
USING CLASS FIELD THEORY TO CONSTRUCT
CURVES WITH MANY POINTS

KRISTIN LAUTER AND MICHAEL ZIEVE

The Weil bound says that the number of Fq-rational points on a
genus-g curve is at most q + 1 + 2g

√
q. Various improvements to this

bound are due to Stark, Manin, Ihara, Serre, Drinfeld-Vladut, Oesterlé,
Stöhr-Voloch, Lauter, and others. In order to test whether these im-
proved bounds are best possible, it is necessary to construct curves
with many points.

We need a supply of curves for which we can quickly compute the
basic invariants (genus, number of rational points). In this project
the curves we use are abelian covers of the projective line. Class field
theory provides a description of all such covers, so the steps of this
project are:

1. Compute the invariants of curves beginning from the class field
theoretic description;

2. Make choices of the class field theoretic data which will yield
curves with many points;

3. Compute explicit equations for the corresponding curves, by means
of Carlitz modules.

In the second step, by ‘curves with many points’ we mean curves
whose number of Fq-rational points comes close to the best known
upper bound for that choice of g and q. Of course, the closer the
better!

We will split into two groups; one group will focus on the first two
steps, the other will focus on the third. These steps are described in
more detail in the next three sections. The fourth section discusses
further directions we can pursue if time permits.

1. Class field theory

For a detailed introduction to class field theory constructions of
curves with many rational points, see [8] and [6].

In this section we recall the relevant facts from class field theory. For
convenience, we use the language of function fields (for which a basic
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reference is [10]). Let K = Fq(t) and R = Fq[t]. We often identify
irreducible polynomials in R with the corresponding places of K.

Theorem. For any nonconstant polynomial M ∈ R, there exists an
abelian extension LM/K with these properties:

(1) Gal(LM/K) ∼= (R/M)∗/Fq
∗.

(2) The infinite place of K splits completely in LM ; in particular, Fq

is the full constant field of LM .
(3) If P ∈ R is irreducible and coprime to M , then the place P is

unramified in LM/K, and its decomposition group is generated by
the image of P in (R/M)∗/Fq

∗.
(4) Let P ∈ R be an irreducible factor of M with multiplicity r, and

let Gn(P ) be the n-th ramification group of P in LM/K (in the
upper numbering, cf. [9]). If n > r − 1 then Gn(P ) = 1; if 0 ≤
n ≤ r−1 then Gn(P ) is the subgroup of (Fq[x]/M)∗/Fq

∗ generated
by polynomials congruent to 1 mod M/P r−dne.

In fact, the above conditions uniquely determine LM .1 Moreover, if
L/K is any finite abelian extension in which the infinite place splits
completely, there is an M for which LM contains L. But we will not
need these last two facts in what follows.

If L is a function field over Fq, let N(L) denote the number of degree-
one places on L (equivalently, the number of Fq-rational points on the
curve corresponding to L). For any finite abelian extension L/K, we
have N(L) ≥ [L : K]ns + nr, where ns (resp., nr) denotes the number
of degree-one places of K which split completely (resp., are totally
ramified) in L/K. As a warm-up exercise, write down an exact formula
for n. Recall the definition of decomposition field: if L/K is a finite
abelian extension and P is a place of K, then the maximal subextension
of L/K in which P splits completely is the subfield of L fixed by the
decomposition group of P .

Our strategy for producing curves with many points is as follows:
choose a set S of degree-one places of K which contains the infinite
place, and choose a nonconstant polynomial M ∈ R. Let L be the
subfield of LM fixed by (the group generated by) the decomposition
groups at all the places in S. Then N(L) ≥ [L : K] · #S. The genus
of L can be computed via the Riemann-Hurwitz formula and Hilbert’s
theory of ramification groups (cf. [9, pp. 61–76] and [6, Prop. 1] ).

Problem: for various choices of q, S, and M , compute the genus and
number of degree-one places on the corresponding field L.

1Terminology: LM is the maximal abelian extension of K in which the conductor
divides M and the infinite place splits completely.
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2. Choosing the parameters

In the previous section we constructed certain extensions L/Fq(x)
depending on three parameters: q, S, and M . Now try to find choices
of these parameters for which N(L) comes close to the known upper
bounds for that choice of q and g. For small g and q, tables of best
known upper and lower bounds can be found in [3]. Tables of the curves
obtained by letting S contain all places of degree one except one can
be found in [7].

3. Carlitz modules

The Carlitz module enables one to write down explicit equations
for the fields LM in the above Theorem. The basic idea is as follows:
starting from M(t) ∈ R = Fq[t], there is a recipe for writing down an
associated polynomial ΨM(u) ∈ R[u] together with a natural action of
(R/M)∗ on the roots of ΨM . It turns out that this action induces an

isomorphism Gal(L̂M/K) ∼= (R/M)∗, where L̂M is the splitting field

of ΨM over K. Then LM is the subfield of L̂M fixed by Fq
∗. The

polynomials ΨM and the action of (R/M)∗ are defined in [4, p. 79].
For this part of the project, begin by reading the first four sections

of [4]. In those seven pages, Hayes gives a self-contained proof of most
of our Theorem. First problem: complete the proof of the Theorem.

Now compute some examples of fields L̂M . Then compute examples
of LM , and then examples of quotients of LM by decomposition groups
over rational places of K. Finally, compute equations for the fields
described by the other group of students (these will be quotients of
certain fields LM).

4. Further directions

You may have noticed that, when applying the Theorem for fixed q,
it is difficult to produce curves which have large genus and which have
many Fq-rational points (relative to their genus). Try to find infinite
families of curves over Fq, for fixed q, which have as many points as
possible (relative to their genus). It turns out that, if we fix q and
only consider genus-g curves which are abelian covers of the projective
line, then as g grows the number of Fq-rational points on such a curve
cannot grow linearly in g (whereas all the upper bounds of Weil et
al. are linear in g) – in fact, this number of points is at most cqg/ log g
(where cq is a constant depending only on q). This result is due to
Frey, Perret, and Stichtenoth; read their elegant proof in [2] (hint: first
trace through their proof in case all ramification is tame, to see the key
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ideas). For fixed q, can you find abelian covers of the projective line
which have any prescribed genus g > 1 and which have at least g/ log g
rational points over Fq? (Such covers do exist, for every q and g.)

One can also study abelian covers of curves other than the projective
line. For an explicit treatment of class field theory in this case, see [5];
for a non-explicit treatment, see [1]. If there is time and interest, carry
out any of the above steps in this more general setting.
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