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Grassmann analysis: basics

9.1 Introduction

Parity is ubiquitous, and Grassmann analysis is a tool well adapted for
handling systematically parity and its implications in all branches of
algebra, analysis, geometry and topology. Parity describes the behavior
of a product under exchange of its two factors. The so-called Koszul’s
parity rule states: “Whenever you interchange two factors of parity 1,
you get a minus sign”. Formally the rule defines graded commutative
products.

AB = (−1)ÃB̃ BA ; (9.1)

where Ã ∈ {0, 1} denotes the parity of A. Objects with parity zero
are called even, and objects with parity one odd. The rule also defines
graded anticommutative products. For instance,

A ∧B = −(−1)ÃB̃ B ∧A . (9.2)

A graded commutative product [A,B] can be either a commutator [A,B]−,
or an anticommutator [A,B]+.
A graded anticommutative product {A,B} can be either an anticom-
mutator {A,B}+, or a commutator {A,B}−. Most often, the context
makes it unnecessary to use the + and − signs.

There are no (anti)commutative rules for vectors and matrices. Parity
is assigned to such objects in the following way.

• The parity of a vector is determined by its behavior under multipli-
cation with a scalar z:

zX = (−1)z̃X̃ Xz . (9.3)
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• A matrix is even if it preserves the parity of graded vectors and odd
if it inverts the parity.

Vectors and matrices do not necessarily have well-defined parity, but
they can always be decomposed into a sum of even and odd parts.

The usefulness of Grassmann analysis in physics became apparent in
the works of F.A. Berezin [1], and M.S. Marinov [2]. We refer the reader
to [3], [4], [5], [6], and [7] for references and recent developments. The
next section summarizes the main formulae of Grassmann analysis.

As a rule of thumb, it is most ofen sufficient to insert the word
“graded” in the corresponding ordinary situation. For example an or-
dinary form is an antisymmetric covariant tensor, a Grassmann form
is a graded antisymmetric covariant tensor: ω...αβ... = −(−1)α̃β̃ ω...βα...

where α̃ ∈ {0, 1} is the grading of α. Therefore a Grassmann form is
symmetric in the interchange of two Grassmann indices.

9.2 A compendium of Grassmann analysis

This section is extracted from the Master Thesis [8] of Maria E. Bell
“Introduction to Supersymmetry”. We collect here formulae which are
selfexplanatory as well as formulae whose meaning is given in the fol-
lowing sections, in order that all symbols be located in the same section.

Basic graded algebra, a dictionary

• Ã := parity of A ∈ {0, 1}
• Parity of a product:

ÃB = Ã+ B̃mod2 (9.4)

• Graded commutator:

[A,B] := AB − (−1)ÃB̃ BA or [A,B]∓ = AB ∓BA (9.5)

• Graded anticommutator:

{A,B} := AB + (−1)ÃB̃ BA or {A,B}± = AB ±BA (9.6)

• Graded Leibnitz rule for a differential operator:

D(A ·B) = DA ·B + (−1)ÃD̃ (A ·DB) (9.7)

(previously called “antileibnitz” when D̃ = 1).
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• Graded symmetry:

A...αβ... = (−1)α̃β̃ A...βα... (9.8)

• Graded antisymmetry:

A...αβ... = −(−1)α̃β̃ A...βα... (9.9)

• Graded Lie derivative:

LX = [iX , d]+ for X̃ = 0, and LΞ = [iΞ, d]− for Ξ̃ = 1 . (9.10)

• Grassmann generators {ξµ} ∈ Λν ,Λ∞,Λ

ξµξσ = −ξσξµ ; Λ = Λeven ⊕ Λodd (9.11)

• Supernumber z = u+ v, u is even, v is odd

z = zB + zS , zB ∈ R is the body, zS is the soul (9.12)

• Complex conjugation of supernumber:

(zz′)∗ = z∗z′∗ . (9.13)

Complex conjugation is also defined (zz′)∗ = z′∗z∗. We prefer the
definition (9.13) for the following reason [5]: Let a supernumber

ψ = c0 + ci ξ
i +

1
2!
cij ξ

i ξj + . . . (9.14)

be called real if all its coefficients ci1...ip
are real numbers, and let

ψ = ρ+ iσ

where both ρ and σ have real coefficients. Define complex conjugation
by

(ρ+ iσ)∗ = ρ− iσ . (9.15)

Then the generators {ξi} are real, and the sum and product of 2 real
supernumbers are real. Furthermore

ψ is real⇔ ψ∗ = ψ . (9.16)

With the other definition of complex conjugation, the product of two
real supernumbers is purely imaginary.



4 Grassmann analysis: basics

• Superpoints. Real coordinates x, y ∈ Rn, x = (x1, . . . , xn)

(x1, . . . , xn, ξ1, . . . , ξν)∈Rn|ν , condensed notationxA =(xa, ξα) (9.17)

(u1, . . . , un, v1, . . . , vν) ∈ Rn
c × Rν

a . (9.18)

• Supervectorspace, i.e. a graded module over the ring of supernumbers

X = U + V, U even, V odd

X = e(A)
AX

XA = (−1)X̃Ã AX .

The even elements of the basis (e(A))A are listed first. A supervector
is even if each of its coordinates AX has the same parity as the cor-
responding basis element e(A). It is odd if the parity of AX is opposite
to the parity of e(A). Parity cannot be assigned in other cases.

• Graded Matrices. Four different uses of graded matrices:
given V = e(A)

AV = ē(B)
BV̄ with A = (a, α) and e(A) = ē(B)

BMA

then BV̄ = BMA
AV

given 〈ω, V 〉 = ωA
AV = ω̄B

BV̄ where ω = ωA
(A)θ = ω̄B

(B)θ̄

then 〈ω, V 〉 = ωA〈(A)θ, e(B)〉 BV implies 〈(A)θ, e(B)〉 = AδB ,
ωA = ω̄B

BMA, and (B)θ̄ = BMA
(A)θ.

• Matrix parity:

M̃ = 0, if ∀A and B, B̃MA + ˜columnB + r̃owA = 0mod 2 . (9.19)

M̃ = 1, if ∀A and B, B̃MA + ˜columnB + r̃owA = 1mod 2 . (9.20)

By multiplication, an even matrix preserves the parity of the vector
components, an odd matrix inverts the parity of the vector components.

• Supertranspose:

(MN)ST = (−1)M̃Ñ NSTMST . (9.21)

• Superhermitian conjugate:

MSH := (MST)∗ = (M∗)ST (9.22)

(MN)SH = (−1)M̃Ñ NSHMSH . (9.23)

• Graded operators on Hilbert spaces. An operator and its eigenvalues
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have the same parity. Let |Ω〉 be a simultaneous eigenstate of Z and Z ′

with eigenvalues z and z′:

ZZ ′ |Ω〉 = zz′ |Ω〉 (9.24)

〈Ω|Z ′SH ZSH = 〈Ω| z′∗z∗ . (9.25)

• Supertrace:

StrM = (−1)Ã AMA . (9.26)

Example. A matrix of order (p, q). Assume the p even rows and columns
written first

M0 =

( )
=
(
A0 C1

D1 B0

)
M1 =

( )
=
(
A1 C0

D0 B1

)
.

These are two matrices of order (1, 2). The shaded areas cover even
elements. The matrix on the left is even; the one on the right is odd.

StrM0 = trA0 − trB0 ; StrM1 = −trA1 + trB1 . (9.27)

• Super determinant (a.k.a. Berezinian). It is defined so that it satisfies
the basic properties

BerMN = BerM BerN (9.28)

δ lnBerM = Str(M−1δM) (9.29)

Ber expM = expStrM (9.30)

Ber
(
A C

D B

)
:= det(A− CB−1D)(detB)−1 . (9.31)

• Parity assignments:

d̃ = 1 (d̃x) = d̃+ x̃ = 1 (d̃ξ) = d̃+ ξ̃ = 0 , (9.32)

x ordinary variable, ξ Grassmann variable,

(∂̃/∂x) = x̃ = 0 (∂̃/∂ξ) = ξ̃ = 1 (9.33)
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ĩ = 1 ĩX = ĩ+ X̃ = 1 ĩΞ = ĩ+ Ξ̃ = 0 . (9.34)

Parity of real p-forms: even for p = 0 mod 2, odd for p = 1 mod 2
Parity of Grassmann p-forms: always even.
Graded exterior product ω ∧ η = (−1)ω̃η̃ η ∧ ω.

Forms and densities will be introduced in Section 9.4. In the following
four entries, we list definitions and properties of objects defined on or-
dinary manifolds MD, first without metric tensor, then on riemannian
manifolds (MD, g).

Forms and densities of weight one on an ordinary manifolds MD

(without metric tensor)

(A•, d) Ascending complex of forms d : Ap → Ap+1

(D•,∇· or b) Descending complex of densities ∇· : Dp → Dp−1

Dp ≡ D−p used for ascending complex in negative degrees.

• Operators on A•(MD):
M(f) : Ap → Ap, multiplication by a scalar function f : MD → R
e(f) : Ap → Ap+1 by ω 7→ df ∧ ω
i(X) : Ap → Ap−1 by contraction with the vectorfield X
LX ≡ L(X) = i(X)d+ di(X) : Ap → Ap by the Lie derivative w.r.t. X.

• Operators on D•(MD):
M(f) : Dp → Dp, multiplication by scalar function f : MD → R
e(f) : Dp → Dp−1 by F → df · F (contraction with the form df)
i(X) : Dp → Dp+1 by multiplication and partial antisymmetrization
LX ≡ L(X) = i(X)∇+∇i(X) : Dp → Dp by Lie derivative w.r.t. X.

• Forms and densities of weight one on (MD, g):
Cg : Ap → Dp (see eq. (9.59))
∗ : Ap → AD−p s.t. T (ω | η) = ω ∧ ∗η
δ : Ap+1 → Ap is the metric transpose defined by

[dω | η] =: [ω | δη] s.t. [ω | η] :=
∫
T (ω | η)

δ = C−1
g bCg (see eq. (9.66))

β : Dp+1 → Dp is defined by Cg dC
−1
g .

In the following four entries we list definitions and properties of objects
defined on Grassmann variables.
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Grassmann calculus on ξλ ∈ Λν or Λ∞ or unspecified Λ

dd = 0 remains true, therefore

∂

∂ξλ

∂

∂ξµ
= − ∂

∂ξµ

∂

∂ξλ
(9.35)

dξλ ∧ dξµ = dξµ ∧ dξλ . (9.36)

• Forms and densities of weight −1 on R0|ν :
Forms are graded totally symmetric covariant tensors. Densities are
graded totally symmetric contravariant tensors of weight −1.
(A•(R0|ν), d) Ascending complex of forms not limited above
(D•(R0|ν),∇· or b) Descending complex of densities not limited above.

• Operators on A•(R0|ν):
M(ϕ) : Ap(R0|ν)→ Ap(R0|ν) multiplication by a scalar function ϕ
e(ϕ) : Ap(R0|ν)→ Ap+1(R0|ν) by e(ϕ) = dϕ∧
i(Ξ) : Ap(R0|ν)→ Ap−1(R0|ν) by contraction with the vectorfield Ξ
LΞ ≡ L(Ξ) := i(Ξ)d− di(Ξ) maps Ap(R0|ν)→ Ap(R0|ν).

• Operators on D•(R0|ν):
M(ϕ) : Dp(R0|ν)→ Dp(R0|ν), multiplication by scalar function ϕ
e(ϕ) : Dp(R0|ν)→ Dp−1(R0|ν) by F 7→ d(ϕ) · F
i(Ξ) : Dp(R0|ν)→ Dp+1(R0|ν) multiplication and partial symmetrization

LΞ ≡ L(Ξ) = i(Ξ)∇−∇i(Ξ) : Dp(R0|ν)→ Dp(R0|ν)

by Lie derivative w.r.t. Ξ.

In section 10.2 we construct a supersymmetric Fock space. The operators
e and i defined above can be used for representing

fermionic creation operators: e(xm)
fermionic annihilation operators: i(∂/∂xm)
bosonic creation operators: e(ξµ)
bosonic annihilation operators: i(∂/∂ξµ).

We refer to [3] to [7] for the different definitions of graded mani-
folds, supermanifolds, supervarieties, superspace and sliced manifolds
proposed by various people. Here we consider simply superfunctions F
on Rn|ν , that is, functions of n real variables {xa} and ν Grassmann
variables {ξα}:

F (x, ξ) =
ν∑

p=0

1
p!
fα1...αp(x) ξα1 . . . ξαp (9.37)
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where the functions fα1...αp
are smooth functions on Rn, antisymmetric

in the indices α1, . . . , αn.

9.3 Berezin integration

A Berezin integral is a derivation

The fundamental requirement on a definite integral is expressed in terms
of an integral operator I and a derivative operator D on a space of
functions, namely

DI = ID = 0 . (9.38)

The requirement DI = 0 for functions of real variables f : RD → R
says that the integral does not depend on the variable of integration

d

dx

∫
f(x) dx = 0 , x ∈ R . (9.39)

The requirement ID = 0 on the space of functions vanishing on their
domain boundaries says ∫

d

dx
f(x) dx = 0 . (9.40)

This is the foundation of integration by parts

0 =
∫
d(f(x) g(x)) =

∫
df(x) · g(x) +

∫
f(x) dg(x) , (9.41)

and of the Stokes’ theorem on a form ω,∫
M
dω =

∫
∂M

ω = 0 since ∂M is an empty set. (9.42)

We shall use the requirement ID = 0 in Section 11.1 for imposing a
condition on volume elements.

We now use the fundamental requirements on Berezin integrals defined
on functions f of the Grassmann algebra Λν . The condition DI = 0 says

∂

∂ξi
I(f) = 0 for i ∈ {1, . . . , ν} . (9.43)

Any operator on Λν can be set in normal ordering†∑
CJ

Kξ
K ∂

∂ξJ
(9.44)

† This ordering is also the operator normal ordering, creation operator followed by
annihilation operator, since e(ξµ) and i(∂/∂ξµ) can be interpreted as creation and
annihilation operators (see Section 10.2).
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with J,K multi-ordered indices. Therefore the condition DI = 0 implies
that I is a polynomial in ∂/∂ξi,

I = Q

(
∂

∂ξ1
. . .

∂

∂ξν

)
. (9.45)

The condition ID = 0, namely

Q

(
∂

∂ξ1
, . . . ,

∂

ξν

)
∂

∂ξµ
= 0 for every i ∈ {1, . . . , ν} , (9.46)

implies

I = constant
∂

∂ξν
. . .

∂

∂ξ1
. (9.47)

A Berezin integral is a derivation. The constant is a normalization con-
stant chosen for convenience in the given context. Usual choices include
1, (2πi)1/2, (2πi)−1/2.

Choosing the normalization constant

Let f(ξ) = ξ, then according to (9.36)

I(f) = constant also written
∫
ξ dξ =

∫
dξ ξ = constant . (9.48)

The choice of constant can be dictated by the Fourier transform of the
Dirac delta-function, i.e. by the Fourier transform convention (see Con-
ventions). Here

δ(x) =
∫
dk exp(2πikx) . (9.49)

In Grassmann variables

δ(ξ) = ξ(constant)−1 .

If we write

δ(ξ) =
∫
dκ exp(2πiκξ) =

∫
dκ(1 + 2πiκξ)

= constant (2πi)ξ = ξ(constant)−1ξ by ()

then

(constant)2 = (2πi)−1 . (9.50)

On the other hand, if we write

δ(ξ) =
1
2π

∫
dκ exp(iκξ) = (2π)−1i constant
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then

(constant)2 = −2πi .

We could also write δ(ξ) = 1
2π

∫
exp(iκξ)dκ, then

(constant)2 = 2πi .

Here ∫
dξ · ξ = (2πi)−1/2 . (9.51)

Change of variable of integration

Since integrating f(ξ1, . . . , ξν) is taking its derivatives w.r.t. ξ1, . . . , ξν ,
a change of variable of integration is most easily performed on the deriva-
tives. Given a change of coordinates f , we recall the induced transforma-
tions on the tangent and cotangent spaces. Let y = f(x) and θ = f(ζ);

Fig. 9.1.

dy1 ∧ . . . ∧ dyD = dx1 ∧ . . . ∧ dxD

(
det

∂yi

∂xj

)
(9.52)

and∫
dx1∧. . .∧dxD(F ◦f)(x)

(
det

∂f i

∂xj

)
=
∫
dy1∧. . .∧dyDF (y) . (9.53)

On the other hand, for an integral over Grassmann variables, the anti-
symmetry leading to a determinant is the antisymmetry of the product
∂1 . . . ∂D. And(

∂

∂ζ1
. . .

∂

∂ζD

)
(F ◦ f)(ζ) =

(
det

∂θλ

∂ζµ

)
∂

∂θ1
. . .

∂

∂θD
F (θ) . (9.54)
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The determinant is now on the right hand side, it will become an inverse
determinant when brought to the left hand side as in (9.53).

9.4 Forms and densities

On an ordinary manifold MD, a volume form is an exterior differential
form of degree D; it is called a “top form” because there are no forms
of degree higher than D on MD – a consequence of the antisymmetry of
forms. In Grassmann calculus, forms are symmetric, there are forms of
arbitrary degrees on R0|ν ; therefore there are no “top forms” on R0|ν .
We must look for another concept of volume element on MD which can
be generalized to R0|ν .

In the thirties [9] densities were extensively used in defining and com-
puting integrals. Densities fell in disfavor, possibly because in contrast
to forms they do not make an algebra. On the other hand, complexes
(ascending and descending) can be constructed with densities as well as
with forms, in ordinary and Grassmann variables.

By forms (exterior differential forms) one means totally antisymmetric
covariant tensors. By densities (linear tensor densities) one means totally
antisymmetric contravariant tensor-densities of weight one.

We recall properties of forms and densities on ordinary D-dimensional
manifolds MD which can be established in the absence of a metric tensor
because they are readily useful in Grassmann calculus.

Ascending complex of forms on MD

Let Ap be the space of p-forms on MD and d the exterior differentiation

d : Ap → Ap+1 . (9.55)

Since dd = 0, the graded algebra A• is an ascending complex w.r.t. the
operator d

A0 d−→ A1 d−→ . . .
d−→ AD . (9.56)

Descending complex of densities on MD

Let Dp be the space of p-densities on MD and ∇ the divergence operator,
also labeled b

∇· : Dp → Dp−1 , ∇· ≡ b . (9.57)

Since bb = 0, D• (which is not a graded algebra) is a descending complex
w.r.t. the divergence operator

D0
b←− D1

b←− . . . b←− Dn . (9.58)
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Metric-dependent and dimension-dependent transformations

The metric tensor g provides a correspondence Cg between a p-form and
a p-density. For instance, let F by a 2 form, then

Fαβ =
√

det gµν Fγδ g
αγ gβδ (9.59)

are components of a 2-density. The metric g is used twice: a) raising
indices, b) introducing weight 1 by multiplication with

√
det g. This

correspondence does not depend on the dimension D.
On an orientable manifold, the dimension D can be used for trans-

forming a p-density into a (D − p)-form. For example let D = 4 and
p = 1

tαβγ := ε1234αβγδ Fδ (9.60)

where the alternating symbol ε defines an orientation.
The star operator (Hodge-de Rham operator, see Ref. [10], p. 295)

combines the metric-dependent and the dimension-dependent transfor-
mations; it transforms a p-form into a (D − p)-form by

T (ω | η) = ω ∧ ∗η (9.61)

where, as usual, the scalar product of 2 p-form ω and η is

(ω | η) =
1
p!
ωi1...ip η

i1...ip (9.62)

and T is the volume element, given in example 1 below.
We shall exploit the correspondence mentioned in the first paragraph

Cg : Ap → Dp (9.63)

for constructing a descending complex on A• w.r.t. to the metric trans-
pose δ of d (Ref. [10], p. 296)

δ : Ap+1 → Ap (9.64)

and an ascending complex on D•

β : Dp → Dp+1 (9.65)

where β is defined by the following diagram

Ap
δ←−−−−−−−−−−−→
d

Ap+1

Cg

y yCg

Dp

β←−−−−−−−−−−−→
b

Dp+1


⇐⇒

{
δ = C−1

g bCg

β = Cg dC
−1
g

. (9.66)
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Example 1. Volume element on an oriented D-dimensional riemannian
manifold. The volume element is

T := dx1 ∧ . . . ∧ dxD I = dx1 ∧ . . . ∧ dxD
√

det g with I ∈ D0 (9.67)

where I is a scalar density corresponding to the top form

dx1 ∧ . . . ∧ dxD ∈ AD (9.68)

I is indeed a scalar density since, under the change of coordinates x′j =
Aj

ix
i

I ′ = (detA) I . (9.69)

Example 2. In the thirties, the use of densities was often justified by
the fact that in a number of useful examples it reduces the number of
indices. For example, a vector-density in M4 can replace a 3-form

Il =
√

det g εijkl
1234 tijk . (9.70)

An axial vector in R3 can replace a 2-form.

Grassmann forms

Two properties of forms on real variables remain true for forms on Grass-
mann variables, namely

ddω = 0 (9.71)

d(ω ∧ θ) = dω ∧ θ + (−1)ω̃d̃ ω ∧ dθ (9.72)

where ω̃ and d̃ = 1 are the parities of ω and d, respectively. A form on
Grassmann variables is a graded totally antisymmetric covariant tensor;
this means that a Grassmann p-form is always even.

Since a Grassmann p-form is symmetric the ascending complexA∗(R0|ν)
does not terminate the ν-forms.

Grassmann densities

Two properties of densities on real variables remain true for densities F
on Grassmann variables, namely

(∇·)(∇·)F = 0 . (9.73)

Since a density is a tensor of weight 1, multiplication by a tensor of
weight zero is the only possible product which maps a density into a
density.

(∇·)(XF ) = (∇ ·X) · F + (−1)X̃∇̃X∇ · F, X a vector field . (9.74)
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Since a density on Grassmann variables is a symmetric contravariant
tensor; the descending complex D•(R0|ν) of Grassmann densities with
respect to ∇· does not terminate at ν-densities.

Volume elements

The purpose of introducing densities was a definition of volume elements
suitable both for ordinary and Grassmann variable. In example 1 ([9]
p. 67) we showed how a scalar density enters a volume element on MD

and we gave the transformation ([9] p. 69) of a scalar density under a
change of coordinates in MD. But for generalizing scalar densities to
Grassmann volume element, we start from Pauli’s definition ([11] p. 32)
which follows Weyl’s terminology ([12] p. 109). “If

∫
Fdx is an invariant

[under a change of coordinate system] then F is called a scalar density”.
Under the change of variable y(x)

F ′ = det(∂yj/∂xi)F . (9.75)

If the Berezin integral∫
dξν . . . dξ1 f(ξ1, . . . , ξν) =

∂

∂ξν
. . .

∂

∂ξ1
f(ξ1, . . . , ξν)

is invariant under the change of coordinates θ(ξ) then f is a Grassmann
scalar density. It follows from the formula for change of variable of
integration (9.38) that a Grassmann scalar density is a scalar divided by
det(∂θλ/∂ξµ)

f ′ = (det(∂θλ/∂ξµ))−1 f . (9.76)
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