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1 Maps between spaces of forms

Recall that we have been thinking of modular forms as rules defined on test
objects (E/R, ω) or (E/R, ω, Y ). Hence if one has a “natural” map F which
sends a test object to another test object, then F induces a natural map between
spaces of modular forms: if f is a modular form, then one can define a modular
form F ∗f as being the rule sending a test object T to f(F (T )). One needs to
check that this rule satisfies the axioms, but if F is sufficiently natural then this
kind of check should be very straightforward.1 We use the upper star notation
because one easily checks that the map on forms goes the other way to the map
F . We now give some concrete examples of this phenomenon.

• If (E/R, ω, Y ) is a ρ-overconvergent test object, then forgetting Y gives us
a classical test object (E/R, ω). Hence if f is a classical modular form, one
can define a ρ-overconvergent form as being the rule sending (E/R, ω, Y )
to f(E/R, ω). This way we get a natural map from classical forms to
ρ-overconvergent forms.

• if r ∈ R0 and ρ1 = rρ2, and if (E/R, ω, Y ) is a ρ2-overconvergent test
object, then (E/R, ω, rY ) is a ρ1-overconvergent test object, and hence r
gives us a natural map from the space of ρ1-overconvergent forms to the
space of ρ2-overconvergent forms.

One very interesting collection of maps between spaces of forms, namely the
Hecke operators, do not quite fit into this framework, but are only a mild gen-
eralisation of it, as we shall now see.

2 Hecke operators

If (E/R, ω) is a classical test object, and l is a prime, then for a finite locally-free
subgroup scheme C ⊂ E of order l defined over R, we can form the quotient

∗The author would like to thank David Whitehouse for supplying him with a copy of the
notes for the lecture

1One could in fact define “natural” as meaning “such that this check works”!
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curve E/C and we have a natural projection map π : E → (E/C), an isogeny
of degree l. One can form the dual isogeny π∨ : (E/C) → E. It is often true
that (E/C, (π∨)∗ω) is another classical test object—the only troublesome point
is that the differential might vanish, but this will not happen if, for example,
R is a Z[1/l]-algebra, as then π and its dual will both be etale. Let us hence
assume that R is a Z[1/l]-algebra.

There could be, in general, more than one subgroup of E of order l, and
hence we do not yet have a “natural” rule sending one test object to another,
as in the previous section. However, we get around this difficulty by simply
considering all subgroups at once! Before we make this rigorous, we recall some
facts about the group scheme (Z/lZ)2, considered as an etale group scheme over
Z[1/l]. This group scheme is essentially just a copy of the abelian group (Z/lZ)2

over each point of Spec(Z[1/l]), and one can easily check that it has precisely
l + 1 locally free subgroups of order l, corresponding to our usual intuition
from group theory. Let us label these subgroups C1, C2, . . . , Cl+1. Note that
if R is any Z[1/l]-algebra then the base extensions Ci/R are still subgroups of
(Z/lZ)2/R, and we shall refer to these groups as Ci for short.

Let f be a modular form of weight k, defined over a Z[1/l]-algebra R0. We
will define a new modular form Tlf as follows: If (E/R, ω) is a test object,
then E[l] will be locally isomorphic, in the etale topology, to (Z/lZ)2. More
concretely, this implies that there will be a finite etale over-ring R′ ⊃ R such
that over R′, E[l] becomes isomorphic to (Z/lZ)2. Choose such an isomorphism.
Let C1, C2, . . . , Cl+1 be the corresponding l + 1 subgroups of E[l] ∼= (Z/lZ)2,
and define Tlf(E/R, ω) = lk−1

∑l+1
i=1 f((E/Ci)/R′, (π∨i )∗ω). Here πi denotes

the projection E → E/Ci.
This definition has two subtle problems associated to it, one of which I was

not in fact aware of before the Arizona Winter School, and I shall sketch how
one gets around these problems. The first is that we chose an isomorphism
E[l] ∼= (Z/lZ)2 over R′. If Spec(R′) is not connected then there is the issue
that different isomorphisms will yield different choices of C1, . . . , Cl+1. So one
has to check that different choices yield the same result. Fortunately, this is
not difficult to do, because one can reduce to the case of a local ring, and the
spectrum of a local ring is connected. We thank Bjorn Poonen for pointing out
this subtlety, and Brian Conrad for explaining how to get around it.

The second problem is that we extended our base from R to R′, and hence
it looks like Tlf(E/R, ω) will be an element of R′ rather than R. One can use
a generalisation of Galois theory, or what the experts would call “a descent
argument”, to prove that Tlf(E/R, ω) is in fact in R.

The above discussion yields a map Tl from the space of classical weight k
modular forms over Z[1/l] to itself, and also a map Tl from the space of p-adic
modular forms to itself, as long as l 6= p. In the p-adic setting there is also a
very important Hecke operator at p, but its definition is slightly more subtle and
we shall come back to it later. As a brief summary of the problem, what will
happen is that for an elliptic curve defined over a p-adic ring, it is frequently
the case that not all subgroups of order p are the same—one of them is more
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“canonical” than the others. We can define a Hecke operator Up by quotienting
out by the p non-canonical subgroups of order p. We now make all this more
precise.

3 A measure of supersingularity on an elliptic
curve

For simplicity now, let K be a finite extension of Qp, Let OK denote the integers
of K. There is a valuation map v : OK\{0} → Q≥0, normalised so that v(p) = 1.

Let R denote OK/pOK . Note that R may well not be the residue field of K—
in fact this is exactly the point: if K is highly ramified, then R will contain lots
of nilpotent elements. The valuation map above induces v : R\{0} → [0, 1)∩Q,
with the property that v(ur) = v(r) for all u ∈ R×.

Let E/K be an elliptic curve with good reduction. By definition of “good
reduction”, there is an elliptic curve E/OK with generic fibre E. Define E/R
to be the base change of E to R. The R-module H0(E, Ω1

E/R
) is projective of

rank 1, and hence free of rank 1, over R. If ω is an R-basis for this module,
then by definition, ω is a non-vanishing differential. Furthermore, such ω exist,
and are unique up to multiplication by an element of R×.

If A denotes the Hasse invariant, then A(E, ω) ∈ R is an element which
is either equal to 0, or has a valuation which is independent of choice of non-
vanishing ω. Let us say that E is “very supersingular” if A(E, ω) = 0, and that
E is “not too supersingular” otherwise.

Assume that E is not too supersingular. Then v(A(E, ω)) is independent of
choice of ω, and is a rational in [0, 1). Define v(E) to be this rational. By the
definition of the Hasse invariant, v(E) = 0 iff E has good ordinary reduction.
For completion, define v(E) = 0 if E has bad reduction.

This definition gives us another way of understanding the “Y ” part of the
definition of an overconvergent test object, in some simple cases: if R0 is the
integers in a finite extension of Qp, and 0 6= ρ ∈ R0 with 0 ≤ v(ρ) < 1, then
for a test object (E/R0, ω, Y ) we have Y Ep−1(E,ω) = ρ and this implies that
v(E) ≤ v(ρ). On the other hand, if (E/R0, ω) is a classical test object, then Y
will exist making (E/R0, ω, Y ) a ρ-overconvergent test object iff v(E) ≤ v(ρ),
because if the inequality holds then one can define Y = ρ/Ep−1(E, ω).

More generally, if R is an arbitrary p-adically complete R0-algebra, then a
ρ-overconvergent test object defined over R can be thought of, loosely speaking,
as a family of elliptic curves E all of which have v(E) ≤ v(ρ). In fact, this can
be made more rigorous, as we are about to see.

4 The rigid-analytic viewpoint

This section is rather vague, because I did not want to get bogged down with
the details of the foundations of rigid analysis. The reader is hence asked to
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take on board the fact that there is a good p-adic analogue of the theory of
Riemann surfaces, namely the theory of rigid-analytic curves.

Let N be an integer prime to p. The modular curve X1(N) parameterises
(generalised) elliptic curves equipped with a point of order N . If E is the univer-
sal elliptic curve over X1(N), then one can define a sheaf ω on X1(N) as being
the pushforward of the differentials on E/X1(N) (and being careful at cusps).
This sheaf is locally free of rank 1, and one can think of a classical modular
form as being a section of ω⊗k.

The problem comes when one wants to start “throwing away” elliptic curves.
For example, let us try and consider only the ordinary locus of X1(N), that is,
let us consider X1(N) over, say, Qp, and let us consider the locus of points
X1(N)ord which correspond to curves with good ordinary, or multiplicative,
reduction. This set contains infinitely many points, as does its complement.
Hence there is no way that this set can possibly be the set of points of some
kind of subvariety of X1(N), as any non-trivial closed subvariety of a curve is
finite, and any non-trivial open subvariety has finite complement.

Fortunately, if one words over a complete base field like Qp or Cp, then
X1(N)ord has the structure of a rigid-analytic space. What is happening here is
that X1(N)ord is some kind of p-adic analogue of a Riemann surface. The theory
of rigid analytic spaces is set up from scratch in the book “non-Archimedean
analysis” by Bosch, Guentzer and Remmert, and in several other places, but the
reader with less patience can find a summary of the theory in Peter Schneider’s
article in the 1996 Durham proceedings. Let us just think of these things as
being p-adic analogues of Riemann surfaces, and let us use the theory of complex
analytic geometry as a guide to what we can do. From this viewpoint, X1(N)ord

is an open subvariety of X1(N), and it will inherit an analytic sheaf ωan of rank 1.
The theory of rigid spaces is precisely what one needs to give a good geometric
feel to the theory of p-adic modular forms. For example, one can check that if K
is a finite extension of Qp with integers OK then the global sections of (ωan)⊗k

over K are precisely the 1-overconvergent modular forms defined over OK .
More generally, if 0 ≤ r < 1 is rational, one can define X1(N)≥r as X1(N)

with all points corresponding to elliptic curves E which are either much too
supersingular, or have v(E) > r, removed. Although it is slightly dangerous to
draw a picture of a p-adic Riemann surface, one can think of these objects as
looking rather like classical Riemann surfaces with small discs removed. This is
because the regions of X1(N) corresponding to elliptic curves with supersingular
reduction are the preimages in the generic fibre of the supersingular points, and
one can easily be convinced that the pre-image of a smooth point in the special
fibre is a disc in the generic fibre (for example, consider the projective line over
Cp: the pre-image of the origin in the special fibre is {z ∈ Cp : |z| < 1}).

One can easily analyse these so-called “supersingular discs”. If one chooses
a trivialisation of ωp−1 on each disc, then the form Ep−1 gives a parameter on
these discs, which can now be thought of as open discs with radius 1. The
elliptic curves with 0 < v(E) < 1 are the curves on the boundary of these discs,
and v can be thought of as the valuation of the parameter. The closed disc
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of radius 1/p with centre the zero of Ep−1 is the region consisting of elliptic
curves which are “much too supersingular”. The space X1(N)≥r corresponds
to X1(N) with open discs radius p−r removed.

Again, one has the powerful geometric definition of a ρ-overconvergent form
of weight k over K, a finite extension of Qp: it is a section of (ωan)⊗k on
X1(N)≥r, where r = v(ρ). Note that if we stick to ρ with v(ρ) < 1 then the
definition does not even depend on a choice of lifting of the Hasse invariant,
and in particular this method gives us a means of avoiding the thorny problems
associated with lifting the Hasse invariant to characteristic zero in many cases of
interest—one simply has to lift the Hasse invariant on each supersingular disc,
which is possible even if p is small.

5 Canonical subgroups and the U operator

We now come back to the Hecke operator at p. We start with a specific example
which the author finds very illuminating, because it really shows a concrete
example of the canonical subgroup of an elliptic curve.

If a ∈ Q2 with |a| ≤ 1 then define the elliptic curve

Ea : y2 + y + axy = x3 + x2.

One can reduce this curve mod the prime above 2, and there are two cases:
if |a| = 1 then Ea reduces to the curve y2 + y + āxy = x3 + x2, which is an
ordinary elliptic curve over F2. On the other hand, if |a| < 1 then Ea reduces
to y2 + y = x3 + x2, which is supersingular.

Let’s put this curve into canonical form: define Y = y + 1
2 (1 + ax) and the

equation for Ea becomes Y 2 = f(x), where

f(x) = x3 +
(

a2

4
+ 1

)
x2 +

a

2
x +

1
4
.

The points of order 2 on Ea correspond to the roots of f(x). What are the
valuations of these roots? This is easy to establish via the theory of the Newton
Polygon.

If |a| = 1 then the valuations of the coefficients of f(x) are 0,−2,−1,−2
respectively, and hence f has one root with valuation −2 and two roots with
valuation 0. The root with valuation −2 is of course the one that reduces to
the point at infinity in the reduction map, and indeed one expects exactly one
non-zero point to have this property because the 2-torsion in generic fibre has
order 4, and the 2-torsion in the special fibre has order only 2.

In the supersingular reduction case, the special fibre has no 2-torsion at all.
However, if |a| = 1 − ε with ε small, then a similar Newton polygon argument
shows that one of the roots of f has valuation −2 + 2ε and the other two have
valuation−ε. All three roots have negative valuation, as expected, but one sticks
out like a sore thumb. This point generates the so-called “canonical subgroup”
of Ea.
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Finally, if |a| is very small, then all three roots have valuation −2/3 and it
is hard to distinguish between them in any canonical manner.

One should think of a as being a function on X0(1), with |a| < 1 on the su-
persingular locus and |a| ≥ 1 on the ordinary locus. The area where |a| = 1− ε
with ε small then corresponds to the region near the boundary of the supersin-
gular disc, and the example shows that for elliptic curves near the boundary
of the disc, even though they have supersingular reduction, they still have a
canonical subgroup of order 2.

This example is a special case of the following phenomenon (whose proof is
just a long elaboration of what we have just seen above):

Theorem. If K is a finite extension of Qp and E/K is an elliptic curve with
v(E) < p

p+1 then E has a canonical subgroup of order p. Furthermore, this
canonical subgroup varies smoothly as E varies smoothly, and hence can be
defined for a family of elliptic curves over a p-adic base.
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