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1 Introduction

Over the past fifteen years, mathematicians have been drawn to the problem
of constructing curves over finite fields that have many rational points, largely
because such curves have been shown to have important applications but also
because the construction of such curves is theoretically challenging. The chal-
lenge lies in meeting the bounds on the number of points given by Oesterlé’s
optimization of Weil’s explicit formulae. In this paper we prove a formula that
can be used to construct curves that come close to these bounds.

In 1983, Serre indicated his method for using class field theory to construct
curves over [F; with many rational points [8]. Since then, class field theory has
been responsible for much of the progress on this problem: even families which
were found via other methods can be described using Serre’s approach, thus
unifying the known results under one mantle [3]. Recently, Niederreiter and
Xing ([4],[5]) have made remarkable progress in this direction by varying the
base field and the ramification for many ;. In this paper, we complement that
work by fixing the base and a place of ramification and increasing the number
of points to be split. When attempting to split many points, one is confronted
with the problem of computing ng,

ny = order of the quotient (Fy[T]/T*)*/F; /(1 — aT|a € F}).

Such quotients appear as the Galois group of abelian extensions of Fy (T') in
which all but one of the places of degree one are totally split. These function
fields correspond to curves with ngg + 1 rational points, whose genus can be
computed via the conductor-discriminant formula, based on the knowledge of
the orders n; for all [ < k.

Apart from its natural importance for constructing curves with many points,
the task of computing ny is interesting in itself, since it is a measure of the
amount of interdependence between decomposition groups at different primes
in the extension. A large amount of dependence occurs for example in the case
when ¢ = 9, £k = 5, since eight decomposition groups generate a subgroup of
the Galois group of the full ray class field extension which is isomorphic to a
product of only five of the cyclic factors.



The value of ny is in general very difficult to compute, since it seems to
entail finding the relations between all the degree one polynomials in order to
determine the order of the subgroup that they generate. The main result of this
paper is a general formula for the order of this quotient for any choice of ¢ = p’
and k.

Theorem 1 Suppose q = p’, k > 1. Then
k—=1,p o
|(F [T)/T*)* /Py /(1 — aT |a € Fy )| = p>s=t U ~I3),
where f; is defined as follows.

First write each j uniquely as p”i for some ¢ Z0 (mod p). Consider the action
of Z/fZ on Z/(q — 1)Z whereby

dxi=ph.

Define the set: H = {the smallest natural number from each of the distinct
orbits of Z /(g — 1)Z under the above action}. Now define

fi= size of the orbit of h if j = p”h for some h € H
7 0 otherwise

For instance, in the case mentioned above when ¢ = 9, one has

0 ifk=3",2-3",0r5-3",
f—fe=< 1 ifk=4-3" 0r8-3,
2 otherwise,

and then ng4q1/ny is equal to 1, 3, or 9 respectively.

This theorem is proved in Section 2 by transforming the multiplicative struc-
ture of this group into an additive one via the isomorphism with the additive
group of the ring of generalized Witt vectors. This group can then be decom-
posed into a direct sum of copies of the usual p-Witt vectors. The subgroup
generated by the degree one polynomials is transformed by this isomorphism
into the subgroup generated by the image of the Teichmiiller lifts of the ele-
ments {a € Fy }. This subgroup and its order are computed in Proposition 1 of
Section 2.

In Section 3, we derive from Theorem 1 expressions for nj in terms of ¢ for
certain special cases of k, which arise from the examples of irreducible Deligne-
Lusztig curves. The three Deligne-Lusztig families of irreducible curves, Hermi-
tian, Suzuki, and Ree, are of particular interest because each member of them
has the maximum number of points possible for a curve of its genus. These
families can all be realized as abelian covers of the projective line with Galois
group as in Theorem 1.

In Section 4, we determine the smallest kg such that, for k& > ko, the group
(F,[T]/T*)* /¥ /(1 — aT|o € F}) is not of exponent p. When k > ko, we will
see that the ratio of the number of points to the genus is better than in the



exponent p case which was studied in [9]. In addition, when k > ko, we will
observe the existence of characters of conductor k(T"), k = mp + 1, for many
values of m, whereas this is never the case for extensions of exponent p.

In Section 5, we give tables of examples constructed via the formula in
Theorem 1 for small values of ¢ and k. For example, when ¢ =4 and k = 7, the
resulting curve has genus 33 with 65 points. The Weil bound for this genus is
137, whereas the Oesterlé’s optimization of the explicit formulae show that no
curve over [y of this genus can have more than 66 points. This example was
already in [2], found via the method of computing relations among the degree
one polynomials, but that technique does not highlight the fact that this is the
smallest choice of k over Fy for which the Galois group is not killed by 2, contrary
to the case of the examples generated in [9] and the families of Deligne-Lusztig
curves.
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at the Max Planck Institute in Bonn, and I would like to thank the Institute
for a wonderful place to work.

2 Main Theorem

In this section we give the proof of the main theorem of the paper.

Proof of Theorem 1: We want to prove that n; = pzf;ll(f_ff). Clearly
(F,[T]/T*)* /F; has order ¢* !, since it consists of all the polynomials of degree
less than k with coefficients in F, and constant term equal to one. So it suffices

to show that the order of the subgroup (1 — oT'|a € IF}) is equal to ng:11 fi,
To accomplish this, we introduce the following notation. Let

I={i€N|15iSk_1a(iap)=l}a
and define
v; = the number of non-negative integers v such that ip” < k — 1.

Now we can rewrite the exponent as

k—1
Z fi= Z i fi-
j=1

iel

The proof of the theorem is accomplished in Proposition 1 below via an
isomorphism of the principal units in the power series ring in one variable over
F, with the additive group of the ring of generalized Witt vectors over F, and
the subsequent decomposition into copies of the usual p-Witt vectors of length

Yi-



Witt decomposition

First note that
(Fy [T]/T*)* /By = (1+ TF,[[T]])/(1 + T*F, [[T]).
Now we have an isomorphism (see [1])
A(F,) == (1 + TH,[[T]]) = W(F,)
where W(F,) is the ring of generalized Witt vectors over F,. The map is given

by:
E(ay,as,...) = [J(1 - a:T%)™"
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for (a1,as,...) € W(F,). The map E~! endows A(F,) with a ring structure.

We need the following decomposition of the generalized Witt vectors into a
direct sum of copies of the usual p-Witt vectors. The difference between the
generalized Witt vectors, denoted here by W(F,), and the usual p-Witt vectors,
denoted here by WP (F, ), is as follows: the operations in either case are defined
in terms of polynomials

Wa(X1, Xa,..) = > dX}/%,
d|n

but in the case of the usual p-Witt vectors, W, is replaced by Wj~, and the
numbering is shifted to start with 0.
Our presentation here has been distilled from the sources ([7],p.102, and [1]):

W(F,) = [T wWe(F,)

I(p)

where I(p) is the set of positive integers prime to p. This isomorphism is given
by the map

¢— (C_iz')iel(p);
where (d;);cr(p) satisfies:
E@= ][ P@)~"
icI(p)
with

P(@;) = [] AH(ayT™)
j=0

d; = (as,0a41,...), and AH(T) is the Artin-Hasse exponential:

AHT)= [ a-1mrm/n

(n,p)=1



and p is the Mobius function.
The fact that this isomorphism reduces to the following isomorphism for
each k can be seen directly or can be found in [7]:

Wk 1 @Wp1 *

Both the left and right hand sides indicate copies of truncated Witt vectors,
on the left of length k — 1 and on the right of lengths {v;}. (The numbering
of components of the Witt vectors starts with 1 on the left hand side and with
0 on the right.) Note that both sides are groups of order ¢®*~!, which is true

because
Z Yi = k—1.
iel
For our purposes we will need the images of the Teichmiiller representatives
of the elements of F;: a € F, lifts to & = (¢,0,0,...) in W(F,) and

(,0,0,...) = ((2,0,0,...), ..., (@%,0,0, ...), ..)ic1(p)

under the isomorphism (*), since

= [T AH(aT)?) M2
i€l
It remains to determine the order of the subgroup, N, of ; Wr (F,) gen-
erated by the {a’}, where <o >=T;, j=1,..¢ — 1, and

{&} = ((e?,0,0,...), ..., (7%,0,0,...), )ieI(p)
(in the ith component, the vector (a’?,0,0,...) has length «;). Consider the
projection
H@W a@w
Note that if some element s of H is not in I, it can only be for the reason that
s > k, in which case v; = 0. Now set N’ equal to the projection of N.
Proposition 1

NNW®WPU

Proof of Proposition:

First we prove the isomorphism N = N'. Since N' is obtained from N via
a projection, it suffices to show that the projection is injective on N. Suppose
that for every i € H,

q—
Z (07%,0,0,...) = (0,0,0...).



We must show that )

¢;(a”0,0,...) = (0,0,0...)
1

Q

<.
I

holds for all i’ € I. For i’ € I, write i’ = ip", i € H. The sum,

—1
¢j(a?,0,0,...)
1

Q

J
is a Witt vector with entries which are given by polynomials with coefficients
in F,. Thus the entries of the sum E?;i ¢j(ad? 0,0, ...) are the p"-th power of

the entries of Z;’;} ¢j(a?%,0,0,...), which are zero by assumption.
Next we must show that

N'= (DWW (F,.).
H

First remark that the left hand side is contained in the right hand side because
o' and the subgroup it generates are contained in the subfield F,7;. Now, a
subgroup of a finite abelian p-group generates the whole group if and only if it
generates the group (mod p). This is an application of Nakayama’ s lemma, to
the group viewed as a Z /p"*Z-module. So it suffices to show that the F,-span of
the set {(o7, ...,0%%, ...)icu }j=1,..q—1 18 [I;c g Fpri - Note that the F,-dimension
of this product is exactly the sum of the size of the orbits of the elements of
H under multiplication by p, which is exactly all the numbers {1,...,q — 1}.
Thus it suffices to show that the ¢ — 1 elements {(a?,...,a%",...)icm}j=1,..q-1
are linearly independent over IF,. Suppose we have a relation:

g—1

odt =
E cjal' =0
=1

with ¢; € F,, which holds for all ¢ € H. Then since ¢; € I,
g—1
. h
> cja?®" =0, forall he€Z.
j=1

Since ip” runs through all elements of Z (mod q — 1), putting aj = ol € Fy, we
can write

=0, forallveZ.

Now it follows from the linear independence of characters that ¢; = 0 for all j.
O

This proposition concludes the proof of our theorem, since the order of this
subgroup is seen to be pier Vil



3 Families of Examples: Deligne-Lusztig curves

In [3], the ray class field descriptions of the Deligne-Lusztig curves are given
and used to deduce results on the order of quotients of polynomial rings which
are quite surprising:

Theorem 2 Let Fp2 be the finite field with ¢* elements, ¢ a power of a prime.
Let k =q+2. Then

|(F 2 [T)/T*)* [Fza /(1 — aTla € Bz )| = q.

Furthermore, this quotient is trivial if k < q + 2, in which case all polynomials
split completely (mod T*) into factors of degree one.

Theorem 3 Let F, be the finite field with ¢ = 22™+1 = 2¢% elements. Let
k=2qo+ 2. Then

|(F, [T)/T)* /¥, /(1 — T |o € Fy)| = q.

Furthermore, this quotient is trivial if k < 2qq + 2, in which case all polynomials
split completely (mod T*) into factors of degree one.

Theorem 3 should be modified slightly to describe the full situation in charac-
teristic 3. The proof of these theorems uses the existence of the Deligne-Lusztig
curves, the knowledge of the filtration of the ramification groups, and the the-
orems of class field theory. It seems natural to try to give a more direct proof.
In this section we will show how these theorems can be deduced directly from
Theorem 1.

The proofs depend on the following lemma, which was pointed out to me by
Hendrik Lenstra. In what follows, the notation [z], (resp. |z]), will be used to
denote the least integer greater than (resp. greatest integer less than) or equal
to .

Lemma 1 Let ¢ = p/. If k < plf/?1 42, then f; = f, for alli € I. When
k=plf/21 4+ 2 thenk—1€I, and fe—1 = f/2if f is even, or fr_1 =0 if f is
odd.

Proof: We will prove these statements in order. To show that f; = f for all
1 in I, we must show that the orbit of ¢ has size f, and that i is the smallest
element in its orbit. Suppose that 4,4’ < p/¥/21 —1, and

pli=p"i' (modq—1), hh <f.
Then p""'i =4' (mod ¢ — 1), with h — h' < [ f/2]. Since
P < plI T — 1) < g -1

and (i',p) = 1, we conclude that h —h' = (mod f) and i = 4'. This shows that
each of the orbits of the elements i < p/¥/21 41, (i,p) = 1, has size f, and



that no two of these elements are in the same orbit, which means exactly that
fi=1T.

For the next claim, we assume that k = p///2] + 2. Then k — 1 is prime to
P, so it belongs to I. When f is even, we must show that the size of the orbit
of k—1is f/2. But k—1=p//2+1,and p/?(k—1) = (k—1) (mod ¢ —1).
Furthermore, this is the smallest positive power of p which could have this
property. We also know that k — 1 is not in the orbit of any smaller element of
I, since all other elements of its orbit are between p//2 +1 and ¢ — 1. ;From
this we conclude that fr_1 = f/2.

When f is odd, it suffices to show that k¥ — 1 is in the orbit of a smaller
number. But

kE—1=plf21 41 =plf21(plf2 £1) (mod ¢ —1).

Since k — 1 is not in H, we conclude that fr_; =0. O

Direct proof of Theorem 2: ¢*> = p?, f = 2m. By Lemma 1,

kE<p™+2=q+2=fi=f, foralliel
:}pziej"/i(f*fi) =1.
If k = p™ + 2, then p/#/?1 +1 € I, and fym 11 = m. Since ypm 11 = 1, we have

pEiEI ’Yi(f*fi) :pf*m =gq. O

Direct proof of Theorem 3: ¢ = p/, f =2m + 1. By Lemma 1,

k<plfPlyo=prtlfo= fi=f foraliel
:>pzi€[ 'Yi(fffi) =1.

If k= p™*! + 2, then p™*! +1 € I, and fym+1,; = 0. Since yym+1,3 =1, we
have
pzie[ vi(f—fi) =pf =q. O

Note that this proof holds for any characteristic, eliminating the assumption
p = 2 from Theorem 3. When p = 3, m > 1, the quotient in the statement of
Theorem 3 corresponds to the first stage of the Ree curve. When k is increased
to 3™*! 4+ 3, we obtain the Ree curve which has the maximum number of points
for its genus. The fact that the degree of the extension is ¢ when k = 3™+1 +3
can also be deduced from Theorem 1. In fact, it is a special case of the following
proposition:

Proposition 2 Let ¢ = p>™*!, p > 2. If D = (p™+! +4)Py, 2 < i < p, then
the ray class field extension of ]FQ.(X ) obtained when the other q places of degree
one are totally split has degree ¢*~ .



Proof: Taking into consideration what has already been proved in Lemma
1, it suffices to show that fr, 1 =0, k; = p™*! +4, i = 2,...p. In other words,
that p™*! + (i — 1) is in the orbit of some smaller element of I,. But

P Hiti(g— 1) = p ! 4 ip™ ™ = p (1 +ip™)

= p™tH +i=p™t (1 +ip™) (mod q—1).

This suffices to show that fy, =0for i =1,...,p — 1, since 1 + ip™ is prime to
p and less than p™*! 4+ i+ 1, so it is an element of Iy, ,. O

From this proposition, we can produce families of curves in any characteristic
which are analogous to the Deligne-Lusztig curves in characteristics 2 and 3. The
following simple examples certainly have many points, but it remains to be seen
whether they are optimal for their genus. Furthermore, these results also hold
for m = 0, that is to say over prime fields.

Corollary 1 Let ¢ = p*™+!, p> 2. If D = (p"t! +i)P., 2 <i < p, then the
ray class field extension of F, (X) obtained by splitting the other g places in the
base corresponds to a curve with ¢* + 1 rational points of genus

1 . s
g= 5((10’““r1 +i-2)¢" =g =g — L —g—p™).

Special cases of this family when ¢ = 2 and ¢ = p are:

Corollary 2 Let ¢ = p*™*, p > 2. If D = (p™t! + 2)P,, then the ray
class field extension of T, (X) obtained by splitting the other q places in the base
corresponds to a curve with ¢> + 1 rational points of genus

1 T
g=23p g -1).

Corollary 3 Let ¢ = p*™*, p > 2. If D = (p™*! + p)P, then the ray
class field extension of Ty (X) obtained by splitting the other q places in the base
corresponds to a curve with gP + 1 rational points of genus

1, . 1 pr m
9=5(@"" +p=2)¢ =g =" — . g —p™T).

These two cases correspond to the first and second stages of the Ree curve.
The reason that the behavior of the degree is different when i > p + 1 is that
multiples of p are not in I.

4 Comparison with exponent p

The quotient whose order is computed in Theorem 1 is the Galois group of the
maximal abelian extension of F, (T") which is

1. unramified outside (T'),



2. totally split at all other places of degree one,
3. whose characters have conductor k£'(T), with &' < k.

It is an abelian p-group, but it is not necessarily of exponent p (killed by p).
Taking the quotient of this group by the subgroup of its pth powers, we obtain
the Galois group of the maximal abelian extension of exponent p with properties
(1),(2),(3). In this section, we compare the degrees of these two extensions,
which we call the maximal p-extension and the maximal p-extension of exponent

p.

4.1 Comparison of the degrees

First note that the degree of the maximal p-extension of exponent p is given by
the formula:

pZiEI(f_fi) A
This follows from the proof of proposition 1, where we computed the subgroup
N' (mod p). All of the families described in Section 5 are of exponent p. In
fact, we can determine exactly the smallest & for which the Galois group of the
extension will not be killed by p:

Proposition 3 Let ¢ = p. Then the degrees of the mazximal p-extension and
the maximal p-extension of exponent p are equal when k < (p+ 1)p+ 1. For
k> (p+1)p+1, the degrees differ, and the quotient in Theorem 1 is not of
exponent p.

Proof: Tt is clear that p2ier(f—fi) = p2ier7(f=F) whenever
fiZf=>v=1,foralliel.

In this case, since f; = f =1, for all i € H, the only contribution to the
degree in either of the formulas comes when i ¢ H. Each element of the set
{1, ...,p— 1} constitutes a distinct orbit under multiplication by p (mod p—1),
so they all belong to H. The first element of I which is not in H is p 4+ 1, and
the first &k for which v,41 >1is (p+1)p+1. O

When ¢ is a power of a prime, the situation is similar. Proposition 3 is a
special case of the following:

Proposition 4 When q = p’, the smallest k for which the extension is not of
exponent p occurs for k= plf/21+1 4 p 1.

Proof: This follows from Lemma 1 since the first ¢ € I for which f; # f
occurs when i = pl#/21+1 11, and it is not until k¥ > ip that v; > 1. O
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4.2 Example: ¢ =2

As an example of the difference between these two types of extensions, we con-
sider the formulas for the degrees in terms of £ when ¢ = 2:

Proposition 5 Let K = F2(X). Then the degree of Ly, the maximal p-extension
of K of conductor D = kP; in which the other two rational points of K are to-
tally split, depends on k in the following way:

deg(Ly/K) = 2t=r=m"

where
m”* = ##{ positive powers of p <k — 1} = [log,(k — 1)].

Proof: Since ¢ = p is a prime and f = 1, the only contribution to the degree
is p” for each ¢ € I — H. In this situation, H = {1}. Beginning with k¥ = 4,
which is the first time when k — 1 produces an element of I which is not in H,
remark that the degree of the extension increases by a power of two for every
increase of the conductor by one, except when k — 1 is a power of the prime. In
fact, if k is even, then k — 1 gives a new element of I \ H, with ;1 = 1; if k
is odd, then ~; increases by one, for some ¢ € I: this will increase the degree by
one unless ¢ € H, which in this case happens exactly when k£ — 1 is a power of
the prime. O

Compare this with the formula for the maximal p-extension of exponent p
and conductor kP;:

Proposition 6 Let L} denote the mazimal p-extension of exponent p of K of
conductor D = kPy in which the other two rational points of K are totally split.
Ifk=2m+r,r=0,1, then

deg(LY/K) = 2™ 1.

Proof: The degree increases by one power of p for each new element of T
which is not in H, which are exactly all odd numbers bigger than one and less
than k. O

The point of this comparison is that for a given k the degree of the maximal p-
extension will be roughly 2¥~2/(k—1), while the degree of the maximal exponent

p p-extension will be roughly \/ik_2, which means that the examples of the
former type will have a much better ratio of number of points to genus. For
example, the extension of K with 33 rational points is obtained when k = 8,
but as an exponent p extension when k = 10, so the genus of the exponent p
extension is 47 instead of 39. Similarly, in the table for Fy, the example over Fy
of a curve with 65 points which is not of exponent p has genus 33, whereas the
curve with this same number of points which is of exponent p has genus 37. O

11



4.3 New characters from maximal p-extensions

We can interpret a jump in the degree of the extension when k is increased by
1 as implying the existence of new characters with conductor (k + 1)P;. The
formula we obtained in Theorem 1 shows that when considering the maximal
p extension, one will obtain characters of conductor a multiple of p plus one in
many cases, whereas this will never occur in the exponent p case. The degree
of the maximal p-extension of exponent p does not change when k is increased
from a multiple of p, mp, to mp + 1, since mp is not prime to p, so it is not an
element of I. However, the expression for the degree of the maximal p-extension
may change under these circumstances, if mp = ip”, for some ¢ € I. This is
due to the fact that when k is increased to mp + 1, «; will increase by one.

5 Examples

In this section, we give tables for different ¢ = p¥ of curves obtained by splitting
all ¢ rational points of ]P’]%q different from a given one, P;, in the ray class field
of conductor D = kP,, where k > pl7/21 4+ 2.

All entries in these tables are computed directly from the main theorem of
this paper via the ray class field method of Serre which is detailed in [6],[3]. Some
of these entries correspond to examples from [9], [5], [8], and [2]. Optimality
of an example is determined relative to the Oesterlé bounds. Examples not
contained in previous tables in the above sources are denoted with a star (*).

5.1 characteristic 2
5.1.1 q=2
For all entries in this table, H = {1}.

Table 1: Splitting q Points, D = kP, ¢ = 2

k ng | genus N | exponent p? Notes
k=4 2 g=1 5 yes optimal (Serre)
=p+2 k—1=3¢H
k=5 2 no new element of T
~v1 = 3, no difference
k=6 | 22| g=5 9 yes optimal (Serre)
Y3 = ]-7 V5 = 1
k=7 | 22| g=15 | 17 no optimal (Serre)
B3=27=1
k=8 [21 ] g=39 | 33 no optimal (Serre)
k= 24 T = 4
k=10 | 2° | g=103 | 65 1o
k=11 | 26 | g=247 | 129 no Y5 =2
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5.1.2 q=4

For all entries in this table, H = {1,3} since the orbits modulo (¢ — 1) are:

{1,2} and {3}.

Table 2: Splitting q Points, D = kP;, ¢ = 4 = 22
k ng | genus N | exp p? Notes
k=4 2 g=1 9 yes optimal (Hermitian)
=p+2 k—-1=3€c¢H, f;=1
k=5 2 no new element of 1
~v1 = 3, no difference
k=6 | 22| g=13 | 33 yes optimal
f5=0
k=7 | 2°| ¢g=33 | 65 no Oesterlé bound is 66
Y3 =2
xk=8120]g=177[257| no f:=0
Oesterlé bound 269
5.1.3 q=8
Orbits for g = 23 = 8&:
{1,2,4}
{3,6,5}
{7}
H=1{1,3,7}

Table 3: Splitting ¢ Points, D = kP, ¢ = 8§ = 23 = 22m+!

k g, genus N exp p? Notes
k=6 23 g=14 65 yes Suzuki curve (optimal)
:pm+1+2 k_]_:pm+1+1
first time an element
appears in a previous orbit
k=1 2 13=2,f3=3
x k=8 25 g = 86 257 yes fr =1, Qesterlé: 266
Weil: 495
k=9 2° 71 = 4, no change
k=10 | 22=256 | g=982 | 2,049 yes fo = 0 Oesterlé: 2,372
Weil: 5,281
x k=11 21 g =9,046 | 16,385 no 5 = 2, Oesterlé:19, 673
Weil: 51,181

First k for which the extension is not of exponent p is 11.
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5.2 characteristic 3

5.2.1 q=3

For all entries in this table, H = {1, 2}

Table 4: Splitting q Points, D = kP, ¢ =3

k ng genus N exp p? Notes
k=5 3 g=3 10 yes optimal
=p+2 k—1=4¢H
k=6 |32=9 g=15 28 yes optimal
k=7 32 no new element of I
k=8 33 g =69 82 yes | Oesterlé bound is 88

xk=9 3t g = 258 244 yes k—1¢H
Oesterlé: 276
k=10 34
x k=11 3° g = 987 730 yes k—1¢H
QOesterlé: 940
x k=12 36 g = 3417 2188 yes k—1¢H
x k=13 37 g=11,436 | 6,562 no =2 4¢H
x k=14 38 g =37,680 | 19,684 no k—1¢H
x k=15 3° 122,973 | 59,050 no k—1¢H
5.2.2 q=9
Orbits for g = 32 = 9:
{1,3}
{2,6}
{4}
{5,7}
{8}

H=1{1,2,4,5,8}
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Table 5: Splitting ¢ Points, D = kP, ¢ = 9 = 32

k g, genus N exp p? Notes
k=5 3 g=3 28 yes Hermitian curve
=p+2 orbit of 4 size 1
k=6 3 orbit of 5 size f = 2
k=7 3 I7 = -[6 Yo = 2

xk=8 | 33 g="75 244 yes 7 is in orbit of 5
Oesterlé: 263
xk=9 | 3% g = 264 730 yes orbit of 8 size 1
QOesterlé: 784
k=10 | 3* I,H same, y; = 3
x k=111 3° g = 3180 6561 yes k>q,so0k—1¢H
xk=12| 35 | g=32,340 59,049 yes E—1¢H
xk=13] 3% | ¢g=104,511 177,147 no =2, f1=1
x k=14 | 37 | g=1,049,295 | 1,594,323 | no E-1¢H
5.2.3 q=27
Orbits for ¢ = 3% = 27:

{1,3,9}

{2,6,18}

{4,12,10}

{5,15,19}

{7,21,11}

{8,24,20}

{13}

{14,16,22}

{17,25,23}

Table 6: Splitting ¢ Points, D = kP, q = 27 = 3% = 32m+!

k ng, genus N exponent p? Notes
k=11 3% =27 g =117 730 yes first stage of Ree curve
=pmtt +2 k—1=pmt +1
first time an element
appears in a previous orbit
k=12 3 =¢>2=729] g=3,627 | 19,684 yes Ree curve
k=13 36 I same, y4 =2
x k=14 3% = 6561 g=238,619 | 177,148 yes fiz=1
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Table 7: Splitting q Points, D = kP, g =5

k ng genus N ratio Notes
k=17 5 g=10 26 2.6 N <34
k=8 | 25 g="170 126 1.8 N <150
k=9 | 125 g =420 626 1.49048 g > 359
k=10 | 625 g = 2420 3126 1.29174 g > 2018
k=321 522 | g =3.56936 x 1016 | 11,920,928,955,078,126 | 0.333979
k=33 | 522 | g =3.66473 x 10*® | 11,920, 928,955,078,126 | 0.325288 | exponent p

Note: The last entry in the last table is meant to be compared with the

second-to-last entry, to show that curves arising from the main theorem have a
much better ratio than those of exponent p.
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