Computation of Heegner Points for Function Fields

Abstract

This is a write-up of the project done under the direction of Douglas Ulmer at Arizona
Winter School 2000. We carefully explain how to compute explicitly the Heegner points for an
elliptic curve defined over Fy(T).

1 Introduction

This is a preliminary version.

These are the notes! of the project done under the direction of Douglas Ulmer at Arizona
Winter School 2000 - The Arithmetic of Function Fields.

The goal was to compute the quantities showing up in the Gross-Zagier formula for function
fields for one concrete example. It is done in two ways. The first proceeds by computing the equation
of the Drinfeld modular curve Xy(n) parametrizing our elliptic curve. The second uses the explicit
formulae worked out by Gekeler and Reversat [4] for Xo(n) — E. The second approach seems
more appropriate if one wishes to calculate the Heegner points in more general situation, as the
equation for X((n) gets very complicated. Although we should mention that actual approximation
of the values of theta series used in [4] also very time consuming (for our simple example it took
approximately one hour on a UNIX machine), and one has to be able to produce concrete generators
for Schottky groups, which by itself seems to be a rather hard problem, see [5].

Now let F' be the function field of a smooth projective curve over a finite field. Choose some
place oo of F' to be the place at “infinity”. Let E be an elliptic curve defined over F' with split
multiplicative reduction at oo, K be an imaginary quadratic extension in which all primes dividing
the conductor of E (except oo) split, and Px € E(K) be the Heegner point defined via the modular

parametrization Xo(n) — E. Then
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Theorem 1.1 (Gross-Zagier formula for function fields) The height < Py, Px > of Pk sat-
isfies
< Pg,Pg >=c-L'(E/K,1)

where ¢ is a nonzero constant, and L'(E/K,1) is the value of the first derivative of L-functions of

E/K at 1.

The non-zero constant ¢ depends on the normalization of the measure in the Petersson inner
product.

In particular, if L'(E/K,1) # 0, then rankE(K) > 1 and the Birch and Swinnerton-Dyer
conjecture holds for E over K, using the results of Tate and Milne [9]. To prove BSD for E over F
one has to use non-vanishing theorems of twists of L—functions.

D. Ulmer announced the proof of (1.1) in the case of an arbitrary function field F' at Arizona
Winter School 2000. Earlier, Riick and Tipp announced a similar result for F' = F4(T'), their paper
appeared recently [6].

One should observe that Kolyvagin type argument is redundant for function fields once (1.1) is
true, as here rankE(K) < ords_,1 L(E/K, s) and if ords_,1 L(E/K,s) = 1 then Heegner point is of
infinite order => rankE(K) > 1 = equality holds = BSD follows from the work of Tate and
Milne.

M. Brown in [1] proves for F' = Fy(T), using Euler systems of Heegner points, that if P is
non-torsion then rank F(K) = 1. The paper very closely follows the argument given in Gross, [2].

The constant ¢ in (1.1) depends on the normalization of the measure in Petersson inner product.

Let now F = Fy(T) be the rational function field in one variable over Fy, and consider the

elliptic curve E over F' with affine equation
Y24+ TXY = X3 +T%2X (1)
and its quadratic twist E' with affine equation
Y24+ TXY = X3+ T3X? +T°X (2)

The quadratic extension is K = F(U) where U? + U = T. The isomorphism between E and E' are
given by substituting Y := Y’ + (U3 + U)X into the equation for E'.

Why this particular choice of E?7 It is reasonable to choose the field of constants to be small
like F, to be able to compute, for example, the L-function by hand. Also in case of Fy(T'), up to
coordinate change in T, there are precisely two different n such that Xy(n) has genus one. One of
them is n = T3. We will see that E has conductor 7300 and it turns out that Xo(n) = E which

simplifies many of the technical details.



2 Elementary Invariants
E: Y24+ TXY = X? +T%X

One easily computes A = T8, and j = T*. It has a cuspidal reduction at 7" = 0. Tate’s algorithm
[8] shows that the reduction type is I{ in Kodaira’s notation, i.e. this fibre has 6 irreducible
components in the Neron model, four of which occur with multiplicity one. Component group is
Z/4. The degree of T in the conductor is 3.

To find out the reduction type at infinity substitute 1/7 for T in 1, after normalization (to the

Weierstass form) the equation becomes
Y? 4+ XY = X34+ 712X, (3)

with A = T4, and j = 1/T*. Tt has a split multiplicative reduction at 7' = 0, and the reduction
type is (again from Tate’s algorithm) Iy. This special fibre has 4 irreducible components each with
multiplicity 1. The component group is Z/4. So oo in the conductor shows up with degree 1.
Finally, the conductor of F is
cond(E) = T2 - c0.
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Figure 1: Special fibres on £

Similarly for
E': Y24+ TXY = X3 +T2X

A =T8 and j = T* . It has a cuspidal reduction at T = 0. Tate’s algorithm shows that the
reduction type is I7. The component group is Z/4. The degree of T in the conductor is 3.
To find the reduction type at infinity again substitute 1/7" for 7" in 2, after normalization (to

the Weierstass form) the equation becomes

Y2+ TXY = X3+ TX? 4+ T°X, (4)
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with A = T8 and j = 1/T*. This equation is not in its minimal form (e.g. val7(A) > 12) but we
don’t care as Tate’s algorithm will tell us if this affects the reduction type. It has a cusp at T' = 0,
and the reduction type is I (this takes for a while to compute as one has to blow up 13 times). The
special fibre has 13 irreducible components only four with multiplicity 1. The component group is
Z/2 x Z/2, and oo in the conductor occurs with degree 4.

Finally, the conductor of E' is
cond(E') = T? - 00,
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Figure 2: Special fibres on F’

3 Computing the L-functions

Since E and E' are non-constant over F, the L-functions of E and E’ are polynomials in ¢~*% of
degree = degree of the conductor - 4 (by Grothendieck). For E conductor is T - co = L has
degree 4-4=0 —
L(E/F,s) =1

From Tate’s geometric version of BSD [9], rank(E) < ordL(E/F, 1), this gives, in our example,
rank(E)=0.

For E' conductor is T2 - co* = L has degree 7-4=3.

L(E'/F,s) =1+ c1q™® + coqg % + 347,

where g = 2.

To compute ¢;’s one can either compute enough of the local factors (for places up to degree 3),

or alternatively can use the functional equation (sign is “-” as rank of E' turns out to be 1), and

compute the local factors up to degree 1 (only one place in this case!).

L(EI/Fa 3) = HLv(qv_s)_la Qv = 2de8v
v



where
1—ayq,® + quq, 2° good reduction,
_ 1—g¢,® split multiplicative
L(g,") = v | Hpeative, (5)
1+4¢g,° non-split multiplicative,
1 additive.
and

ay =¢qy +1— ﬂEl(kv)

At v =T, E' has additive reduction so the local factor is 1. At 14T, §E'(kry1) = 2, similarly

ﬂEl(k1+T+T2) =6, ﬂE’(k1+T2+T3) = 10, ﬂEl(k1+T+T3) = 12.
This is enough to compute the L-function without any assumptions, put A = 27°

1 1 1 1
L(E'/F.s) = . . . -
(E'/F,s) 1—=A42X2 14+X2+40 14X+ 143X 4---
=142°-2.272%_8.2731040---.
The alternative approach using the functional equation,

A(E'/F,s) := |conductor| ~*/%|dr|*L(E'/F,s) = £A(E'/F,2 — s)

The conductor is of degree 7 = |conductor| = 277, dp is the discriminant of F, |dp| =

22-28C1US — 92 in our case. The sign is '-.

From computing only §E'(kr41) = 2, we know
L(E'JF,s) =1+ 27° + 272 4 32755,
The functional equation yields
2% 3[(E'|F,s) = —L(E'|F,2 — s)
from which it follows that co = —2 and ¢3 = —8. So
L(E'/F,s) =1+27°—2.272% —8.273,
Now L(E'/F,1) =0, but L'(E'/F,1) = 7/2log 2. Again by Tate

rank(E') <1



4 F and E' as groups

From L-function computations we know that F : Y24+TXY = X3+T2X is torsion over F = Fy(T).
First we want to find prime-to-2 torsion. For that it is enough to reduce modulo few places as
prime-to-2 torsion injects into E when E is nonsingular. But at 7'+ 1, E: Y2+ XY =X3+X
has 4 points, so E has no prime-to-2 torsion.
The following points (0,0), (T,0), (T,T?) are on E. Moreover (0,0) is of order 2, and (T, 0),
(T, T?) are of order 4. To check that E has no 8-torsion, check that
4 4
z* =T
X([2P) =~z =
has no solutions in F. This involves an elementary descent argument on the degrees of polynomials

in the numerator and denominator of z. So
E(F)=Z/AZ generated by (7,0).

Similar analysis shows that torsion on E' is Z/2Z generated by (0,0). Now some search reveals

that P = (T3 + T,T3 + T?) is on E', and is integral of lowest degree.
E'(F)=Z7/2Z & Z.

Later, from height computations, we will show that P generates the infinite part of E'.

5 Computing the height pairing

P=(T3+T,T?+T?ison E' : Y24+ TXY = X34+ T3X? +T?X. First note that P as a
horizontal section passes through the singularity both at 7 = 0 and 7' = oo (at oo P looks like
(T® + T, T* + T?), the equation for E' as in (4)). Hence when we desingularize E' by blowing up,
P and O sections will pass through different irreducible components of multiplicity 1 in the special
fibres of the Neron model &'.

Let Fy be the I fibre. The intersection of Fy with any other fibral divisor on &’ is 0. In

particular,
0=A% Fo = AYAY + A+ A% + A%+ 2B + 2BY) = (49)? + 2
So
(49)? = -2
Similarly,

0=B) - Fo=1+1+2+2(BY)? = (BY)? = -2



The same argument for co gives

Figure 3: Intersections with special fibres

For our computations we will also need the self-intersection of (O) - (O). Using the adjunction

formula,
(0)* = — deg(Qg:/p1)l0,

where Q, /p1 |o is the sheaf of relative 1-forms restricted to the O-section.
To be able to restrict to the O-section make a change of variables X = I, Y = % The equation
becomes

v+ Tuv = u® + T3u?v + T?uv?
which is nonsingular at u = v = 0 (T is arbitrary). Computing the relative differential, we get

du
14+ Tu+ T3u?

which is regular and non-zero on the affine part (T' # oo) restricted to O-section (u = v = 0).
For T' = oo, replace T' = 1/, the equation becomes
S3v 4+ S%uv = SPud + u?v + Suv?

with relative differential
du

1+ $u+ ggu?’
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But now the equation itself is singular at v = v = 0,5 = 0, so we have to desingularize by
blowing up (twice as turns out). Finally, in the expression for the relative differential we substitute

u=u"-S? as a result of blow-ups
S2 du"
1+ Su" + Su'"
which is regular, and has a double-zero at S = 0. We conclude that the degree of Q}E, /P1|0 as a

divisor is 2 =
(0)? = -2

Also since the translation-by-P map

™ & —¢
is an automorphism (for any P), it follows 75D; - 75D9 = D; - Dy for any two divisors D1, Dy €
Div(&"). Hence, (P) - (P) = 15(P) - 75(P) = (0) - (0) =

(P)? = -2
For each point P € E', let ®p € Div(E') ® Q be a fibral divisor so that the divisor
Dp =(P)—(0)+®p
satisfies Dp - F = 0 for all fibral divisors F € Div(€'). Then Manin’s formula for the canonical
height pairing [7] is the following
< P,P>=—Dp-Dploggq

So to compute the height we have to compute ®p. One has to worry only about bad fibres as
((P) = (0)) - F =0 for any good fibre F.

Let ®p = 33 1a%A04+32  09BY 452 a® AP+ 39 | b°BX = 0% 4 3%. We have to find a;’s
and b;’s, which reduces to solving two big systems of linear equations (for Fy and F, separately).
The first system is

(P)=(0) +@p)- A7 =0 i=0,1,2,3
(P)—(0)+@p)-BY =0 i=1,2 (6)
((P) = (0)+23)-(0) =0

(P) intersects only A9 and the intersection is 1, (O) intersects only AJ and the intersection is 1

also. The last condition in (6) is to make the system solvable - it comes from the fact that ®p as
it is defined is not unique, we can add the multiple of whole fibre to it. The solution for (6) is the

following;:

ag=-2, a¥=-3/2, ad=-3/4, aS=-5/4, B =-3/2, by =-5/4
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Similar computation for Fy, gives a3® = 1 (to compute the height of (P) we actually need to know

only the coefficients of the irreducible components through which it passes). Finally,
< P,P>=—-Dp-Dplogqg=—((P) = (0) + @p) - ((P) = (O) + ®p)log 2 =

—Dp-Plog2=—((P)? +®p-P)log2=—(—2—3/4+1)log2 = 7/4log 2

Note that P - O = 0, as they pass through distinct components in Fo,, and P has no poles on the
affine part.

Now we can prove that P = (T3 4+ T, T3 + T?) is a generator for the infinite part of E'.

Let e be the lem of the exponents of the component groups of the fibres of E’. Assume for
a moment that P and @) are arbitrary. Then < eP,QQ >= e < P, >, but eP reduces to the
same component as the identity at each place. Then the divisor (eP) — (O) has zero intersection
number with every fibre component and integer intersection with the O-section. After subtracting
an integral multiple, say f - F, of the whole fibre we get our “corrected divisor” and < P,Q >
/logq= —((eP)— (O) — fF)-Q/e. Since the intersection number is an integer, it follows that the
denominator of < P,@Q > /log q is bounded by e, for all P and Q.

In our case e = 4 => P is a generator, as if P = nQ then 7/4 =< P,P > /log2 =n? < Q,Q >
Jlog2 = < Q,Q > /log2 = 4%2, and since 7 is square-free n = 1.

6 Birch and Swinnerton-Dyer formula

In our case the formula (conjecture) states

WIII(E'/|F)- < P,P > -1
ﬂE,( )tor

where 7 is the Tamagawa number. At this point we can compute all the entries except I11.

T—HuE' /Eo w) " q

L'(E'/F,1) =

— deg(Q2} )lot+1l—g

g /pl —4.4.972t1 _ g
_ HITI(E'/F)-7/4log2-8

= 1 .

So in particular Tate-Shafarevich group should be trivial in this case.

7/2log2

7 Equation for the Drinfeld modular curve of level T'o(7%)

Let ¢ be a Drinfeld module of rank 2, i.e. a homomorphism (actually an injection)

¢: A— F{r},
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where 7 is the Frobenius automorphism, A = F5[T] and F = Fo(T). Rank 2 means |a|%, = deg ¢(a).
A morphism between two Drinfeld modules ¢ — ¢ is u € F{7} such that up(a) = ¢'(a)u
Va € A. If u € F* this is an isomorphism.
Any rank 2 Drinfeld module ¢ : A — F{7} is uniquely determined by where it sends T,

¢: T — T+ a1+ aym® = ¢pp. We can normalize ¢ as follows.
T = ¢ =AprA L= AT +arm +agr)A L =T+ e Al 07 + a7 72

since ¢ = 2 we get T + a1 A~ 7 + aoA 372, put A = a; (assuming a; # 0) then
q g Y g

T+ 7+ aga;>r>

So Drinfeld modules are parametrized by the “j-line” = P.,

T + 7+ z~ 72, In particular, the modular curve of level 1, X (1), is P. = F(z).
By Drinfeld’s definition of level, X;(T) = F(a), where ¢r(a) = (T + 7+ 27 17%)(a) = 0

as any of them can be written as

aT +a’>+ 2 'a* =0
T+a+zta®>=0

Note that z = a®/(a + T), a € F(z), and Xo(T) = X1(T). The idea of going up from Xo(T)
to Xo(T?), and from Xo(T?) to Xo(T3) resembles the Lubin-Tate construction of the torsion on

formal groups.
X1(T?) is F(z,a,b) where

(T+71+2'7%)b) =a be F(z)

b is a generator of §[T2]. As (A/T?)* =< 1,1+T >, b and ¢, 7(b) are two generators of the cyclic
group ¢[T?]. To construct Xo(7T?) we want to remember the group but to forget the generators.

So we form the symmetric combinations:
b+ ¢iir(b) =b+b+o¢r(b) =b+b+a=a

and

b- ¢r(b).
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It follows that Xo(7?) = F(a,b- ¢1.7(b)).

F(a'v b- ¢14+1b, C) XO(TS) Xl(T2)
(

F(a, b- ¢141b) Xo(T?) X1(T)
2 /
F(a) Xo(T)
3
F(2) X(1)

Let B =b-¢r(b) = b(b+a) = b? + ab, also Th+ b* + 5L = q, so
a3Th+ a3b* + (a + T)b* = o* (7)
We want to rewrite the last equation using only B, a and T
bt = (b% + ab + ab)? = (b* + ab)? + a®b? = B? + a?b?
Plug this into (7)
a®*Th + a®b? + (a + T)(B? + a®b?) = a*
a*T(ab+b*) + (a + T)B* = a*
a*TB + (a +T)B? = a* (8)
This is the equation of Xo(7?) = F(a, B).

Do the same for Xo(T3). The strategy is the same, but the arithmetic is much more tedious.
Let ¢r(c) =b, i.e.
Te+E+27'ct =0 (9)
(A)T3)* =< 1,14+ T,1+T? 1+ T+T? >, and ¢, ¢117(c), p1.72(c), d1 47472 (c) are the generators
of ¢[T3].

Next check that all symmetric combinations
c+ d147(c) + d1yr2(c) + d1yrir2(c) =0

c-prpr(c) + c- piire(c) + - + drir2(0) - briryre(c) =% +6* + b
- prir(c) - rir2(c) + -+ + dr47 () - pry72(0) - pryqiqe(c) = b +6°
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are in F'(a,B). We are left with

¢ ¢1y7(c) - drym2(c) - pririr2(c) =C

Now rewrite (9) using only C. After long computations one arrives at

T(TB? +TB' +1) o4 (TB? 4+TB' +1)%

02

=0
where B’ = B/a’.
Let C' = %C, then
C? +TB'C' +B'(TB' +1)?> =0
Finally, let Y = T2C' and X = T®B’, then we get
Y24+ TXY = X3+ T°X

our original equation for E! Thus
Xo(T*) = E

and the modular parametrization turns out to be an isomorphism.

8 Heegner points from Drinfeld modular curves

Let U2 +U =T, and K = F[U]. K is an “imaginary” quadratic extension of F, i.e. co does not
split. This is easy to see from the Hurwitz genus formula 2gx — 2 = 2(2gr — 2) + R. In this case
gk = gr = 0 and R > 0 is the degree of ramification, and since nothing ramifies on the affine part
it must be the infinity.

Note that T splits in K (and T is the only finite prime dividing the conductor of E). In this
situation, we get a supply of points on X (T'3), rational over the Hilbert Class Field of K (which
in this case is K itself, as it is a UFD). Denote Ok := B.

Consider a Drinfeld A-module of rank 2 with “CM” by B (End(¢)=B) with T'¢(T?) structure,
preserved by B. To construct them, start with a Drinfeld B-module of rank 1.

¢: B— K{r} with B/U? = A/T? structure.
In general there are finitely many of these (in bijection with Pic(B)), in our case there is only one:

a: U—U+r
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Consider the composition N
¢: A< B2 K{r}
We will get 2 possible ¢ depending on the choice of the ideal over (T), but they will differ by some

torsion.

Take

br=¢v dus1=U+7)-U+1+7)=
=UU+D)+U+U+ )1 +7° =T+ (1 +T)7 + 77 =
& (after normalizing) T + 7 + (1 +T) 372

To find the corresponding point on Xo(7'3) one has to trace through the construction in the previous
section with z = (1+7)3. Then via the substitutions we made for Xo(7®) = E we get the Heegner
point on E(K). It turns out to be the double of the generator of the infinite part (rank(E)=1).

9 Welil uniformization

The analogue of Shimura-Taniyama conjecture for function fields was known for a long time, see
[1], [4]:
Theorem 9.1 (Drinfeld, Deligne, Zarhin,...) Each elliptic curve E/F, F is a function field,

with multiplicative reduction at 0o is a quotient of a suitable Drinfeld modular curve Xo(n).

We still will be assuming that A = Fy[T] and F' = Fy(T'), although most of the statements are true
for a general function field.

Let C be the completion of the algebraic closure of F, and let = P1(C) — P!(F) be the
Drinfeld upper half plane. The set of C points of Xo(n) — {cusps} is just Q/T'o(n).

Our curve E: Y2+ TXY = X3 + T2X was split multiplicative at oo, so E(C) = C* /q% for
some gg € C*, |¢rloo < 1. The above theorem implies the existence of a certain automorphic
form ¢, called newform, of level T and corresponding to E so that, for example, L(E, s) = L(¢p, s).
This newform can be computed as a harmonic function on the Bruhat-Tits tree associated to

PGLy(Fy). Consider the composition
G: Q— Q/Tj(n) = Xo(n)(C) — E(C) = C*/¢%

Gekeler and Reversat have given explicit analytic formulas (using theta functions) for gg and the
map G in terms of the newform ¢.
This formula can be used to compute the Heegner point on F without computing the equation

for Xo(n)! We proceed to describe the formula.
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10 Harmonic cochains
Let Q = P1(C) — P! (Fy) viewed as a rigid analytic space. Let 2 — Q be the associated analytic
reduction. Then € is a scheme over koo (the residue field of the place at infinity), locally of finite
type. Each irreducible component M of Q is isomorphic to P,lcoo and meets exactly go + 1 other

components M’. The intersections are ordinary double points which are rational over ks. For

example, when F = Fy(T), Q looks like

Figure 4: Q
Q is canonically isomorphic to the Bruhat-Tits tree 7 of PGLy(Fs). Let X(T) and Y (T) be
the vertices and edges of T.
Definition 10.1 A harmonic cochain (= “currency”) on T is a map
p: Y(T)—> abelian group (usually C)

that satisfies
ple) +pE) =0  (e€Y(T))

and
> o) =0 (veX(T)
e€Y(T), terminus(e)=v
a b
Denote I' := T'y(n) = p € GLy(A) | n|c} (for most of the statements below I" can be
c

any arithmetic subgroup of GL2(A)).
I acts on Q via z — (az + b)/(cz + d).

Theorem 10.2 (Drinfeld) Yy(n) :=T\ Q is a smooth irreducible affine algebraic curve over C

Let Xo(n) = Yy(n); Xo(n) is not geometrically irreducible in general, it will have Pic(A)
irreducible components, this corresponds to the fact that Xy(n) as an algebraic curve is defined
over the Hilbert class field H of K, but for A = Fy[T] it is irreducible.
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There is an analytic reduction
r'\Q—r\T7.

Now I'\ 7 = (I'\ 7)° U (Uhi), where (I' \ 7)° is a finite graph and h; are finitely many half-lines

(these correspond to the cusps), moreover

#cusp(T) := T\ P(F).

Let H\(T,Z)" be the harmonic cochains on 7 invariant under T, i.e. @(ve) = ¢(e) (v €
I', e € Y(T)), and which have compact support modulo I'.  We shall consider H\(7,Z)" as a
space of functions on the quotient graph '\ 7.

Theorem 10.3 H\(T,Z)" is a free abelian group of rank g, where
g = dimg (T’ ® Q) = genus of Xy(n)

I’ /torsion can be canonically identified with the fundamental group of I'\ 7 (see J.-P. Serre, Trees,
I, Thm. 13, Cor. 1), and

T :=TI'*/torsionT" = (T'/torsion)** = H,(T'\ T, Z)

But there is a natural map
H(T\T,Z) — H(T,Z)"

which is injective and becomes bijective after tensoring with Q. Hence we have a map
j: T — H(T,Z)"

For later calculations the following will be useful:

Theorem 10.4 [4] When A = F [T
j: T — H(T,Z)"

is an isomorphism.

Example Now we compute the quotient of the Bruhat-Tits tree by ['o(T?) C G Lo(F2[T]), and the
newform on Xo(7®) as a harmonic cochain on I'\ 7.

Gekeler [3] has a formula for the genus of X((n) but we don’t really need this as we know from
explicit computations that g(Xo(73)) = 1. So I\ 7 has one loop (and it’s clear from the action of
To(T?) on T that the loop has 4 edges).
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G Lo(F5[T)) acts transitively on P(F) and the stabilizer of (0 : 1) is

Go::{(l (1)) | CEFQ[T]}

1 0
Similarly, the stabilizer of (0 : 1) in To(7?) is T} := { ( _— ) | ce FQ[T]} , SO
c

eusps(Xo(T%)) = (GL2(F2[T]) : To(T®))/(Go : Tp) =24/6 =4

Figure 5: To(T3)\ T

Now it is clear that essentially there is only one harmonic cochain with compact support on
'\ 7; the one which maps every clockwise oriented edge of the square to 1, and is zero on the
half-lines (the cusps).

Once we know I'\ 7 and the harmonic cochain we can compute the Petersson inner product on
H\(T,Q)" which enters Gross-Zagier formula.

The volume p(e) of each edge is 1,

(o) = > wle)-ple)ule) = 4.
e€Y (T\T)

There are different reasonable normalizations for the measure involved in PIP though.

11 Theta functions

Let w, and n be fixed elements of €2, and put

O(w,n,2) =[]
A

zZ—yw

where T' = I'/T N center of GLs. Since we are considering GL2(F2[T]) the center is trivial, so we

will be omitting tilde.
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Theorem 11.1 Leta €T

(i) The product for (w,n, z) converges locally uniformly on Q. If Tw # I'n, 6(w,n, z) has a zero
(pole) of order Tw ({'n) at w,n, respectively, and no other zeros or poles. If Tw = I'n,

O(w,n, z) has neither zeros nor poles on §Q.

(ii) There ezxists a constant c(w,n, ) € C* such that

O(w,n,az) = c(w,n,a) - (w,n, z)
independently of z.
(iii) c(w,n,a) depends only on the class of o in T := T'%/torsionT'*.
(iv) The function 8(w,n,az) is holomorphic and non-zero at the cusps of T.

(v) The holomorphic function

Ua(2) = O(w, aw, 2)
is independent of the choice of w € . It depends only on the class of o in T.
(vi) For o, € T' we have uag = uq - ug
(vii)
c(w,n, @) = ua(n)/ua(w)

In particular, c(w,n,a) is holomorphic in w and 1.

(viii) Let
co(’) =clw,aw,): T —C*
be the multiplier of ug. Then (o, 8) — co(B) defines a symmetric bilinear map from T x T

to C*.

Proof: See [4]

Let ¢ € H\(T,Q)" be a newform, which is an eigenform for the Hecke algebra with integral
eigenvalues, and let ¢ be primitive, i.e. normalized so that ¢ € j(T') but ¢ is not in n - j(T) for
n>1 (recall j: T = H(T,Z)"). Let u, be the theta function associated to a representative of
¢ in T' (label the representative also by ).
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Theorem 11.2 (Gekeler-Reversat) Chose wg € Q. The function u,(2)/uy(wo) on Q descends
to a nmon-constant map
Xo(n) — E,(C) = C*/q% (10)
z — uy(2)/up(wo)
where qg is the Tate period of E.

Remark Gekeler and Reversat actually prove that A = {c,(@) | a € '} = pg x t%, where pgq
is the d'* root of unity d | goo — 1, and t = c,(B) for some B € T, t € F% with |t| < 1, i.e. the
period also can be computed in terms of theta functions. Also note that the choice of wy in (10) is

arbitrary.

12 Computing the Heegner points

E: Y?24+TXY =X3+T%X,j(E)=T"

Since we know j(E) = T%, to compute Tate period just invert
flg) =1/j(g) = ¢ — T44¢” + 356652¢> — - -

ie. find g(q) =g+ --- € Z[[q]] s-t. g(f(q)) = ¢. Then g = g(ﬁ) As the first few coefficients in
g(q) are even we may assume, to some precision, that g =< %4 (we don’t really need theta functions
for this).

H(T,Z)" =Zp, T = H(T,Z)". To apply Gekeler-Reversat formula we need to find a repre-
sentative of the generator of the cyclic group T := T'o(T3)% /torsion['o(73)® in To(T?3).

GLy(F,[T)) is generated by

0 1 10 1 0
S = . To= e Ty =
10 11 ™ 1

Note that all these elements are torsion.

b
Chose an element a = | in GLy(F2[T]) which is in T'¢(T?), non-torsion, and the
c

maximum of the degree of its nonzero entrees is 3 (as low as possible), e.g.

) (e 0)- (50

This will be a possible representative of ¢ we need.
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Now using Drinfeld’s theorem on the equivalence of categories of rank-2 Drinfeld A-modules over

C and homothety classes of rank-2 A-lattices, to compute the Heegner point we need to compute
z
uy(U) mod gqfp

where U2 +U = T.
To be able to approximate the infinite product
uy(U) = H

~ U —
s m

U—vyw

one has to know how fast it converges in C. So assume w and z are fixed, and since w can be
arbitrary take it to be equal to U. This considerably simplifies the actual computations since then

we are dealing with a quadratic extension.

z—vw_l‘: |dety||n — | _ In — wl _
z =y |z —ynllen + dlfew +d| [z —ynl|en + dl|cw + d]
_ In — w|
|z(en + d) — (an + b)||cw + d|

where the norms are the co-adic norms. Substitute z = U, w = U to get

In — w|
|U(en + d) — (an + b)||cU + d|

Put deg(0) = 0. Since U is not in Fy[T'] deg(cU + d) > max (deg(c), deg(d)). Hence |cU + d| >
max (|c, |d]).
3
With our choice of w, n = (1—;% Substituting this into |U(cn +d) — (an+b)| one can easily
show that |U(cn + d) — (an + b)| > const |b|. So finally,

const

[b] - max(|c, |d])

z—yw
z2—=1

1)<
and the constant doesn’t depend on 7.

Also since ad — cb = 1, deg(a) < max (deg(b), deg(c),deg(d)) = |a| < max (|b],]||,|d|) =
|b] - max (|c[,|d|) > max (|al, |b],|c|, |d]), and

‘U—'yU _ ‘ const
U—n ~ max (|al, [b], |[, )

This suggests that to compute u,(U) with good accuracy one can take a finite product over the
matrices in I'g(7T?) with entries having degree less than some N. The following crude estimates

show that N need not be large.
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Let T(N) be the number of matrices in I'g(n) with £ := max deg (a,b,c,d) = N. Since T(N) <

N
z—yw 1\ Tk

q
z—=M k>N

II

7€F0(n)a ZZN

II (1 + q%)) — 0"

k>N

With N = 5, we get the following oco-adic approximation of the Heegner point

H U—~U _LU+M
YETo(T3), £<5, v#£1L,y#p~1 1+7% 1 D
U—~v U
T3 1

Product has 1641 terms and L, M, D € Fy[T| with
[, — 83112 83111 | 83105 | 83104 4 83102 83101 4 83100 | 83097 | 83094 | 83089 4

M = T83109 + T83108 + T83107 + T83105 + T83104 + T83099 + T83097 + T83094 + T83093 + T83090 4.

D= T77498 4 T77497 + T77496 4+ T77494 4+ T77490 4 T77488 + T77486 + T77484 4+ T77483 + T77482 4o
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