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Selected Examples

3.1 Wiener measure and brownian paths
(Discretizing a path integral)

Let XX be a space of continuous pointed paths x over a time interval
TT = [ta, tb] {

x : TT → IR by t 7→ x(t)
x(t0) = a for every x ∈ XX, t0 ∈ TT

(3.1)

The dual XX ′ of XX is the space of bounded measures x′ on IR∫
TT

dx′(t) <∞ ⇔ x′ ∈ XX ′. (3.2)

Let us discretize the time interval TT into n variables

ta ≤ t1 ≤ · · · ≤ tn ≤ tb. (3.3)

Let YY be the Wiener differential space consisting of the differences of
two consecutive values of x on the discretized time interval

yj = x (tj+1)− x (tj) =
〈
δtj+1 − δtj , x

〉
, with t0 = t1. (3.4)

Therefore the discretizing map L : XX → YY is a projection from the
infinite dimensional space XX onto the n-dimensional space YY .

Let γXX be the Wiener Gaussian defined by its Fourier transforms FγXX ,
i.e. by the variance

WXX′(x′) =
∫

TT

dx′(t)
∫

TT

dx′(s) inf(t− ta, s− ta) (3.5)

where inf(t, s) is the smaller of t and s:

inf(t− ta, s− ta) = θ(t− s) (s− ta) + θ(s− t) (t− ta) ; (3.6)
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the step function θ is equal 1 for positive arguments, equal to 0 for
negative arguments, and discontinuous at the origin. The transpose L̃
of L is defined by (2.48??), i.e.

〈L̃y′, x〉XX = 〈y′, Lx〉YY =
∑

j

y′jy
j

=
∑

j

y′j
〈
δtj+1 − δtj , x

〉
=

∑
j

〈
y′j
(
δtj+1 − δtj

)
, x
〉

hence

L̃y′ =
∑

j

y′j
(
δtj+1 − δtj

)
(3.7)

and

WYY ′(y′) =
(
WXX′ ◦ L̃

)
(y′) = WXX′

(
L̃y′
)

=
∑
j,k

y′jy
′
k

(
inf(tj+1, tk+1)− inf(tj+1, tk)

− inf(tj , tk+1) + inf(tj , tk)
)
.

The terms j 6= k do not contribute to WYY ′(y′). Hence

WYY ′(y′) =
∑

j

(
y′j
)2(tj+1 − tj) . (3.8)

Choosing YY to be a Wiener differential space rather than a naively
discretized space defined by {x(tj)} diagonalizes the variance WYY ′(y′).
The Gaussian γYY on YY defined by the Fourier transforms

(FγYY )(y′) = exp

−sπ∑
i,j

δi,jy′iy
′
j (tj+1 − tj)

 (3.9)

is

dγYY (y) = dy1 · · · dyn 1∏n
j (s (tj+1 − tj))

1/2
exp

−π
s

∑
i,j

δijy
iyj

tj+1 − tj


(3.10)

set

∆tj := tj+1 − tj ,
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∆xj := (∆x)j := x(tj+1)− x(tj) = yj ,

xj := x(tj) ,

then

dγYY (∆x) = dx1 · · · dxn 1∏n
j=1 (s∆tj)

1/2
exp

−π
s

∑
j

(
∆xj

)2
∆tj

 .

(3.11)
When s = 1, the Gaussian γYY defines the distribution of a Brownian
path; The Gaussian γXX of covariance inf(t− ta, s− ta) is the Wiener
measure.

Deriving the distribution of Brownian paths from the Wiener measure
is a particular case of a general formula. Let F : XX → IR be a functional
on XX which can be decomposed into two maps F = f ◦ L where

L : XX → YY linearly

f : YY → IR integrable with respect to γYY

then ∫
XX

DγXX F (x) =
∫

YY

DγYY (y) f(y), (3.12)

where the Gaussians γXX and γYY are characterized by the quadratic form
WXX′ , and WYY ′ such that

WYY ′ = WXX′ ◦ L̃. (3.13)

3.2 Canonical Gaussians in L2 and L2,1

Wiener Gaussians on spaces of continuous paths serve probabilists very
effectively, but physicists who work with kinetic energy use L2,1 spaces,
i.e. Sobolev spaces of square integrable functions on TT whose first
derivatives (in the sense of distribution) are square integrable. Let H be
the Hilbert space of real square integrable functions h on TT with norm:

||h||2H =
∫

TT

dt gijh
i(t) hj(t). (3.14)
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Let L2,1
− ⊂ L2,1 be the subspace of functions on TT = [ta, tb] vanishing

at ta and L2,1
+ ⊂ L2,1 be subspace of functions vanishing at tb, with the

L2,1 norm

||y||L2,1 :=
∫

TT

dt gij ẏ
i(t) ẏj(t), ẏ(t) :=

dy(t)
dt

. (3.15)

Paths vanishing at ta are used in diffusion problems, paths vanishing
at tb are used in solutions ψ(tb,x) of the Schrödinger equation for the
probability amplitude of finding the system at x at time tb.

Spaces of pointed paths (spaces of paths taking the same value at
a given time) are particularly useful because they are contractible [See
Section (7.1??)]. One of the linearity conditions for a space of pointed
paths is that the common value of the paths be zero; indeed, for

x(i) ∈ XXa, and x(i)(ta) = xa for all x(i) ∈ XXa,

x(i) + x(j) ∈ XXa only if xa = 0.

Let YY− and YY+ be the spaces of continuous paths vanishing at ta and
tb, respectively. The primitive mapping P− : H → L2,1

− by

P− : h(t) → y(t) =
∫ t

ta

ds h(s) =
∫

TT

ds θ(t− s) h(s), (3.16)

the primitive mapping P+ : H → L2,1
+ by

P+ : h(t) → y(t) = −
∫ tb

t

ds h(s) = −
∫

TT

ds θ(s− t) h(s), (3.17)

the inclusion mapping i∓ : L2,1
∓ → YY∓ by

i∓ : y ∈ L2,1
∓ 7→ y ∈ YY∓, (3.18)

not a trivial mapping, as we shall see shortly. The composition

PW
∓ := i∓ ◦ P∓ : H → YY∓. (3.19)

The quadratic formWH′ defining a canonical Gaussian γH on a Hilbert
space H is equal to the norm of the dual H′ of H. We shall show that

(i) PW
∓ maps the canonical Gaussian on H into the Wiener Gaussian

on YY∓
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Fig. 3.1. Canonical gaussians on L2 and L2,1.

(ii) the inclusion i∓ maps the canonical Gaussian on L2,1
∓ into the

Wiener Gaussian on YY∓.

The proofs are applications of (2.34??), namely composition of quadratic
forms induced by linear mappings: if L : XX → YY linearly, then

WYY ′ = WXX′ ◦ L̃, where
〈
L̃y′, x

〉
= 〈y′, Lx〉 .

(i) The transpose P̃W
− is defined on YY ′ by

〈
P̃W
− y′, h

〉
H

=
〈
y′, PW

− h
〉

YY−
=
∫

TT

dy′j(t)
∫

TT

ds θ(t− s) hj(s), (3.20)
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therefore (
P̃W
− y′

)
j
(s) =

∫
TT

dy′j(t) θ(t− s), (3.21)

and the quadratic form WH′ is equal to the norm on H′ defined by the
norm (2.45??) on H(
WH′ ◦ P̃W

−

)
(y′) =

∫
TT

ds gij

∫
TT

θ(t− s) dy′i(t)
∫

TT

θ(t′ − s) dy′j(t
′)

= gij

∫
TT

dy′i(t)
∫

TT

dy′j(t
′) inf(t− ta, t

′ − ta) (3.22)

= gij

∫ inf(t,t′)

ta

ds

∫
TT

dy′i(t)
∫

TT

dy′j(t) .

�
(ii) The transpose ĩ on YY ′− is defined by〈̃

iy′, y
〉

L2,1
−

= 〈y′, iy〉YY− , (3.23)

i.e. explicitly, given the dualities (3.15) and (3.2)∫
TT

dt
d

dt
(̃iy′)j(t) ·

d

dt
yj(t) =

∫
TT

dy′j(t) y
j(t), (3.24)

hence
d

dr

(̃
iy′
)
j
(r) =

∫
TT

θ(t− r) dy′j(t), (3.25)

and(
WL′2,1

−
◦ ĩ
)

(y′) =
∫

TT

dr gij d

dr

(̃
iy′
)
i
(r) · d

dr

(̃
iy′
)
j
(r)

= gij

∫
TT

dy′i(t)
∫

TT

dy′j(t
′) inf(t− ta, t

′ − ta) .(3.26)

�

The mappings P∓ and i∓ defined on Fig. 3.1 have been generalized by
A. Maheshwari [1] and used in [2] for various versions of the Cameron-
Martin formula and for Fredholm determinants.

3.3 The Forced Harmonic Oscillator

Up to this point we have exploited properties of Gaussian γQ on XX

defined by quadratic forms W on the dual XX ′ of XX but we have not
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used the quadratic form Q on XX inverse of W in the following sense; set

W (x′) =: 〈x′, Gx′〉
Q(x) =: 〈Dx, x〉 . (3.27)

W and Q are said to be inverse of each other if

DG = 11XX′ , GD = 11XX . (3.28)

The gaussian volume element dγs,Q can be expressed in terms of the
quadratic form Q:

Ds,Q(x) exp
(
−π
s
Q(x)

) R
= dγs,Q; (3.29)

this is a qualified equality, meaning that both expressions are defined by
the same integral equation (2.25??). In this section, we use gaussians
defined by Q with s = i and Ds,Q is abbreviated to DQ.

The first path integral proposed by Feynman was

〈b, tb|a, ta〉 =
∫

XXa,b

Dx exp (ıS(x)/~) (3.30)

with

S(x) =
∫ tb

ta

dt
(m

2
(ẋ(t))2 − V (x(t))

)
(3.31)

where

- 〈b, tb|a, ta〉 is the probability amplitude that a particle in the state a
at time ta be found at b at time tb.

- the domain of integration XXa,b is the space of paths x : [ta, tb] → IR

such that x(ta) = a and x(tb) = b, x ∈ XXa,b.

Domain of Integration XXa,b and the Normalization of its Volume
Element

XXa,b is not a vector space† unless a = 0 and b = 0. Satisfying only one
of these two vanishing requirements is easy and beneficial:

- easy; indeed choose the origin of the coordinates of IR to be either a or
b. The condition x(ta) = 0 is convenient for problems in diffusion, the
condition x(tb) = 0 is convenient for problems in quantum mechanics,

† Let x ∈ XXa,b and y ∈ XXa,b, then (x + y) ∈ XXa,b only if (x + y)(ta) = a and
(x + y)(tb) = b.
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- beneficial; a space of pointed paths is contractible (see section 7.1??)
and can be mapped into a space of paths on IRD.

Therefore we rewrite (3.30) as an integral over XXb, the space of paths
vanishing at tb; the other requirement is achieved by introducing δ (x(ta)− a):

〈b, tb|a, ta〉 =
∫

XXb

Dx exp (ıS(x)/~) δ(x(ta)− a). (3.32)

This is a particular case of

〈b, tb|φ, ta〉 =
∫

XXb

Dx exp (ıS(x)/~) φ(x(ta)), (3.33)

useful for solving Schrödinger equations, given an initial wave function φ.

An affine transformation from XXa,b onto XX0,0 expresses “the first path
integral” (3.30, 3.32) as an integral over a Banach space. This affine
transformation is known as the background method. We present it here
in the simplest case of paths with values in IRD. For more general cases
see chapter 4?? on semiclassical expansions, and for the general case of
a map from a space of pointed paths on a riemannian manifold MID to
a space of pointed paths on IRD see section 7.1??.

Let x ∈ XX0,0 and y be a fixed arbitrary path in XXa,b, possibly a
classical path defined by the action functional, but not necessarily so.

(y + x) ∈ XXa,b , x ∈ XX0,0 (3.34)

Let γs,Q, abbreviated to γ, be the gaussian defined by∫
XXb

dγ(x) exp(−2πı 〈x′, x〉) := exp(−πsWb(x′)), (3.35)

where XXb is the space of paths vanishing at tb

x(tb) = 0.

The gaussian volume defined by (3.35) is normalized to 1:

γ(XXb) :=
∫

XXb

dγ(x) = 1. (3.36)

The gaussian volume element on XX0,0 is readily computed by the linear
map

L : XXb=0 −→ IRD by xi −→ ui :=
〈
δta
, xi
〉
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γ0,0(XX0,0) :=
∫

XXb=0

dγ(x) δ
(
x1(ta)

)
. . . δ

(
xD(ta)

)
(3.37)

=
∫

IR

dγL(u) δ(u1) . . . δ
(
uD
)

(3.38)

where the gaussian γL is defined by the variance

WL = W ◦ L̃

with 〈(
L̃u′
)

i
, xi
〉

= u′iLx
i =

〈
u′iδta

, xi
〉
.

Therefore, using W (δta
) =

∫
dt δta

(t)
∫
ds δta

(s) G(t, s),

WL(u′) = W (u′δta
) = u′iu

′
jG

ij(ta, ta)

and

dγL(u) = du(detGij(ta, ta)/s)−1/2 exp
(
−π
s
uiujGij(ta, ta)

)
where GijGjk = δi

k.

Finally

γ0,0(XX0,0) = (detGij(ta, ta)/s)−1/2
. (3.39)

An affine transformation preserves gaussian normalization, therefore,

γa,b(XXa,b) = γ0,0(XX0,0). (3.40)

An affine transformation “shifts” a gaussian, and multiplies its Fourier
transform by a phase. This property is most simply seen in one dimen-
sion: it follows from∫

IR

dx√
a

exp
(
−πx

2

a
− 2πı 〈x′, x〉

)
= exp(−πax′2)

that ∫
IR

dx√
a

exp
(
−π (x+ l)2

a
− 2πı 〈x′, x〉

)
= exp 2πı 〈x′, l〉 exp(−πax′2). (3.41)

Under the affine transformation x ∈ XX0,0 7→ (y+x) ∈ XXa,b, γ0,0 7→ γa,b;
their respective Fourier transforms differ only by a phase, since their
gaussian volumes are equal.∫

XX0,0

dγ0,0(x) exp(−2πı 〈x′, x〉) = γ0,0(XX0,0) exp(−πsW0,0(x′)) (3.42)
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XXa,b

dγa,b(x) exp(−2πı 〈x′, x〉)

= γa,b(XXa,b) exp(2πı 〈x′, y〉) exp(−πsW0,0(x′)). (3.43)

Normalization dictated by Quantum Mechanics†
The first path integral (3.30)〈

b
∣∣∣exp

(
− ı

~
H(tb − ta)

)∣∣∣ a〉 =
∫

XXa,b

Dx exp(ıS(x)/~) (3.44)

implies a relationship between the normalization of volume elements in
path integrals and the normalization of matrix elements in quantum me-
chanics, itself dictated by the physical meaning of such matrix elements.
Two examples: a free particle, a simple harmonic oscillator. The most
common normalization in quantum mechanics is

〈x′′|x′〉 = δ(x′′ − x′), 〈p′′|p′〉 = δ(p′′ − p′); (3.45)

it implies [Sakurai] the following normalizations

〈x′|p′〉 =
1√
h

exp 2πı 〈p′, x′〉 /h (3.46)

and

|p〉 =
∫

IR

dx
1√
h

exp(2πı 〈p, x〉 /h)|x〉 (3.47)

i.e.

|pa = 0〉 =
1√
h

∫
IR

dx|x〉. (3.48)

The hamiltonian operator H0 of a free particle of mass m is

H0 := p2/2m (3.49)

and the matrix element〈
xb = 0

∣∣∣∣exp
(
−2πı

h
H0(tb − ta)

)∣∣∣∣ pa = 0
〉

=
1√
h
. (3.50)

The normalization of this matrix element corresponds to the normaliza-
tion of the gaussian γQ0/h on XXb∫

XXb

dγQ0/h(x) = 1 (3.51)

† Contributed by Ryoichi Miyamoto.
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which follows from the definition (3.35) of γQ0 , valid for s = 1, and s = ı.

Proof Set s = ı, set

Q0 :=
∫ tb

ta

dt m ẋ2(t), (3.52)

and∫
XXb

dγQ0/h(x) δ(x(ta) = xa) =
〈
xb = 0

∣∣∣∣exp
(
−2πı

h
H0(tb − ta)

)∣∣∣∣xa

〉
;

(3.53)
equivalently, S0 := 1

2Q0,∫
XXb

Ds,Q0/h(x) exp
(

2πı
h
S0(x)

)
δ(x(ta) = xa)

=
〈
xb = 0

∣∣∣∣exp
(
−2πı

h
H0(tb − ta)

)∣∣∣∣xa

〉
. (3.54)

In order to compare the operator and path integrals normalizations, we
integrate both sides of (3.53) with respect to xa.∫

XXb

dγQ0/h(x) =
∫
dxa

〈
xb = 0

∣∣∣∣exp
(
−2πı

h
H0(tb − ta)

)∣∣∣∣xa

〉
=

√
h

〈
xb = 0

∣∣∣∣exp
(
−2πı

h
H0(tb − ta)

)∣∣∣∣ pa = 0
〉
, by (3.48)

= 1 , by (3.50) (3.55)

The quantum mechanical normalization (3.50) implies the functional
path integral normalization (3.51).

The hamiltonian operator H0 +H for a simple harmonic oscillator is

H0 +H =
p2

2m
+

1
2
mω2x2. (3.56)

There is a choe of quadratic form for defining the gaussian volume ele-
ment, Q0 or Q0 +Q1,

1
2
(Q0 +Q1) corresponding respectively to S0 + S1 and H0 +H1.

(3.57)
We use first γQ0 ; the starting point (3.53) or (3.54) now reads∫

XXb

dγQ0/h exp
(πı
h
Q1(x)

)
δ(x(ta) = xa)
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≡
∫

XXb

DQ0/h(x) exp
(

2πı
h

(S0 + S1) (x)
)
δ(x(ta) = xa) (3.58)

=
〈
xb = 0

∣∣∣∣ exp
(
−2πı

h
(H0 +H1) (tb − ta)

)∣∣∣∣xa

〉
.

This matrix element, which can be found, for instance, in [3, (2.5.18)], is
used for computing the momentum to position matrix element as follows∫

XXb

dγQ0/h exp
πı

h
Q1(x)

=
√
h

〈
xb = 0

∣∣∣∣ exp
(
−2πı

h
(H0 +H1)(tb − ta)

)∣∣∣∣ pa = 0
〉

=
√
h

∫
IR

dx

〈
xb = 0

∣∣∣∣exp
(
−2πı

h
(H0 +H1)(tb − ta)

)∣∣∣∣x〉〈x∣∣∣∣pa = 0
〉

∫
XXb

dγQ0/h exp
πı

h
Q1(x)

=
√
h

∫
IR

dx

(
mω

ıh sin(ω(tb − ta))

)1/2

× exp
(

πımω

h sin(ω(tb − ta))
x2 cos(ω(tb − ta))

)
1√
h

= (cosω(tb − ta))−1/2
. (3.59)

On the other hand the l.h.s. of (3.59) is computed in section 4.2?? and
found equal to the following ratio of determinants (4.26??)∫

XXb

dγQ0/h(x) exp
πı

h
Q1(x)

≡
∫

XXb

DQ0(x) exp
(
−πı
h

(Q0(x) +Q1(x))
)

=
(

detQ0

det(Q0 +Q1)

)1/2

. (3.60)

The ratio of these infinite dimensional determinants is equal to a finite
dimensional determinant (appendix IE??)∫

XXb

dγQ0/h(x) exp
πı

h
Q1(x) = (cosω(tb − ta))−1/2

. (3.61)

In conclusion the path integral (3.61) is indeed a representation of the
matrix element on the r.h.s. of (3.59). This result confirms the normal-
izations checked in the simpler case of the free particle.
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Remark Eq. (3.61) also shows that one would be mistaken in assuming
that the gaussian dγQ+Q0(x) is equal to dγQ0(x) exp πı

h Q1(x). The
reason is that

dγQ0(x)
R
= DQ0x expπıQ0(x) (3.62)

dγQ0+Q(x)
R
= DQ0+Qx expπı(Q0 +Q1)(x) (3.63)

and

DQ0/DQ0+Q1

R
= |detQ0/det(Q0 +Q1)|1/2

. (3.64)

�

In the case of the forced harmonic oscillator (next section) it is simpler
to work with γQ0+Q1 than γQ0 . Given the action

S(x) =
1
2
(Q0 +Q1)− λ

∫
TT

dt f(t) x(t) (3.65)

we shall express the integral w.r.t. γQ0 as an integral w.r.t. γQ+Q0∫
XXb

dγQ0/h(x) exp
πı

h
Q(x) exp

(
−2πıλ

h

∫
TT

dt f(t) x(t)
)

=
∣∣∣∣ detQ0

detQ0 +Q

∣∣∣∣1/2 ∫
XXb

dγ(Q0+Q)/h(x) exp
(
−2πıλ

h

∫
TT

dt f(t) x(t)
)

(3.66)

and use appendix IE for the explicit value of the ratio of these infinite
dimensional determinants, namely

|detQ0/detQ0 +Q|1/2 = (cosω(tb − ta))−1/2. (3.67)

Remark As noted in section 1.1??, Wiener showed the key role played
by Differential Spaces. Here the kinetic energy Q0 can be defined on a
differential space, Q0 +Q1 cannot. Therefore, one often needs to begin
with Q0 before introducing more general gaussians.
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Choosing a Quadratic Form Q on XXb

The integrand, exp (iS(x)/~), suggests three choices for Q:

- Q can be the kinetic energy.
- Q can be the kinetic energy plus any existing quadratic terms in V .
- Q can be the second term in the functional Taylor expansion of S.

This third option is, in general, the best one because the corresponding
gaussian term contains the most information. See for instance section
4.3?? the anharmonic oscillator. The expansion of S around its value
for the classical path (the solution of the Euler-Lagrange equation) is
called the semiclassical expansion of the action. It will be exploited in
Chapter 4.

The Forced Harmonic Oscillator

The action of the forced harmonic oscillator is

S(x) =
∫

TT

dt
(m

2
ẋ2(t)− m

2
ω2x2(t)− λf(t)x(t)

)
. (3.68)

The forcing term f(t) is assumed to be without physical dimension.
Therefore the physical dimension of λ/~ is L−1T−1 when x(t) is of di-
mension L.

We choose the quadratic form Q(x) to be

Q(x) := Q0(x) +Q1(x) =
m

h

∫
TT

dt (ẋ2(t)−ω2x2(t)), h = 2π~ (3.69)

and the potential contribution∫
TT

dt V (x(t)) = 2π
λ

h
〈f, x〉 . (3.70)

The quantum mechanical transition amplitudes are given by path inte-
grals of the type (3.66). To begin with we compute

I :=
∫

XX0,0

dγ0,0(x) exp
(
−2πı

λ

h
〈f, x〉

)
(3.71)

where

dγ0,0(x)
R
= DQ(x) exp(πıQ(x)) (3.72)
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is defined by∫
XX0,0

dγ0,0(x) exp(−2πı 〈x′, x〉) = γ0,0(XX0,0) exp(−ıπW0,0(x′)). (3.73)

The kernel G0,0 of W0,0 is the unique Green’s function of the differential
operator D defined by Q(x) on XX0,0 (See Appendix IE)

Q(x) = 〈Dx, x〉

D = −m
h

(
d2

dt2
+ ω2

)
(3.74)

G0,0(r, s) =
h

m

1
ω
θ(s− r) sinω(r − ta)

1
sinω(ta − tb)

sinω(tb − s)

− h

m

1
ω
θ(r − s) sinω(r − tb)

1
sinω(tb − ta)

sinω(ta − s),

(3.75)

where θ is the Heaviside step function equal to 1 for positive arguments
and zero otherwise.

The gaussian volume of XX0,0 ⊂ XXb=0 is given by (3.39) in terms of
the kernel of Wb defining the gaussian γ on XXb=0 by (3.35), i.e. in terms
of the Green’s function (see Appendix IE (4.21a))

Gb(r, s) =
h

m

1
ω
θ(s− r) cosω(r − ta)

1
cosω(ta − tb)

sinω(tb − s)

− h

m

1
ω
θ(r − s) sinω(r − tb)

1
cosω(tb − ta)

cosω(ta − s),

(3.76)

Gb(ta, ta) =
h

m

1
ω

sinω(tb − ta)
1

cosω(tb − ta)
(3.77)

γ0,0(XX0,0) =
(
mω

ıh

cosω(tb − ta)
sinω(tb − ta)

)1/2

(3.78)

•A quick calculation of (3.47)
The integrand being the exponential of a linear functional we can use
the Fourier transform (3.49) of the volume element with x′ = λ

hf

I = γ0,0(XX0,0) exp
(
−ıπW0,0

(
λ

h
f

))
(3.79)
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with

W0,0

(
λ

h
f

)
=
(
λ

h

)2 ∫
TT

dr

∫
TT

ds f(r) f(s) G0,0(r, s) (3.80)

given explicitly by (3.78) and (3.75). Finally bringing together these
equations with (3.66) (3.67), one obtains

〈0, tb|0, ta〉 =
(

mω

ıh sinω(tb − ta)

)1/2

× exp

(
−ıπ

(
λ

h

)2 ∫
TT

dr

∫
TT

ds f(r)f(s)G00(r, s)

)
.

(3.81)

This amplitude is identical with the amplitude computed by L. S. Schul-
man [4] when x(ta) = 0, x(tb) = 0.

•A general technique
The quick calculation of (3.47) does not display the power of linear maps.
We now compute the more general expression

I :=
∫

XX0,0

dγ0,0(x) exp
(
−2πı

λ

h

∫
TT

dt V (x(t))
)

(3.82)

following the traditional method

i) expand the exponential

I =:
∑

In (3.83)

In =
1
n!

(
λ

ı~

)n ∫
XX0,0

dγ0,0(x)
(∫

TT

dt V (x(t))
)n

ii) exchange the order of integrations

In =
1
n!

(
λ

ı~

)n ∫
TT

dt1 . . .

∫
TT

dtn

∫
XX0,0

dγ0,0(x)V (x(t1)) . . . V (x(tn))

(3.84)

If V (x(t)) is a polynomial in x(t), use a straightforward generalization
of the polarization formula (2.47??) for computing gaussian integrals of
multilinear polynomials.
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If V (x(t)) = f(t)x(t), then

In =
1
n!

(
λ

ı~

)n ∫
TT

dt1f(t1) . . .
∫

TT

dtnf(tn)

×
∫

XX0,0

dγ0,0(x) 〈δt1 , x〉 . . . 〈δtn , x〉 . (3.85)

Each individual integral In can be represented by diagrams as shown
after (2.47??). A line G(r, s) is now attached to f(r) and f(s) which
encode the potential. Each term f(r) is attached to a vertex.

The “quick calculation” bypassed the expansion of the exponential
and the (tricky) combinatorics of the polarization formula.

Remarks

• It has been proved[5] that the gaussian covariance is the Feynman
propagator for the action functional.

• On the space XX0,0, the paths are loops, and the expansion I =
∑
n
In

is often called loop expansion. An expansion terminating at In is said
to be n–loop order. The physical dimension analysis of the integral
over XX0,0 shows that the loop expansion is an expansion in powers
of h. Indeed a line representing G is of order h, a vertex is of order
h−1 [See (3.75, 3.70)]. Let L be the number of lines, V the number of
vertices, and K the number of independent closed loops, then

L− V = K − 1.

Therefore every diagram with K independent closed loops has a value
proportional to hk−1.

3.4 Phase space path integrals

The example in section 3.3 begins with the lagrangian (3.44) of the sys-
tem; the paths take their values in a configuration space. In this section
we construct gaussian path integrals over paths taking their values in
phase space. As before, the domain of integration is not the limit n = ∞
of IR2n, but a function space. The method of discretizing path integrals
presented in section 3.1 provides a comparison for earlier heuristic re-
sults obtained by replacing a path with a finite number of its values
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[6, 7, 8].

Notation

(MID, g): the configuration space of the system, metric g,
TMID: the tangent bundle over MI
T ∗MID: the cotangent bundle over MI, i.e. the phase space
L : TMI −→ IR: the lagrangian
H : T ∗MI −→ IR: the hamiltonian
(q, p): a classical path in phase space
(x, y): an arbitrary path in phase space,

x : TT −→ IRD , y : TT −→ IRD , TT = [ta, tb]

A path (x, y) is characterized by D initial vanishing boundary condi-
tions, and D final vanishing boundary conditions.
θ := pi dq

i −H dt, the canonical 1-form (a relative integral invariant of
the hamiltonian Pfaff system)
F := dθ, the canonical 2-form, a symplectic form on TT ∗MI (see section
6 for phase space in the language of symplectic geometry.)

The phase space action functional is

S(x, y) :=
∫

TT

y(t) dx(t)−H(y(t), x(t), t) dt (3.86)

The action functions, solutions of the Hamilton-Jacobi equation for
the various boundary conditions,

x(ta) = xa , x(tb) = xb , p(ta) = pa , p(tb) = pb,

are

S(xb, xa) = S(q, p) (3.87)

S(xb, pa) = S(q, p) + 〈pa, q(ta)〉 (3.88)

S(pb, xa) = S(q, p)− 〈pb, q(tb)〉 (3.89)

S(pa, pb) = S(q, p)− 〈pb, q(tb)〉+ 〈pa, q(ta)〉 . (3.90)
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Jacobi operator

The Jacobi operator in configuration space is obtained by varying a 1-
parameter family of paths in the action functional (Appendix IE). The
Jacobi operator in phase space is obtained by varying a 2-parameter
family of paths in the phase space action functional. Let

u, v ∈ [0, 1]

and let

γ̄(u, v) : TT −→ T ∗MI

by
{

ᾱ(u) : TT →MI, ᾱ(0) = q, ᾱ(1) = x

β̄(u, v) : TT → T ∗MI, β̄(0, 0) = p, β̄(1, 1) = y
(3.91)

ᾱ(u)(t) = α(u, t) , β̄(u, v)(t) = β(u, v, t).

For MID = IRD, the family β̄ depends only on v.

Let ζ be the 2D dimensional vector (D contravariant, D covariant
components):

ζ :=
(
ξ

η

)
where

ξ :=
dᾱ(u)
du

∣∣∣∣
u=0

η :=
∂β̄(u, v)
∂v

∣∣∣∣
v=0

.

The expansion of the action functional S(x, y) around S(q, p) is

(S ◦ γ̄)(1, 1) =
∞∑

n=0

1
n!

(S ◦ γ̄)(n)(0, 0).

The first variation vanishes for paths satisfying the Hamilton set of
equations. The second variation defines the Jacobi operator.

Example: The phase space Jacobi equation in IRD×IRD. The expansion
of the action functional (3.86) gives the following Jacobi equation(

−∂2H/∂qα∂qβ −∂/∂t− ∂2H/∂qα∂pβ

∂/∂t− ∂2H/∂pαdq
β −∂2H/∂pα∂pβ

)(
ξβ

ηβ

)
= 0.
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Example: A free particle in the riemannian manifold MID with metric
g. Varying u results in changing the fibre T ∗α(u,t)MI

D; the momentum
β(u, v, t) is conveniently chosen to be the momentum parallel trans-
ported along a geodesic beginning at α(0, t) ; the momentum is then
uniquely defined by

∇uβ = 0,

the vanishing of the covariant derivative of β along the path α(·, t) : u 7→
α(u, t).

The action functional is

S(x, y) =
∫

TT

dt

(
〈p(t), q̇(t)〉 − 1

2m
(p(t)|p(t))

)
The bracket 〈, 〉 is the duality pairing of TMI and T ∗MI and the paren-
thesis (|) is the scalar product defined by the inverse metric g−1.

The Jacobi operator is

J (q, p) =
(
− 1

mR
δ
αβγ g

βε pε pδ −δγ
α ∇t

δα
γ ∇t − 1

mg
αγ

)

Covariances

The second variation of the action functional in phase space provides a
quadratic form Q on the space parameterized by (ξ, η) with

ξ ∈ TxMI
D , η ∈ T ∗yMID

Q(ξ, η) = 〈J (q, p) · (ξ, η), (ξ, η)〉

where J (q, p) is the Jacobi operator defined by a classical path (q, p).
There exists a quadratic form W , corresponding to the quadratic form
Q; it is defined by the Green functions of the Jacobi operator

W (ξ′, η′) = (ξ′α, η
′α)

(
Gαβ

1 Gα
2 β

G3
α

β G4
αβ

)(
ξ′β
η′β

)
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where

Jr(q, p)G(r, s) = 11δs

Jr acts on the r-argument of the 2D×2D matrix G made of the 4 blocks
(G1, G2, G

3, G4)

Once the variance W and the covariance G are identified, path in-
tegrals over phase space are constructed as in the previous examples.
For explicit expressions which include normalization, correspondences
with configuration space path integrals, discretization of phase space in-
tegrals, physical interpretations of the covariances in phase space, and
infinite dimensional Louiville volume elements, see, for instance, John
LaChapelle’s Ph.D. dissertation [9] “Functional Integration on Symplec-
tic Manifolds.”
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