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Renormalization 3: Scaling†

16.1 Renormalization group

“The aim of the renormalization group is to
describe how the dynamics of a system evolves
as one changes the scale of the phenomena being
observed.”
D. J. Gross [Gross]

“The basic physical idea underlying the renormal-
ization group is that many length or energy scales
are locally coupled.”
K. J. Wilson [Wilson]

While working out estimates on renormalization group transforma-
tion, D. C. Brydges, J. Dimock and T. R. Hurd, developed, cleaned
up, and simplified scaling techniques (see section 2.5, coarse-graining).
In brief, a gaussian covariance can be decomposed into scale dependent
contributions (2.79??). Indeed a gaussian µs,G, abbreviated to µG, of
covariance G and variance W , is defined by∫

Φ

dµG(φ) exp(−2πı 〈J, φ〉) := exp(−πsW (J)) . (16.1)

W (J) =: 〈J,GJ〉 (16.2)

It follows that if W = W1 + W2, the gaussian µG can be decomposed
into two gaussians µG1 , µG2 :

µG = µG1 ∗ µG2 = µG2 ∗ µG1 , (16.3)

† The scaling properties established in section 2.5?? are briefly summarized in this
section to make it reasonably self-contained.
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2 Renormalization 3: Scaling

or more explicitly∫
Φ

dµG(φ) exp(−2πı 〈J, φ〉)

=
∫

Φ

dµG2(φ2)
∫

Φ

dµG1(φ1) exp(−2πıJ (φ1 + φ2)) (16.4)

where

G = G1 +G2 (16.5)

φ = φ1 + φ2. (16.6)

The convolution property (16.3) and the additive properties (16.5)
(16.6) make it possible to decompose a gaussian covariance into scale
dependent contributions as follows.

• Introduce an independent scale variable l ∈ ]0,∞[. A gaussian co-
variance is a homogenous two-point function of MID (a d-dimensional
euclidean or minkowskian space)

s

2π
G(|x− y|) =

∫
Φ

dµG(φ)φ(x)φ(y). (16.7)

Therefore the covariance can be represented by an integral

G(ξ) =
∫ ∞

0

d×l Sl u(ξ) where d×l = dl/l, ξ = |x− y| (16.8)

for some function u. The scaling operator Sl is defined by (2.71??) —
(2.73??)

Sl u(ξ) = l2[φ]u (ξ/l) , [φ] is the length dimension of φ. (16.9)

Example: See (2.72??):

G(ξ) = cD/ξ
D−2. (16.10)

• Break the domain of integration of the scaling variable l into subdo-
mains

[
2j l0, 2j+1l0

[
G(ξ) =

+∞∑
j=−∞

∫ 2j+1l0

2j l0

d×l Sl u(ξ) (16.11)

and set

G(ξ) =:
+∞∑

j=−∞
Gj(l0, ξ) abbreviated to

∑
j

Gj(ξ). (16.12)
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The contributions Gj to the covariance G are selfsimilar. Indeed, set
l =

(
2j l0

)
k, then

Gj(l0, ξ) =
(
2j l0

)2[φ]
∫ 2

1

d×k k[2φ] u
(
ξ/2j l0k

)
=

(
2j l0

)2[φ]
G0

(
1, ξ/2j l0

)
= S2j l0 G0(1, ξ) . (16.13)

See another equivalent formulation in section 2.5?? eq. (2.82??).

The corresponding field decomposition (2.85??)

φ =
+∞∑

j=−∞
φj ,

also written

φ(x) =
∑

j

φj(l0, x) . (16.14)

The subdomains
[
2j l0, 2j+1l0

[
are exponentially increasing for j ≥ 0, and

the subdomains
[
2j−1l0, 2j l0

[
are exponentially decreasing for j ≤ 0. A

scale dependent covariance defines a scale dependent gaussian, a scale
dependent functional Laplacian (2.66??), scale dependent Bargmann-
Segal and Wick transforms (2.69??, 2.70??).

Remark Brydges uses a scale variable k ∈ [1,∞[. The domain decom-
position

+∞∑
j=−∞

[
2j l0, 2j+1l0

[
is then reorganized as

+∞∑
j=−∞

=
∑
j<0

+
∑
j≥0

,

and l0 set equal to 1, i.e.

]0,∞[ = [0, 1[ ∪ [1,∞[ (16.15)

with k ∈ [1,∞[ and k−1 ∈ [1, 0[. Note that∫ 1

0

d×l Sl u(ξ) =
∫ ∞

1

d×k Sk−1 u(ξ). (16.16)
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Remark: Mellin transform Eq. (16.8) can be introduced as the Mellin
transform f̃(α) of a function f(t) decreasing sufficiently rapidly at in-
finity

f̃(α) :=
∫ ∞

0

d×t f(t)tα

= aα

∫ ∞

0

d×l f
(a
l

)
l−a where l = a/t.

For example

1
a2−ε

=
1
2

∫ ∞

0

d×l exp
(
−a2/4l2

)
l−2+ε. (16.17)

Scale dependent gaussians can be used for defining effective actions:
break the action functional S into a free (quadratic) term and a inter-
acting term

S =
1
2
Q+ Sint. (16.18)

Here a free action is an action which can be decomposed into scale
dependent contributions which are selfsimilar in the following sense. The
quadratic form in (16.18) defines a differential operator D

Q(φ) = 〈Dφ, φ〉 .

Provided the domain Φ of φ is properly restricted (e.g. by the problem
of interest) the operator D has a unique Green’s function G

DG = 1 (16.19)

which can be used as the covariance of the gaussian µG defined by
(2.32??,2.33??). If D is a linear operator with constant coefficients,
G(x, y) is a function of |x− y| =: ξ with scale decomposition (16.12)

G(ξ) =
∑

j

Gj(l0, ξ) . (16.20)

The contributions Gj satisfy the selfsimilar condition (16.13). The cor-
responding action functional Q is a “free” action.



16.1 Renormalization group 5

For constructing effective actions one can split the domain of the scale
variable in two domains

[Λ,∞[ = [Λ, L[ ∪ [L,∞[ (16.21)

where Λ is a short distance (high energy) cut off, used for handling di-
vergences at the spacetime origin in euclidean quantum field theory, or
on the lightcone at the origin in the minkowskian case. The variable L
is the renormalization scale.

The quantity to be computed, formally written
∫
Dφ exp

(
ı
~S(φ)

)
, is

the limit Λ = 0 of

IΛ :=
∫
Φ

dµ[Λ,∞[(φ) exp
ı

~
Sint(φ) (16.22)

≡
〈
µ[Λ,∞[, exp

ı

~
Sint

〉
〈
µ[Λ,∞[, exp

ı

~
Sint

〉
=

〈
µ[L,∞[, µ[Λ,L[ ∗ exp

ı

~
Sint

〉
. (16.23)

The integrand on the right hand side is an effective action at scales
greater than L, obtained by integrating short distance degrees of free-
dom in the range [Λ, L[. Eq. (16.23) transforms Sint into an effective
action.

Eq. (16.23) is beautiful: an effective action at scales greater than L

is integrated by a gaussian in the range [L,∞[. But it is difficult to
compute. It has been rewritten by Brydges et al. as a coarse-graining
transformation (2.87??) with the coarse-graining operator Pl.

PL := Sl/l0 µ[l0,l[ (16.24)

where the scaling operator Sl/l0 is defined by (2.71??—2.73??). The
coarse graining operator Pl is an element of a semigroup provided l0 = 1
(2.88??). The semigroup property is necessary for deriving the scale
evolution equation of the effective action. Therefore, henceforth l0 = 1

Pl := Sl µ[1,l[ (16.25)

and the domain of the scale variable is split a l = 1

[Λ,∞[ = [Λ, 1[ ∪ [1,∞[ ,〈
µ[Λ,∞[, exp

ı

~
Sint

〉
=

〈
µ[Λ,1[, µ[1,∞[ ∗ exp

ı

~
Sint

〉
. (16.26)
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The new integral can then be written as the scale independent gaussian
of a coarse grained integrand (2.105??)〈

µ[1,∞[, exp
ı

~
Sint

〉
=

〈
µ[l,∞[, µ[l,l[ ∗ exp

ı

~
Sint

〉
=

〈
µ[1,∞[, Slµ[1,l[ ∗ exp

ı

~
Sint

〉
=

〈
µ[1,∞[, Pl exp

ı

~
Sint

〉
.

Therefore〈
µ[Λ,∞[, exp

ı

~
Sint

〉
=

〈
µ[Λ,1[, µ[1,∞[ ∗ Pl exp

ı

~
Sint

〉
. (16.27)

The scale evolution of a coarse grained quantity PlA(φ) is given by
(2.92??) (

∂×

∂l
−H

)
PlA(φ) = 0 (16.28)

H = Ṡ +
1
2
s

2π
∆̇ (16.29)

where a dot over a symbol stands for ∂×

∂l

∣∣
l=l0

and the functional lapla-
cian ∆ is defined by (2.56??).

We are interested in the scale evolution of Pl exp ı
~S

R (φ) that is in the
evolution equation (16.28) when A(φ) is an exponential. Repeating the
derivation (2.96??–2.99??), the only difference is the calculation of∫

Φ

dµ[l0,l[(ψ) (expB(φ))′′ ψψ

= (expB(ψ))′′
s

2π
G[l0,l[;

=
∫
dvolx

∫
dvoly

s

2π
G[l0,l[ (|x− y|)

× δ2

δφ(x)δφ(y)
expB(φ); (16.30)

δ2

δφ(x)δφ(y)
expB(φ) =

(
δ2B(φ)

δφ(x)δφ(y)
+
δB(φ)
δφ(x)

δB(φ)
δφ(y)

)
expB(φ).

(16.31)
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Finally PlB(φ) satisfies the equation(
∂×

∂l
−H

)
PlB(φ) =

1
2
s

2π
B(φ)

↔̇
∆B(φ) (16.32)

with

B(φ)
↔̇
∆B(φ) =

∫
dvolx

∫
dvolyG[l0,l[ (|x− y|) ∂B(φ)

∂φ(x)
∂B(φ)
∂φ(y)

. (16.33)

Given (16.11)

G[l0,l[(ξ) =
∫ l

l0

d×s Ss/l0 u(ξ), (16.34)

∂×

∂l
G[l0,l[(ξ)

∣∣∣∣
l=l0

= u(ξ) (16.35)

and

B(φ)
↔̇
∆B(φ) =

∫
dvolx

∫
dvoly u(|x− y|) δB(φ)

δφ(x)
δB(φ)
δφ(y)

. (16.36)

In conclusion, we have derived two exact scale evolution equations
(16.28) and (16.33); one for PlSint(φ) and one for Pl exp ı

~Sint(φ). Set

S[l] := PlSint(φ). (16.37)

The coarse grained interaction S[l] (not to be confused with Sl) is often
called the naive scaling of the interaction, or its scaling by engineering
dimension, hence the use of the square bracket. S[l] satisfies (16.28)(

∂×

∂l
−H

)
S[l] = 0. (16.38)

Let S(l, φ) be the effective action defined by

expS(l, φ) := Pl exp
ı

~
Sint(φ) (16.39)

then (
∂×

∂l
−H

)
S(l, φ) =

1
2
s

2π
S(l, φ)

↔̇
∆S(l, φ). (16.40)

Approximate solutions to the exact scale evolution equation of the
effective action are worked out in the next section for the λ − φ4 sys-
tem. The approximate solutions include divergent terms. The strategy
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is not to drop divergent terms, nor to add counterterms by fiat, but
to “trade” divergent terms for conditions on the scale dependent cou-
plings; under the trade, the approximate solution remains valid at the
same level of approximation. The trade requires the couplings to satisfy
ordinary differential equations in l. These equations are equivalent to
the renomalization flow equations.

16.2 The λ− φ4 system

The λ − φ4 system is a self-interacting relativistic scalar field in 1 + 3
dimensions described by the Lagrangian density

L(φ(x)) =
1
2
ηµν∂µφ(x)∂νφ(x)− 1

2
m2φ2(x)− λ

4!
φ4(x) (16.41)

ηµν = diag (1,−1,−1,−1) . (16.42)

λ is a dimensionless coupling constant when ~ = c = 1.

There are many references for the study of the λ−φ4 system because
it is the simplest nontrivial example without gauge fields. The chap-
ter “Relativistic scalar field theory” is Ashok Das’ book [Ashok Das] is
an excellent introduction. In this section we apply to this system the
scale evolution equation (16.40) for the effective action as developed by
Brydges et al.

• One minor difference: Brydges uses ~ = c = 1 and gives physical
dimensions in mass dimension; we use ~ = c = 1 and the length
dimension because most of the work is done in spacetime rather than
in four-momentum space. The relationship

l
d

dl
= −m d

dm
(16.43)

provides the needed correspondence.

• A nontrivial difference: Brydges investigates euclidean quantum field
theory, we investigate minkowskian field theory. The difference will
appear in divergent expressions, singular at the origin in the euclidean
case, singular on the lightcone in the minkowskian case.
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A normal ordered lagrangian

The starting point of Brydges’ work is the normal ordered Lagrangian

: L(φ(x)) : =
1
2
ηµν : φ,µ(x)φ,ν(x) : −1

2
m2 : φ2(x) : − λ

4!
: φ4(x) : .

(16.44)
Originally operator normal ordering was introduced by Gian-Carlo Wick
to simplify calculations (it readily identifies vanishing terms in vacuum
expectation values). It also eliminates the (infinite) zero-point energy of
an assembly of harmonic oscillators. The normal ordering of a functional
F of φ is by definition

: F (φ) :G≡ exp
(
−1

2
∆G

)
F (φ) (16.45)

where ∆G is the functional Laplacian defined by the covariance G

∆G :=
∫
dvolx

∫
dvoly G(x, y)

δ

δφ(x)
δ

δφ(y)
. (16.46)

In quantum physics, a normal ordered Lagrangian in a functional in-
tegral corresponds to a normal ordered Hamiltonian operator in the
corresponding matrix element (see Appendix ID??).

Normal ordered action functionals simplify calculations because inte-
grals of normal ordered monomials are eigenvalues of the coarse-graining
operator Pl (2.89??).

The effective action S(l, φ)

We apply to the Lagrangian (16.41) the procedure developed in section
16.1 for constructing an effective action.

The functional integral (16.22) can be written in terms of (16.27) with
an effective action S(l, φ) defined by

expS(l, φ) := Pl exp
ı

~
Sint(φ), (16.47)

namely〈
µ[Λ,∞[, exp

ı

~
Sint

〉
=

〈
µ[Λ,1[, µ[1,∞[ ∗ Pl

ı

~
Sint(φ)

〉
. (16.48)

The integral with respect to µ[1,∞[ is over polynomial normal ordered
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accordingly by the covariance

G[1,∞[ (|x− y|) =
∫ ∞

−1

d×l Sl u(|x− y|) . (16.49)

Given an action

S(φ) =
∫
dvolxL(φ(x)) =

1
2
Q(x) + Sint(φ), (16.50)

there often different ways of splitting it into a quadratic term and an
interaction term. Choosing Q is choosing the concomitant gaussian µG.
For the λ− φ4 system there are three natural choices for Q, namely

Q(x) =
∫
dvolx ηµν : ∂µφ(x)∂νφ(x) : Brydges’ choice (16.51)

Q(x) =
∫
dvolx ηµν : ∂µφ(x)∂νφ(x) : −m2 : φ2(x) :

Q(x) = S′′(ψcl)φφ, (16.52)

where S′′(ψcl) is the value of the second variation at a classical solution
of the Euler-Lagrange equation. Brydges’ choice leads to a mass and
coupling constant renormalization flow equations. The second choice
has not been worked out. The covariance G(x, y) is, as in Brydges’
choice, a function of |x− y| but a more complicated one. The third
choice (16.52) is challenging: the second variation as a quadratic form
is very beneficial in the study of the anharmonic oscillator†.

We proceed with Brydges’ choice (16.51). Therefore

Sint(φ) =
∫
dvolx

(
−1

2
m2 : φ2(x) :[1,∞[ −

λ

4!
: φ4(x) :[1,∞[

)
. (16.53)

The effective action S(l, φ) at scales larger than l defined by

PL exp
ı

~
Sint(φ) =: expS(l, φ) (16.54)

satisfies the exact scale evolution equation (16.40) E(S)

E(S) ≡
(
d×

dl
− Ṡ − 1

2
s

2π
∆̇

)
S(l, φ)− 1

2
s

2π
S(l, φ)

↔̇
∆S(l, φ) = 0. (16.55)

An approximation T (l, φ) to S(l, φ) is called a solution at order O
(
~λk

)
† A first step towards using the second variation of S(φ) for computing the effective

action of the λ − φ4 system has been done by Xiaorong Wu Morrow; it is based
on an effective action for the anharmonic oscillator. (unpublished)
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if E(T ) is of order O
(
~λk+1

)
. We use ~λ to designate the set of coupling

constants (m, λ and possibly others). In order to present the key issues
as simply as possible we consider a massless system, m = 0; henceforth

Sint(φ) = − λ

4!

∫
dvolx : φ4(x) :[1,∞[ . (16.56)

First order approximation to the effective action

The coarse grained interaction (naive scaling of the interaction)

S[l](φ) = PlSint(φ) = − λ

4!
l4+4[φ]

∫
dvolx : φ4(x) := Sint(φ) (16.57)

satisfies the evolution equation (16.38)(
d×

dl
− Ṡ − 1

2
s

2π
∆̇

)
S[l](φ) = 0. (16.58)

S[l] is an approximate solution of order λ to E(S) (16.55). The cou-
pling constant λ is dimensionless and is not modified by the coarse grain-
ing operator Pl.

Second order approximation to the effective action

We expect the second order approximation T (l, φ) to S(l, φ) to have the
following structure

T (l, φ) = S[l](φ) +
1
2
S[l](φ)

↔
O S[l](φ), (16.59)

the operator
↔
O being such that E(T ) be of order λ3. The ansatz pro-

posed by Brydges is
↔
O= exp

s

2π
↔
∆[l−1,1[ −1. (16.60)

In the case of the λ− φ4 system the exponetial terminates at
↔
∆

4

.

↔
O =

s

2π
↔
∆[l−1,1[ +

1
2!

( s

2π

)2 ↔
∆

2

[l−1,1[

+
1
3!

( s

2π

)3 ↔
∆

3

[l−1,1[ +
1
4!

( s

2π

)4 ↔
∆

4

[l−1,1[ (16.61)
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Proof that, with the ansatz (16.60)

E(T ) = O
(
λ3

)
. (16.62)

A straight calculation of E(T ) is possible but far too long to be included
here. We refer to the original literature [Brydges, Alex, Marcus], and
outline the key features of the proof. We shall show that(

∂×

∂l
− Ṡ − 1

2
s

2π
∆̇

)
T (l, φ) =

1
2
T (l, φ)

s

2π
↔̇
∆T (l, φ) +O

(
λ3

)
. (16.63)

T (l, φ) is the sum of a term of order λ, four terms of order λ2:

T (l, φ) = S[l](φ) +
1
2

4∑
j=1

1
j!

( s

2π

)j

S[l](φ)
↔
∆

j

[l−1,1[ S[l](φ)(16.64)

=: S[l](φ) +
4∑

j=1

Tj(l, φ)

• Computing the l.h.s. of (16.63) for T1(l, φ)(
∂×

∂l
− Ṡ − 1

2
s

2π
∆̇

)
S[l](φ)

↔
∆[l−1,1[ S[l](φ)

= S[l](φ)
(
↔̇
∆− s

2π
↔̇
∆
↔
∆[l−1,1[

)
S[l](φ). (16.65)

At first sight, this result is unexpected, because it seems that the
leibnitz product rule has been applied to the l.h.s. of (16.64) although
it includes a scaling operator and a second order differential operator.
A quick hand waving argument runs as follows: Ṡ + 1

2
s
2π ∆̇ is the

gnerator H of the coarse grainingin operator. When acting on S[l]

(or any Wick ordered monomials) it acts as a first order opeaotor
(2.105??). So far so good, let us apply the leibnitz rule. Because(

∂×

∂l −H
)
S[l](φ) = 0 the only remaining term is(
∂×

∂l
− Ṡ − 1

2
s

2π
∆̇

)
S[l]

↔
∆[l−1,1[ S[l](φ)

= S[l](φ)
(
∂×

∂l
− Ṡ − 1

2
s

2π
∆̇

)
↔
∆[l−1,1[ S[l](φ). (16.66)

But, what is the meaning of the r.h.s.? How does the laplacian ∆̇
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operate when bracketed between two functionals? How can the r.h.s.
of (16.65) be equal to the r.h.s. of (16.64)? It is easy to prove that(

∂×

∂l
− Ṡ

)
G[l−1,1[(ξ) =

(
∂×

∂l
− Ṡ

) ∫ 1

l−1
d×s Ss u(ξ)

= Sl−1 u(ξ)− ∂×

∂t

∣∣∣∣
t=1

∫ t−1

l−1t−1
d×s Ss u(ξ)

= u(ξ).

Therefore (
∂×

∂l
− Ṡ

)
↔
∆[l−1,1[=

↔̇
∆. (16.67)

But one cannot prove that 1
2∆̇

↔
∆[l−1,1[ is equal to

↔̇
∆

↔
∆[l−1,1[. The

reason lies in the improper use of the leibnitz rule. Indeed

1
2
↔̇
∆S[l](φ)

↔
∆[l−1,1[ S[l](φ)

contains in addition to S[l](φ)
↔̇
∆

↔
∆[l−1,1[ S[l](φ) terms proportional

to the third variation of S[l](φ) which are canceled in the pedestrian
computation of (16.64).

• Given (16.65) for T1, we can record graphically the other terms nec-
essary to prove that T satisfies (16.63). Let a straight line stand for
↔
∆[l−1,1[ and a dotted line for

↔̇
∆,(

∂×

∂l
− Ṡ − 1

2
s

2π
∆̇

)
s

2π
S[l] S[l]

=
s

2π
S[l] . . . . . . S[l] −

( s

2π

)2

S[l]. . . . . .S[l] (16.68)

(
∂×

∂l
− Ṡ − 1

2
s

2π
∆̇

)
1
2

( s

2π

)2

S[l] S[l]

=
( s

2π

)2

S[l]. . . . . .S[l] −
( s

2π

)3

S[l]. . . . . .S[l] (16.69)

etc.

When adding up these equations the only remaining term on the r.h.s.
is s

2πS[l] . . . . . . S[l]. Therefore(
∂×

∂l
− Ṡ − 1

2
s

2π
∆̇

)
S[l]

↔
O S[l] =

s

2π
S[l]

↔̇
∆S[l] (16.70)

and T (l, φ) satisfies (16.63). Brydges has proved that, in spite of the
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fact that the terms in O
(
λ3

)
contain divergent terms when l → ∞,

they are uniformly bounded as l→∞.

The renormalization flow equation for λ

The approximate solution T (l, φ) of the effective action S(l, φ) contains
one term of order λ and 4 terms of order λ2 (16.64). We are interested
in the divergent terms, they are the ones which will be “traded” for
conditions on the couplings. The other terms are of no particular interest
in renormalization. In the massless λφ4 system there are two terms
T2(l, φ) and T3(l, φ) which contain a singular part. As we shall see
shortly only T2(l, φ) contributes to the flow of λ. Explicitly

T2(l, φ) :=
1
4

( s

2π

)2
(
λ

2

)2 ∫
dvolx

∫
dvoly

× : φ2(x) : G2
[l−1,1[(x− y) : φ2(y) : . (16.71)

We can write T2(l, φ) as the sume of a regualr and a singular term by
subtracting and adding to T2(l, φ)

T2 sing(l, φ) :=
1
4

( s

2π

)2
(
λ

2

)2 ∫
dvolx : φ4(x) :[l−1,1[

×
∫
dvoly G2

[l−1,1[(y). (16.72)

T2sing is a local term which can be added to S[l], while it is subtracted
from T2 and regularizes it. Splitting T3(l, φ) in a similar manner does
not introduce terms including : φ4(x) :, and need not be considered in
the λ-flow. The λ-flow equation consists in imposing to S[l] + T2 sing the
evolution equaiton (16.58) satisfied by S[l]

1
4!

(
∂×

∂l
−H

) (
λ(l) + 36

( s

2π

)2

λ2(l)
∫
dvoly G2

[l−1,1[(y)
)

×
∫
dvolx : φ4(x) :[l]= 0. (16.73)

The irrelevant factor 1/4! is included for the convenience of the reader
who may have used λ rather than λ/4! in the interaction term. For
the same reason we leave s/2π explicitly because it originates from the
gaussian normalization (2.36??).

The λ-flow equation reduces to

∂×

∂l

(
λ(l) + 36

( s

2π

)2

λ2(l)
) ∫

dvolxG2
[l−1,1[(x) = 0. (16.74)
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Proof H sees only
∫
dvolx : φ4(x) : since the first factor does not depend

on φ and is dimensionless, and(
∂×

∂l
−H

) ∫
dvolx : φ4(x) := 0.

The flow equation (16.74) plays the role of the β-function derived by
loop expansion in perturbative Quantum Field Theory.

β(λ) = −d
×

dl
λ(l) =

3λ2

16π2
(16.75)

The β-function is constructed from an effective action at a given or-
der of loops which is built with one-particle-irreducible diagrams. This
method is efficient because the set of one-particle-irreducible diagrams
is a much smaller set than the set of all possible diagrams for the given
system. Within perturbation theory, there is strong indication [Mar-
cus] (one could nearly say a proof) that both flow equations (16.74) and
(16.75) give the same approximation to the flow equation.

The goal of this application is only to introduce scaling renormal-
ization. We refer to the original publications for an in depth study of
scaling renormalization† [Brydges] and to textbooks in quantum Field
Theory for the use of β-functions.

The scaling method provides an exact equation (16.40) for the effec-
tive action S(l, φ). It has been used by Brydges, Dimock and Hurd for
computing fixed points of the flow equation (16.34). In the euclidean
case they found that the gaussian fixed point is unstable but that in
dimension 4− ε there is a hyperbolic non-gaussian fixed point a distance
O(ε) away. In a neighborhood of this fixed point they constructed the
stable manifold. Brydges et al. work with euclidean fields. His method
has been applied to minkowskian fields by [Wurm, Berg].

† Brydges uses dimensional regularization by changing the dimension of the field
rather than the space time dimension. In his work

2[φ] = −2 + ε

and [λ] = 2ε.

Either dimensional regularization leads to the same final result. Brydges’ method
works on the action functional, rather than on the diagrams.


