z − a| ≤ r} with r ∈ |O×Cp

|,
– a disk {z ∈ OCp | |z − a| ≤ r} with r ∈ R>0 \ |O×Cp

|, or
– empty.

In each of the first three cases, describe vE concretely.

(iii) In each of the cases above, determine all specializations of vE by using 1.4 (iv).

(iv) Let v : Cp〈T 〉 → R≥0 be a point with height 1 of D1. For a ∈ OCp , we write
Da for the closed disk {z ∈ OCp | |z − a| ≤ v(T − a)}. Prove that v = vE for
E = {Da | a ∈ OCp}.

(v) Find all points in D1.

2.4 An admissible blow-up of a formal scheme X means the blow-up along a finitely
generated open ideal sheaf of OX . For example, if X = Spf Zp〈T 〉, an admissible
blow-up is the formal completion along the special fiber of a blow-up X ′ → A1

Zp

along a closed subscheme which is set-theoretically contained in the special fiber
of A1

Zp
. We write ΦX for the set of admissible blow-ups of X , and put 〈X rig〉 =

lim←−(X ′→X )∈ΦX
X ′.

(i) Assuming X is quasi-compact, deduce that 〈X rig〉 is quasi-compact.
Hint: use the following general result due to Stone: if {Yi}i∈I is a filtered
projective system of quasi-compact T0 topological spaces with closed transition
maps, the limit space lim←−i Yi is quasi-compact.

(ii) Let X = SpfOCp〈T 〉. Construct a natural map D1 = Spa(Cp〈T 〉,OCp〈T 〉) →
〈X rig〉.
Hint: use the valuative criterion.

(iii) Describe the image under the map in (ii) of each point of D1 found in 2.3 (v).

(iv) Prove that the map in (ii) is a homeomorphism.

3 Structure (pre)sheaves of adic spaces

3.1 (i) Prove that D1 = Spa(Cp〈T 〉,OCp〈T 〉) is connected.

(ii) Let x be a point of D1. When is D1 \ {x} non-connected?

3.2 Let (A,A+) be a Huber pair. For a rational subset U of Spa(A,A+), prove
that the natural map Spa(O(U),O+(U))→ Spa(A,A+) induces a homeomorphism
between Spa(O(U),O+(U)) and U . (Together with 2.1, we conclude that every
rational subset is quasi-compact.)

Hint: first prove that Spa(Â, Â+)→ Spa(A,A+) is a homeomorphism.

3.3 (i) Let X = Spa(A,A+) be an affinoid adic space with complete Huber pair
(A,A+) and B a ring. Prove that morphisms of locally ringed spaces (X,OX)→
SpecB are in bijection with ring homomorphisms B → A.
Hint: the map X → SpecB corresponding to φ : B → A is given by v 7→ {b ∈
B | v(φ(b)) = 0}.
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(ii) Let k be a non-archimedean field, and $ ∈ k a topologically nilpotent unit.
We put A1,ad =

⋃
m≥1 Spa(k〈$mT 〉, k◦〈$mT 〉). Check that A1,ad fits into a

commutative diagram

A1,ad //

��

A1

��

Spa(k, k◦) // Spec k,

where the horizontal arrows are morphisms of locally ringed spaces. Further,
prove that A1,ad satisfies the following universal property:

For an adic space S over Spa(k, k◦) and a morphism of locally ringed
spaces f : S → A1 which makes the following diagram commute, there
exists a unique morphism of adic spaces g : S → A1,ad that makes the
diagram commute:

S

f

%%

g
//

$$

A1,ad //

��

A1

��

Spa(k, k◦) // Spec k.

(iii) By extending the construction in (ii), find a definition of the adic space Xad

attached to an algebraic variety X over k.

3.4 Let A be a ring and I a finitely generated ideal of A. Assume that A is
I-adically complete, and consider the formal scheme X = Spf A.

(i) Let Y = Spa(B,B+) be an affinoid adic space with complete Huber pair
(B,B+). Prove that morphisms of locally topologically ringed spaces (Y,O+

Y )→
X are in bijection with continuous ring homomorphisms A→ B+.
Hint: the map Y → X corresponding to φ : A→ B+ is given by v 7→ {a ∈ A |
v(φ(a)) < 1}.

(ii) Assume that (A,A) is sheafy (this is the case if A is Noetherian), and put
t(X ) = Spa(A,A). Check that the morphism of locally topologically ringed
spaces λ : (t(X ),O+

t(X ))→ X corresponding to id : A→ A satisfies the following
universal property: for every adic space Y and a morphism of locally topolog-
ically ringed spaces µ : (Y,O+

Y ) → X , there exists a unique morphism of adic
spaces f : Y → t(X ) such that µ = λ ◦ f .
By this property, we can attach to locally Noetherian formal scheme X an adic
space t(X ) by gluing.

3.5 Let V be a discrete valuation ring and X a locally Noetherian formal scheme
over Spf V . We put F = FracV .

(i) Prove that t(Spf V ) = Spa(V, V ) consists of two points s and η, where s is
closed and η is open.
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We write X ad
η for the fiber of t(X )→ Spf V at η, and call it the rigid generic fiber of

X . The composite map spX : X ad
η ↪→ t(X )

λ−→ X = Xred is called the specialization
map.

(ii) Prove that (Spf V 〈T 〉)ad
η = Spa(F 〈T 〉, V 〈T 〉).

(iii) Observe that (Spf V [[T ]])ad
η can be regarded as an open disk.

Hint: (Spf V [[T ]])ad
η ⊂ t(Spf V [[T ]]) is not a rational subset. Write it as an

increasing union of rational subsets.

(iv) Let X be a scheme of finite type over V , and Y a closed subscheme of the
special fiber of X. We write X (resp. Y) for the formal completion of X along
the special fiber (resp. Y ). Prove that Yad

η is isomorphic to the open adic

subspace of X ad
η whose underlying space is the interior of sp−1

X (Y ) in X ad
η .

When V = OCp , I do not know whether t(X ) can be defined or not. Nevertheless, for
a formal scheme X locally formally of finite type over OCp , one can define its rigid
generic fiber X ad

η , which is an adic space locally of finite type over Spa(Cp,OCp).

3.6 Let k be a non-archimedean field. We put A = k〈T 〉, and let A′ be the integral
closure of k◦[A◦◦] in A (recall that A◦◦ denotes the set of topologically nilpotent
elements in A).

(i) Show that A′ equals {
∑∞

n=0 anT
n ∈ k◦〈T 〉 | an ∈ k◦◦ (n ≥ 1)}.

(ii) Observe that Spa(A,A′) is partially proper over Spa(k, k◦), and contains D1 =
Spa(A,A◦) as an open subset.

(iii) Prove that D1 = Spa(A,A′) is the universal compactification of D1 in the follow-
ing sense: for every partially proper adic space Y over Spa(k, k◦), a k-morphism
f : D1 → Y extends uniquely to f : D1 → Y .

(iv) Check that A1,ad is partially proper over Spa(k, k◦). Determine the image of
the induced map f : D1 → A1,ad.

(v) Consider the questions (ii), (iii) for more general topologically finitely generated
k-algebras.

3.7 Let (A,A+) is a Tate Huber pair such that A is uniform (i.e., A◦ is bounded).
We put X = Spa(A,A+). Let t ∈ A, and consider rational subsets U = {v ∈
X | v(t) ≤ 1} and V = {v ∈ X | v(t) ≥ 1}. We want to prove the exactness of
0→ OX(X)→ OX(U)⊕OX(V )→ OX(U ∩ V )→ 0.

Take a ring of definition A0 of A and a topologically nilpotent unit $ of A
belonging to A0. We put B0 = A0[t] and write B for the ring A with the topology
induced from the $-adic topology on B0. We put C = A[1/t], C0 = A0[1/t] and
equip C with the topology induced from the $-adic topology on C0. Finally, we
put D = A[1/t], D0 = A0[t, 1/t] and equip D with the topology induced from the

$-adic topology on D0. Note that we have Â = OX(X), B̂ = OX(U), Ĉ = OX(V ),

and D̂ = OX(U ∩ V ).

(i) We write φ : A → A[1/t] for the natural map. Prove that B0 ∩ φ−1(C0) ⊂ A◦.
(In this step we do not need to assume that A is uniform.)
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Hint: for a ∈ B0 ∩ φ−1(C0), find f(T ), g(T ) ∈ A0[T ] and c ≥ deg g such that
a = f(t) and tca = g(t). Let d = deg f + c, and n ≥ 0 be an integer such that
$nt ∈ A0. Prove that $ndtiam ∈ A0 for every m ≥ 0 and 0 ≤ i ≤ d by the
induction on m.

(ii) By (i), there exists an integer n ≥ 0 such that $n(B0 ∩ φ−1(C0)) ⊂ A0. By
using this fact, prove that the exact sequence 0 → A → B ⊕ C → D → 0
remains exact after completion. This means that the sequence 0→ OX(X)→
OX(U)⊕OX(V )→ OX(U ∩ V )→ 0 is exact.

3.8 Let (A,A+) be a stably uniform Tate Huber pair. Put X = Spa(A,A+).

(i) Let t1, . . . , tn ∈ A. For a subset I ⊂ {1, . . . , n}, we put UI = {v ∈ X | v(ti) ≤
1 (i ∈ I), v(ti) ≥ 1 (i /∈ I)}. They form an open covering {UI}I⊂{1,...,n} (such
an open covering is called a Laurent covering). Prove that OX satisfies the
sheaf condition with respect to this covering.
Hint: use 3.7.

(ii) Let a1, . . . , an ∈ A with a1A+ · · ·+ anA = A. For 1 ≤ i ≤ n, we put Ui = {v ∈
X | v(ai) ≤ v(aj) 6= 0 (1 ≤ j ≤ n)}. They form an open covering {Ui}1≤i≤n
(such an open covering is called a rational covering). Assume moreover that
a1, . . . , an ∈ A×. Prove that there exists a Laurent covering refining {Ui}1≤i≤n,
and deduce from this fact that OX satisfies the sheaf condition with respect to
{Ui}1≤i≤n.

(iii) Let {Ui}1≤i≤n be as in (ii), but we do not assume that a1, . . . , an are units.
Prove that there exists a Laurent covering V = {VJ} such that {Ui ∩ VJ}1≤i≤n
is a rational covering of VJ of the type considered in (ii) for every J .

(iv) Prove that every open covering of X can be refined by a rational covering.

(v) Conclude that OX is a sheaf.

3.9 Let k be a non-archimedean field, and $ ∈ k a topologically nilpotent unit. We
put A = k[T, T−1, Z]/(Z2). Let A0 be the k◦-submodule of A generated by $nT±n,
$−nT±nZ with n ≥ 0.

(i) Check that A0 is a k◦-subalgebra of A and A = A0[1/$].

(ii) We equip A with the topology such that {$nA0}n≥0 is a fundamental system
of open neighborhoods of 0, and consider X = Spa(A,A◦). Let U = {v ∈ X |
v(T ) ≤ 1} and V = {v ∈ X | v(T ) ≥ 1}, which are rational subsets of X.
Prove that Z ∈ OX(X) is non-zero, and the image of Z under the restriction
map OX(X)→ OX(U)⊕OX(V ) is zero. This means that the presheaf OX on
X is not a sheaf.
Hint: consider the intersection of kZ with A0, A0[T ] and A0[T−1].

This problem is taken from [BV16, Proposition 12].

3.10 Let k and $ be as in 3.9. Let A0 be a k◦-submodule of k[T, T−1, Z] generated
by ($T )a($Z)b with b ≥ 0 and a ≥ −b2.

(i) Check that A0 is a k◦-subalgebra of k[T, T−1, Z].
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(ii) We put A = A0[1/$] and consider the topology on it such that {$nA0}n≥0

is a fundamental system of open neighborhoods of 0. Prove that the natural
Z2-grading on k[T, T−1, Z] induces that on A◦.
Hint: the crucial point is that the ring of definition A0 is also graded.

(iii) By using (ii), show that A◦ = A0, hence A is uniform.

(iv) For a rational subset U = {v ∈ Spa(A,A◦) | v(T ) ≤ 1}, prove that O(U) is not
uniform. This means that (A,A◦) is not stably uniform.
Hint: observe that $−1Z /∈ A0[T ] and ($−nZ)n+1 ∈ A0[T ] for every n ≥ 1.

This problem is taken from [BV16, Proposition 17]. By slight modification, one
can also give a uniform Tate ring A such that Spa(A,A◦) is not sheafy. See [BV16,
Proposition 18].

4 Perfectoid spaces

4.1 Let F be a non-archimedean local field. We fix a uniformizer $ of F . Let X
be the Lubin-Tate formal group (= 1-dimensional formal OF -module of height 1)
over OF such that [$]X(T ) = $T +T q, where q is the cardinality of the residue field
of F . We write Fm for the extension field of F obtained by adjoining all roots of
[$m]X(T ) = 0. Let F̂∞ be the completion of lim−→m

Fm. Prove that F̂∞ is a perfectoid
field.

4.2 Let K be a perfectoid field. Prove that if K[ is algebraically closed, so is K.
Hint: take an irreducible polynomial P (T ) = T d + ad−1T

d−1 + · · ·+ a0 ∈ K◦[T ].
By changing the variable, we may assume that a0 is a unit (why?). Take Q(T ) =
T d + bd−1T

d−1 + · · · + b0 ∈ K[◦[T ] such that the image of Q(T ) in (K[◦/$[)[T ] is
equal to that of P (T ) in (K◦/$)[T ]. Pick a root y of Q(T ) and approximate a root
of P (T ) by y].

4.3 Let A be a uniform complete Tate ring, and p a prime number.

(i) For a topologically nilpotent unit $ of A such that p ∈ $pA◦, prove that the
pth power map Φ: A◦/$A◦ → A◦/$pA◦ is injective.

(ii) Show that the condition that Φ: A◦/$A◦ → A◦/$pA◦ is surjective is indepen-
dent of the choice of a topologically nilpotent unit $ ∈ A with p ∈ $pA◦.

4.4 Let R be a perfect Fp-algebra, and W (R) the ring of Witt vectors with coeffi-
cients in R. Let S be a p-adically complete ring. Let t : R → S be a multiplicative

map such that the composite R
t−→ S → S/pS is a ring homomorphism. Prove that

the map T : W (R)→ S defined by

T
( ∞∑
n=0

pn[an]
)

=
∞∑
n=0

pnt(an) (an ∈ R)

becomes a ring homomorphism. Check also that T is surjective if the composite

R
t−→ S → S/pS is.
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4.5 Let R be a perfectoid Fp-algebra, and ξ =
∑∞

n=0 p
n[an] (an ∈ R◦) be an element

of W (R◦). We say that ξ is primitive of degree 1 if a0 is topologically nilpotent and
a1 is a unit of R◦.

(i) Prove that a primitive element of degree 1 is a non-zero-divisor.

(ii) Prove that ξ ∈ W (R◦) is primitive of degree 1 if and only if there exist u ∈
W (R◦)×, α ∈ W (R◦) and a topologically nilpotent unit $ ∈ R◦ such that
uξ = p+ α[$].
Hint: note that (ξ − [a0])/p is a unit of W (R◦).

4.6 Let A be a perfectoid ring.

(i) Use 4.4 to construct a surjective ring homomorphism θ : W (A[◦)→ A◦.

(ii) Check that θ([x]) = x# for x ∈ A[◦.
(iii) Take topologically nilpotent units $ ∈ A and $[ ∈ A[ such that p ∈ $pA◦ and

($[)] = $. Pick α ∈ W (A[◦) such that θ(α) = p/$ and put ξ = p − α[$[].
Prove that ξ generates Ker θ.

4.7 (i) Let K be the completion of Qp(µp∞), which is a perfectoid field of charac-
teristic 0. Prove that K[ is isomorphic to the completion of Fp((T p

−∞
)). Find

a generator of Ker θ (see 4.6) in this case.

(ii) Answer the same question for the completion of Qp(p
p−∞).

4.8 Let {Xi} be a filtered projective system of adic spaces whose transition maps
are quasi-compact and quasi-separated. For a perfectoid space X, we write X ∼
lim←−iXi if the following conditions are satisfied:

– A compatible family of morphisms φi : X → Xi is given and the induced map
|X| → lim←−i|Xi| on the underlying spaces is a homeomorphism.

– For each x ∈ X, there exists an affinoid open neighborhood U of x such that the
image of lim−→(i,Ui⊂Xi)

OXi
(Ui)→ OX(U) is dense. Here Ui runs through affinoid

open subsets of Xi which contain φi(U).

(i) For a perfectoid Huber pair (B,B+), show that the map

Hom(Spa(B,B+), X)→ lim←−
i

Hom(Spa(B,B+), Xi)

is bijective. Conclude that a perfectoid space X satisfying X ∼ lim←−iXi is
unique up to isomorphism.

(ii) Let K be a perfectoid field of residue characteristic p. Let us consider the

projective system (· · · φad−−→ An,ad φad−−→ · · · φad−−→ An,ad), where φ : An → An is
given by (x1, . . . , xn) 7→ (xp1, . . . , x

p
n). Check that there exists a perfectoid space

X over K such that X ∼ lim←−φad A
n,ad.

4.9 Let X = Spa(A,A+) be an affinoid perfectoid space, and Z a closed subset of
X defined by f1 = · · · = fn = 0 for f1, . . . , fn ∈ A.

10



(i) Fix a topologically nilpotent unit $ ∈ A. For m ≥ 0, let Um be the open
neighborhood of Z defined by {v ∈ X | v(fi) ≤ v($m)}. Prove that there

exists a perfectoid space Z̃ such that Z̃ ∼ lim←−m Um.

(ii) Let Y be a perfectoid space and φ : Y → X a morphism whose set-theoretic

image is contained in Z. Prove that φ uniquely factors through Y → Z̃. In
particular, Z̃ is independent of the choice of f1, . . . , fn and $.

4.10 Let K be a perfectoid field of characteristic 0, and p the residue characteristic
of K.

(i) Let A be a complete Tate K-algebra satisfying the following conditions:

(a) Every element of 1 + A◦◦ has a pth root in A.
(b) A is uniform.

Prove that A is a perfectoid K-algebra.
Hint: first observe that a pth root of a ∈ 1 + A◦◦ can be taken from 1 + A◦◦.

(ii) Let A be a Tate K-algebra satisfying the condition (a) in (i). Take a topo-
logically nilpotent unit $ of K and equip A with the new topology such that
{$mA◦} is a fundamental system of open neighborhoods of 0. Let Â denote

the completion of A with respect to this topology. Prove that Â satisfies the
conditions (a), (b) in (i), hence is a perfectoid K-algebra.

(iii) Let X = Spa(B,B◦) be an affinoid adic space of finite type over Spa(K,K◦).
Prove that there exist a filtered projective system {Xi} of finite étale covers of
X and a perfectoid space X∞ over K such that X∞ ∼ lim←−iXi.

This problem is taken from [Col02, §2.8] and [Sch13, Proposition 4.8].

4.11 Let K be a perfectoid field of characteristic 0, and G a finite group acting on
K. Let us prove that KG is a perfectoid field. Note that the surjection θ : W (K[◦)→
K◦ in 4.6 is G-equivariant.

(i) Prove that for every integer m ≥ 0 there exists a topologically nilpotent unit
$ in KG such that p ∈ $pm+1

K◦.
Hint: find $ of the form θ([u]) with u ∈ K[◦.

(ii) Assume first that |G| = pm. Take $ as in (i). For x ∈ KG◦, pick y ∈ K[◦

such that θ([y]) ≡ x (mod pK◦) and put z =
∏

g∈G g(y)1/pm+1
. Check that

θ([z]) ∈ KG◦ and x ≡ θ([z])p (mod $pKG◦). This shows thatKG is a perfectoid
field.
Hint: use 4.3.

(iii) Prove that KG is a perfectoid field for general G.

(iv) Repeat the argument above to prove the following claim: for a perfectoid K-
algebra A and a finite group G acting on A, AG is a perfectoid KG-algebra.

This problem is taken from [KL16, Theorem 3.3.25].

4.12 Let K be a perfectoid field of characteristic p > 0. Modify 3.9 to construct
a Huber K-algebra A satisfying the following condition: X = Spa(A,A◦) is covered
by affinoid perfectoid spaces, but OX is not a sheaf.
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This problem is taken from [BV16, Proposition 13].
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