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1. Course Outline

Given a smooth projective curve X/Q, one aim of Kim’s nonabelian Chabauty program [Kim09,
Kim10a, Kim10b] is to determine X(Q) algorithmically. This course will highlight the computational
aspects of the quadratic Chabauty method [BD18, BD17, BDM+19], and in particular, describe algo-
rithms used to compute the finite set of p-adic points X(Qp)2 in certain cases where

r < g + ρ− 1,

where g is the genus of X, ρ is the Picard number of the Jacobian J , and r = rkJ(Q). This course will
be closely linked to Steffen Müller’s course on the theoretical aspects of quadratic Chabauty. Here is a
provisional outline of the lectures in this course.

Lecture I: The basic tools. Start by carrying out the linear algebra of explicit Chabauty–Coleman for
curves over Q, with Coleman integration as a black box. Describe how the Chabauty–Coleman diagram
generalizes and motivate the presence of iterated Coleman integrals. Discuss Coleman integration
[Col85, Bes12] and give preliminaries for explicit Coleman integration, starting with the p-adic point-
counting algorithm of Kedlaya and Tuitman [Ked01, Ked07, Tui16, Tui17].

Lecture II: The basic tools, continued. Give algorithms for computing Coleman integrals of differentials
of the first and second kind on curves [BBK10, BT17]. Describe algorithms to compute Coleman–Gross
local p-adic heights [CG89, BB12], and in particular, Coleman integrals of 1-forms of the third kind on
curves.

Lecture III: p-adic heights for quadratic Chabauty. Discuss the Nekovář p-adic height [Nek93] and our
intended application. Show how universal properties [Kim09, Had11] lead us to computing the Hodge
filtration and Frobenius structure. Reduce to linear algebra and solving p-adic differential equations.

Lecture IV: Examples. Apply the computation of the Nekovář height in a collection of examples to
determine X(Q). This could include bielliptic genus 2 curves, modular curves of genus 3 with real
multiplication, and curves with few rational points. Discuss where the current frontier is and what
remains to be done.

2. Projects

Below are some ideas for possible projects:

(1) Coleman integration for curves over number fields and a Chabauty–Coleman solver. The goals
of this project would be to give an algorithm to compute Coleman integrals on curves over
number fields, implement the algorithm, and use this to give a Chabauty-Coleman solver for
curves over number fields that would take as input a genus g curve X defined over a number
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fieldK with r = rk J(K) < g, a prime p of good reduction, and r generators of the Mordell–Weil
group modulo torsion and output the set X(Kp)1.
Suggested reading: Coleman integration.

(2) Quadratic Chabauty on modular curves X0(N)+. Galbraith [Gal96, Gal99, Gal02] has con-
structed models for all modular curves X0(N)+ = X0(N)/wN of genus ≤ 5 (with the exception
of N = 263) and has conjectured that he has found all exceptional points on these curves. This
project will use quadratic Chabauty to prove as much as possible about Galbraith’s conjecture.
Another goal is to investigate whether we can use p-adic Gross-Zagier to carry out quadratic
Chabauty for X0(N)+, starting with the case of such curves of genus 2.
Suggested reading: Modular curves, p-adic heights, p-adic L-functions.

(3) Quadratic Chabauty and Kim’s conjecture. When X/Q is a genus g curve with r = rk J(Q) =

g−1, then typically the set of p-adic points X(Qp)1 cut out by the Chabauty-Coleman method
strictly contains X(Q). In this project, we will first give an algorithm to compute the quadratic
Chabauty set X(Qp)2 under these hypotheses. Then we will investigate whether the quadratic
Chabauty set, which satisfies

X(Q) ⊂ X(Qp)2 ⊂ X(Qp)1 ⊂ X(Qp),

is equal to X(Q). (See [Bia19] for the case of integral points on punctured elliptic curves.) If
X(Q) 6= X(Qp)2, we would like to characterize the points in X(Qp)2 \ X(Q). This project
could be carried out on a database of genus 2 and 3 curves [The19].
Suggested reading: Chabauty-Coleman method, p-adic heights.

For the computational part of Projects 1 and 3, we will use the computer algebra system Magma.
For Project 2, Magma would be useful, but restricting to the case of hyperelliptic curves would also be
very interesting (and likely more tractable, from the point of view of determining Mordell–Weil ranks
unconditionally), and in this case, we could use SageMath.
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