AWS 2020: Selmer varieties and non-abelian descent

Minhyong Kim

This course will outline the theory of Selmer varieties. We will describe their construction, some known properties, associated reciprocity laws and their application to Diophantine problems. A rough course outline might look like this:

I. Motivational introduction: a review of elliptic curves, descent, and the conjectures of Birch and Swinnerton-Dyer. Brief overview of the Diophantine geometry of curves of higher genus. Arithmetic fundamental groups of elliptic curves.

II. Arithmetic fundamental groups in general. Unipotent completions. Galois actions on fundamental groups. Some preliminary work on the projective line minus three points. De Rham and crystalline fundamental groups. A brief overview of Deligne's long paper on this topic.

III. Non-abelian cohomology. Construction of local and global moduli spaces of principal bundles. p-adic Hodge theory and iterated integrals. Another view of Deligne. Applications to Siegel's theorem.

IV. Finiteness theorems and connections to mixed motives. Grothendieck's section conjecture and effective computation of rational points. Non-abelian reciprocity.

V. Some speculation on effective computation of Selmer varieties. A return to the projective line minus three points. Punctured elliptic curves with complex multiplication and p-adic L-functions.

A project might involve going through some of the existing papers on effective computations of rational or integral points and making precise the equations for Selmer varieties contained therein. If things go well, we can try to compute some Selmer varieties for punctured elliptic curves with CM. This project will be suitable for students with some background in algebraic and arithmetic geometry including some familiarity with elliptic curves, Galois representations, and knowledge of arithmetic cohomologies or a willingness to work with them as a blackbox that gradually lights up. Some knowledge of the algebraic number theory of local and global fields will also be helpful.

References

- Balakrishnan, Jennifer; Dogra, Netan; Mller, J. Steffen; Tuitman, Jan; Vonk, Jan Explicit Chabauty-Kim for the split Cartan modular curve of level 13. Ann. of Math. (2) 189 (2019), no. 3, 885–944.
- [2] Balakrishnan, Jennifer S.; Dan-Cohen, Ishai; Kim, Minhyong; Wewers, Stefan A non-abelian conjecture of Tate-Shafarevich type for hyperbolic curves. Math. Ann. 372 (2018), no. 1-2, 369–428.
- Balakrishnan, Jennifer S.; Dogra, Netan An effective Chabauty-Kim theorem. Compos. Math. 155 (2019), no. 6, 1057–1075.
- [4] Balakrishnan, Jennifer S.; Dogra, Netan Quadratic Chabauty and rational points, I: p-adic heights. With an appendix by J. Steffen Mller. Duke Math. J. 167 (2018), no. 11, 1981–2038.
- [5] Balakrishnan, Jennifer S.; Besser, Amnon; Mller, J. Steffen Quadratic Chabauty: p-adic heights and integral points on hyperelliptic curves. J. Reine Angew. Math. 720 (2016), 51–79.
- Betts, Luke Alexander The motivic anabelian geometry of local heights on abelian varieties. arXiv:1706.04850

- [7] Dan-Cohen, Ishai; Wewers, Stefan Mixed Tate motives and the unit equation. Int. Math. Res. Not. IMRN 2016, no. 17, 5291–5354.
- [8] Le groupe fondamental de la droite projective moins trois points. Galois groups over Q (Berkeley, CA, 1987), 79–297, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989.
- [9] Arithmetic Gauge Theory: A Brief Introduction Modern Physics Letters A. Volume 33, Issue 29 (2018).
- [10] Kim, Minhyong The motivic fundamental group of $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ and the theorem of Siegel. Invent. Math. 161 (2005), no. 3, 629–656.
- [11] Kim, Minhyong p-adic L-functions and Selmer varieties associated to elliptic curves with complex multiplication. Ann. of Math. (2) 172 (2010), no. 1, 751–759.
- [12] Kim, Minhyong Massey products for elliptic curves of rank 1. J. Amer. Math. Soc. 23 (2010), no. 3, 725–747.
- [13] Kim, Minhyong Tangential localization for Selmer varieties. Duke Math. J. 161 (2012), no. 2, 173199.
- [14] Kim, Minhyong Remark on fundamental groups and effective Diophantine methods for hyperbolic curves. Number theory, analysis and geometry, 355–368, Springer, New York, 2012.
- [15] Kim, Minhyong Diophantine geometry and non-abelian reciprocity laws I. Elliptic curves, modular forms and Iwasawa theory, 311–334, Springer Proc. Math. Stat., 188, Springer, Cham, 2016.
- [16] Kim, Minhyong Kim, Minhyong Principal bundles and reciprocity laws in number theory. Algebraic geometry: Salt Lake City 2015, 305–318, Proc. Sympos. Pure Math., 97.2, Amer. Math. Soc., Providence, RI, 2018.
- [17] Kim, Minhyong The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci. 45 (2009), no. 1, 89–133.
- [18] Kim, Minhyong; Tamagawa, A. The l-component of the unipotent albanese map. Math. Ann. 340 (2008), no. 1, 223–235.
- [19] Pridham, Jonathan Non-abelian reciprocity laws and higher Brauer-Manin obstructions. arXiv:1704.03021.