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Renormalization 1: Basics

14.1 Introduction

Functional integrals over fields have been mentioned briefly in Part I de-
voted to path integrals.† In brief, time ordering properties and Gaussian
properties generalize immediately from paths to field integrals. The sin-
gular nature of Green’s functions in field theory introduces new problems
which have no counterpart in path integrals. This problem is addressed
by regularization and is briefly presented in the appendix.

The fundamental difference between quantum mechanics (systems with
a finite number of degrees of freedom) and quantum field theory (systems
with an infinite number of degrees of freedom) can be labelled “radiative
corrections”: In quantum mechanics “a particle is a particle” character-
ized, for instance, by mass, charge, spin. In quantum field theory the
concept “particle” is intrinsically associated to the concept “field.” The
particle is affected by its field. Its mass and charge are modified by the
surrounding fields, its own, and other fields interacting with it.

An early example of this situation is Green’s calculation of the motion
of a pendulum in fluid media. The mass of the pendulum in its equation
of motion is modified by the fluid. Nowadays we say the mass is “renor-
malized.” The remarkable fact is that the equation of motion remains
valid provided one replaces the “bare” mass by the renormalized mass.
Green’s example is presented in section 14.2.

Although regularization and renormalization are different concepts,

† Namely in section 1.1 “The beginning”, in section 1.3 “The operator formalism”,
in section 2.3 “Gaussian in Banach spaces”, in section 2.5 “Scaling and coarse-
graining”, and in section 4.3 “The anharmonic oscillator”.
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they are often linked together. The following handwaving argument
could lead to the expectation that radiative corrections (renormaliza-
tion) regularize the theory: We have noted (2.40) that the Green’s func-
tions (covariances) G are the values of the variance W evaluated at
pointlike sources. In general, given a source J ,

W (J) = 〈J,GJ〉; (14.1)

it is singular only if J is pointlike. On the other hand radiative correc-
tions “surrounding” a point particle can be thought of as extending the
particle. Unfortunately calculations do not bear out this expectation in
general. In addition to inserting radiative corrections into “bare” dia-
grams, one needs to insert counterterms regularizing the divergences. In
section 16, “Renormalization 3: Scaling”, counterterms do not appear
as a regularizing artifact, but as a consequence of working with scale
dependent effective actions.

14.2 Green’s example

Alain Connes made us aware of a delightful paper by Green which is
an excellent introduction to modern renormalization in quantum field
theory. Green derived the harmonic motion of an ellipsoid in fluid media.
This system can be generalized and described by the Lagrangian of an
arbitrary solid C in an incompressible fluid F , under the influence of
an arbitrary potential V (x), x ∈ F . In vacuum (i.e. when the density
ρF of the fluid is negligible compared to the density ρC of the solid) the
Lagrangian of the solid moving with velocity ~v under V (x) is

LC :=
∫

C

d3x

(
1
2
ρC |~v|2 − ρCV (x)

)
. (14.2)

In the static case, ~v = 0, Archimedes’ principle can be stated as the
renormalization of the potential energy of a solid immersed in a fluid ;
the potential energy of the system fluid plus solid is

Epot :=
∫

IR3\C

d3xρF V (x) +
∫

C

d3xρCV (x) (14.3)

=
∫

IR3
d3xρF V (x) +

∫
C

d3x (ρC − ρF )V (x). (14.4)
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The potential energy of the immersed solid C is

Epot =
∫

C

d3x (ρC − ρF ) V (x). (14.5)

In modern parlance ρC is the bare coupling constant, ρC − ρF is the
coupling constant renormalized by the immersion. The infinite term∫

IR3 d3xρF V (x) is irrelevant.

In the dynamic case, ~v 6= 0, Green’s calculation can be shown to be
the mass of a solid body by immersion in a fluid. The kinetic energy of
the system fluid plus solid is

Ekin :=
1
2

∫
F

d3xρF

∣∣∣~∇Φ
∣∣∣2 +

1
2

∫
C

d3xρC |~v|2 (14.6)

where Φ is the velocity potential of the fluid,

~vF = ~∇Φ. (14.7)

If the fluid is incompressible

∆Φ = 0.

If the fluid is nonviscous, the relative velocity ~vF − ~v is tangent to the
boundary ∂C of the solid. Let ~n be the unit normal to ∂C, and ∂nΦ :=
~n · ~∇Φ, then ~vF − ~v is tangent to ∂C if

∂nΦ = ~v · ~n on ∂C = ∂F. (14.8)

Moreover Φ and ~∇Φ must vanish at infinity sufficiently rapidly for∫
F

d3x
∣∣∣~∇Φ

∣∣∣2 to be finite. Altogether Φ satisfies a Neumann problem

∆Φ = 0 on F, Φ(∞) = 0, ∂nΦ = ~v · ~n on ∂F, (14.9)

where ~n is the inward normal to ∂F . If ρF is constant, the Green formula∫
F

d3x
∣∣∣~∇Φ

∣∣∣2 = −
∫

∂F

d2σ Φ · ∂nΦ (14.10)

together with the boundary condition (14.8) simplifies the calculation of
Ekin(F ), namely

Ekin (F ) =
1
2
ρF

∫
∂F

d2σ (−Φ)~v · ~n. (14.11)
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Example Let C be a ball of radius R centered at the origin. The dipole
potential

Φ (~r) = −1
2

(~v · ~r) (R/r)3 (14.12)

satisfies the Neumann conditions (14.9). On the sphere ∂C = ∂F ,

Φ(R) = −1
2
R ~v · ~n (14.13)

and

Ekin (F ) =
1
2
ρF

R

2

∫
C

d2σ (~v · ~n)2 . (14.14)

By homogeneity and rotational invariance∫
C

d2σ (~v · ~n)2 =
1
3
|~v|2

∫
C

d2σ =
1
3
|~v|2 4πR2

and

Ekin (F ) =
1
2
ρF vol (C)

1
2
|~v|2 (14.15)

with vol (C) = (4/3) πR3. Finally the total kinetic energy (14.6) is

Ekin =
(

ρC +
1
2
ρF

)
vol (C)

1
2
|~v|2 . (14.16)

The mass density ρC is renormalized ρC + 1
2ρF by immersion.

In conclusion, one can say that the bare Lagrangian∫
C

d3x

(
1
2
ρC |~v|2 − ρCV (x)

)
(14.17)

is renormalized by immersion to∫
C

d3x

(
1
2

(
ρC +

1
2
ρF

)
|~v|2 − (ρC − ρF ) V (x)

)
. (14.18)

Green’s calculation for a vibrating ellipsoid in a fluid media leads to a
similar conclusion. As in (14.16) the density of the vibrating body is
increased by a term proportional to the density of the fluid, obviously
more complicated than ρF /2. From Archimedes’ principle, to Green’s
example, to the Lagrangian formulation, one sees the evolution of the
concepts used in classical mechanics: Archimedes gives the force felt
by an immersed solid, Green gives the harmonic motion of an ellipsoid
in fluid media, and the Lagrangian gives the kinetic and the potential
energy of the system. In quantum physics, action functionals defined
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in infinite dimensional spaces of functions play a more important role
than Lagrangians or Hamiltonians defined on finite dimensional spaces.
Renormalization is often done by renormalizing the lagrangian. Renor-
malization in quantum field theory by scaling (section 16), on the other
hand, uses the action functional.

14.3 From path to field integrals

Before applying functional integrals to renormalization in Quantum Field
Theory, we review briefly key features of field integrals. Two lessons from
path integrals can be applied readily to field integrals:

• Time-ordering by path integrals
• Gaussian properties of path integrals.

In quantum mechanics, one integrates functionals of functions x de-
fined on a line T = [ta, tb]; the integrals represent either solutions of
Schrödinger’s equation (see section 6) or matrix elements of operators
on Hilbert spaces. For example:

〈b, tb|T (x(t)x(s))|a, ta〉Q =
∫

XXa,b

Ds,Q(x) exp
(

2πi

h
Q(x)

)
x(t)x(s)

(14.19)
where x is a function and x(t) is an operator operating on the state
|a, ta〉. The matrix element on the l.h.s. is the probability amplitude
that a system (action functional Q) in the state a at time ta be found
in the state b at time tb. This path integral gives the 2-point function of
the Gaussian Wiener integral (see section 3.1 and eq. 2.47) when s = 1,
h = 1, Q(x) = 1

2

∫
T dtẋ(t)ẋ(s):

〈0, tb|T (x(t)x(s))|0, ta〉 =
{

t− ta if t < s

s− ta if s < t
. (14.20)

The path integral on the r.h.s. of (14.19) has time ordered the matrix
element on the l.h.s. of (14.19).

In field theory time ordering becomes causal ordering dictated by light
cones: if a point xj is in the future light cone of xi, written

j−> i,
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then the causal (time, chronological) ordering T of the field operators
φ(xj)φ(xi) is the symmetric function

T (φ(xj)φ(xi)) = T (φ(xi)φ(xj)) (14.21)

which satisfies the equation

T (φ(xj)φ(xi)) =
{

φ(xj)φ(xi) for j−> i

φ(xi)φ(xj) for i−> j
.

In general

〈out|T (F(φ))|in〉S =
∫

Φin,out

F(φ)vS(dφ) (14.22)

where F is a functional of the field φ (or a collection of fields) and vS(dφ)
is a volume element that we shall characterize in the following.

Volume Elements

Recall the Gaussian volume element

dγs,Q(x)
R
= Ds,Q(x) exp

(
−π

s
Q(x)

)
(14.23)

where Ds,Q(x) has the following properties

• Ds,Q is translation invariant
• Ds,Q has no physical dimension. If Q(x) =

∑
Qijx

ixj then

Ds,Q(x) = (det Qij)1/2
D∏

n=1

dxn for x ∈ IRD. (14.24)

The guiding principles for determining the volume element vS(dφ) are:

• Schwinger’s variational principle (1.11)

δ(A|B) = 2πi〈A|δS/h|B〉, h = 2π~. (14.25)

• Dirac’s quantum analogue of the classical action function (a.k.a Hamil-
ton’s principal function) adds to the real classical action function an
imaginary part of order ~ [I.3]. Correspondingly the quantum action
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functional Squ is, up to terms of order ~2, the sum of the classical
action functional Scl and an imaginary term of order ~

1
~
Squ =

1
~
Scl + iσ + O(~) (14.26)

=
1
~
Scl − i log µ + O(~) µ := exp(−σ) + O(~).(14.27)

• A volume element v(dφ) convenient for integration by parts, namely,

v(dφ) = exp A(φ)[dφ] (14.28)

where [dφ] is translation invariant; i.e. [dφ] is characterized by∫
Φ

δF (φ)
δφ(x)

[dφ] = 0. (14.29)

Henceforth the quantum action functional

S (φ) := Scl (φ)− ı~ log µ (φ) + O
(
~2

)
; (14.30)

Guided by the characterization of volume elements in path integrals,
we propose the following characterization of vS(φ) for a system of quan-
tum action functional S∫

Φ

(
δF (φ)
δφ (x)

+
2πı

h
F (φ)

δS (φ)
δφ (x)

)
vS (dφ) = 0. (14.31)

where

δF (φ) =
∫

δF (φ)
δφ (x)

δφ (x) dDx, x ∈ IRD. (14.32)

This equation gives a characterizations of vS (dφ) in terms of the un-
known functional µ (φ) as desired in the guiding principle (14.26):

vS (dφ) = µ (φ) exp
(

2πı

h
Scl (φ)

)
[dφ] (14.33)

= exp
(

2πı

h
Squ (φ)

)
[dφ] .

The characterization (14.33) of the volume element vS (dφ) is similar
to the characterization of the volume element vg (x) on a D−dimensional
Riemannian manifold with metric g given in section 7.4.
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Application F = 1

Equation (14.31) says ∫
Φ

δS (φ)
δφ (x)

vS (dφ) = 0 (14.34)

which translates (14.22) in terms of the matrix element of a time ordered
operator to

0 =
∫

Φin, out

δS (φ)
δφ (x)

vS (dφ) =
〈

out
∣∣∣∣T δS (φ)

δφ (x)

∣∣∣∣ in
〉

. (14.35)

Eq. (14.35) is a particular case of Schwinger’s variational principle (14.25)
when the initial and final states are kept fixed. It is the quantum version
of the classical equation of motion

∂Scl

∂φ (x)
= 0 (14.36)

where the classical action Scl is the limit of the quantum action when
~ → 0

S = Scl − ı~ log µ + O
(
~2

)
. (14.37)

When F 6= 1, the term ∂F can be used to account for the variation
of |A〉 and |B〉 in a matrix element 〈B |M |A〉 represented by a func-
tional integral. Most often we choose the domain of integration ΦA,B of
the functional integral to be fixed; but variations of A and B are also
interesting. In which case we write∫

ΦA,B

=
∫

Φ

appropriate characteristic functions,

and insert appropriate terms for characterizing |A〉 and |B〉.

Application F (φ) = exp (2πı 〈J, φ〉)
Let

Z (J) :=
∫

Φ

vS (dφ) exp (−2πı 〈J, φ〉) (14.38)

with vS (dφ) given by (14.16) or equivalently

vS (dφ) = exp
(

2πı

~
Squ (φ)

)
[dφ] (14.39)

or

vS (dφ) = exp
(

2πı

~
Scl + log µ

)
(x) [dφ] . (14.40)
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It follows that

0 =
∂Z (J)
∂φ (x)

=
∫

Φ

(
2πı

~
∂Scl (φ)
∂φ (x)

+
1
µ

∂µ (φ)
∂φ (x)

− 2πıJ (x)
)

× exp (−2πı 〈J, φ〉) vS (dφ) . (14.41)

For an action which is the sum of a quadratic form − 1
2 〈Dφ, φ〉 and a

polynomial P (φ) of order higher than 2

∂Scl (φ)
∂φ (x)

= −Dxφ + P ′ (φ) .

The differential Dx can be taken outside the functional integral, and the
property of Fourier transforms∫

Φ

vS (dφ) φ (x) exp (−2πı 〈J, φ〉) =
∫

vS (dφ)
−1
2πı

∂

∂J (x)
exp (−2πı 〈J, φ〉)

used to derive a functional differential equation for Z (J):

J (x) Z (J) +
1

2πı
Dx

∂

∂J (x)
Z (J) + P ′

(
1

2πı

∂

∂J (x)

)
Z (J) = 0.

Z (J) can be normalized by dividing it by Z (0). Let

Z (J) /Z (0) =: exp
(
−2πı

h
W (J)

)
. (14.42)

It has been shown [Ryder] that the diagram expansion of Z (J) contains
disconnected diagrams, but that the diagram expansion of expW (J)
contains only connected diagrams.

TO BE COMPLETED (SEE CECILE’S NOTES AND CARTIER
SCH 5, SCH 6, SCH 7.)


