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1. p-adic integration

1.1. The p-adic measure. Let p be a prime number. We consider a field K with
a valuation ord : K× → Z, extended to K by ord(0) = ∞. We denote by OK the
valuation ring OK = {x ∈ K|ord(x) ≥ 0} and we fix an uniformizing parameter $,
that is, an element of valuation 1 in OK . The ring OK is a local ring with maximal
ideal MK of OK generated by $. We shall assume the residue field k := OK/MK

is finite with q = pe elements. We endow K with a norm by setting |x| := q−ord(x)

for x in K. We shall furthermore assume K is complete for | |.
It follows in particular that the abelian groups (Kn,+) are locally compact, hence
they have a canonical Haar measure µn, unique up to multiplication by a non zero
constant, so we may assume µn(On

K) = 1. The measure µn is the unique R-valued
Borel measure on Kn which is invariant by translation and such that µn(On

K) = 1.
For instance the measure of a + $mOn

K is q−mn. For any measurable subset A of
Kn and any λ in K, µn(λA) = |λ|nµn(A). More generally, for every g in GLn(K),

(1.1.1) µn(gA) = |detg|µn(A).

If f is, say, a K-analytic function on A, we set∫
A

|f |µn :=

∫
A

|f ||dx| :=
∑
m∈Z

µn(ord(f) = m)q−m,

assuming the series
∑

m∈Z µn(ord(f) = m)q−m is convergent in R. More generally,
we define similarly

∫
A
|f |s|dx| by

∑
m∈Z µn(ord(f) = m)q−ms whenever it makes

sense. For instance, when n = 1, we have, for s > 0 in R,∫
x∈OK ,ord(x)≥m

|x|s =
∑
j≥m

q−sj

∫
ord(x)=j

|dx| =
∑
j≥m

q−sj(q−j − q−j−1)

= (1− q−1)q−(s+1)m/(1− q−(s+1)).

(1.1.2)

1.2. Integration on analytic varieties. Formula (1.1.1) is a very special form of
the following fundamental change of variables formula (see [34] p. 111):

1.2.1. Proposition (The p-adic change of variables formula). Let U be an open
subset of Kn and consider K-analytic functions f1, . . . , fn on U . Assume f =

1
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(f1, . . . , fn) : U → Kn is a K-analytic isomorphism between U and an open subset
V of Kn. Then, for every integrable function ϕ on V ,∫

V

ϕµn|V =

∫
U

(ϕ ◦ f)|∂(f1, . . . , fn)/∂(x1, . . . , xn)|µn|U ,

where ∂(f1, . . . , fn)/∂(x1, . . . , xn) is the determinant of the jacobian matrix of f .

Let X be an n-dimensional smooth K-analytic manifold. One assigns to any K-
analytic n-differential form ω on X a measure µω := |ω| as follows. Take an atlas
{(U, φU)} of X. Write (φ−1

U )∗ω|U = fUdx1 ∧ · · · ∧ dxn. If A is small enough to be
contained in some U , we set µω(A) :=

∫
φU (A)

|fU ||dx|. It follows from the change of

variables formula that the measure may be extended uniquely by additivity to any
A in a way which is independent of the choice of the atlas.

1.3. Rationality of a Poincaré series. Let f be a polynomial in OK [x1, . . . , xn].
Denote by Nm the number of elements x in (OK/$

m+1OK)n such that f(x) ≡ 0
mod $m+1 and set

Q(T ) :=
∑
m≥0

NmT
m.

When K = Qp, Borevich and Shafarevich conjectured that Q(T ) is always a rational
function of T .

1.3.1. Theorem (Igusa). Assume K is of characteristic zero (i.e. K is a finite
extension of Qp). Then the series Q(T ) is rational. More precisely it is of the form

R(T )∏
j∈F (1− q−ajT bj )

with R(T ) in Z[p−1][T ], F finite, aj in N and bj in N \ {0}.

The idea of Igusa’s proof is the following. We refer to [33] or [34] for more details.
One first observe that

Nm = q(m+1)nµn({x ∈ On
K |ordf(x) ≥ m+ 1}).

By an easy calculation similar to (1.1.2) one deduces the relation

Q(q−n−s) =
qn

1− q−s
(1− I(s)),

with

I(s) :=

∫
On

K

|f |s|dx|.

Hence it is sufficient to prove the rationality of I(s) as function of q−s. This is
achieved in the following way. By Hironaka’s resolution (this is the place where the
hypothesis that K is of characteristic zero is crucial), there exists a smooth compact
manifold Y and an analytic morphism h : Y → On

K , obtained by composition of
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blowing up smooth centers, which is an isomorphism away from the locus of f = 0.
By the change of variables formula I(s) may be expressed as

I(s) =

∫
Y

|f ◦ h|s|h∗dx|.

On Y , f ◦ h and h∗dx are both locally monomial, i.e. of the form f ◦ h = u
∏
yNi

i

and h∗dx = v
∏
yni

i dy, with u and v units, and y = (y1, . . . , yn) local coordinates,
in which case the explicit calculation of the integral becomes very easy, since it is a
product of integrals of type (1.1.2).

1.4. The Serre series. Instead of considering the number Nm of approximate so-
lutions modulo $m+1 of f = 0 in (OK/$

m+1OK)n, one may want to consider ap-
proximate solutions that can be lifted to actual solutions of f = 0 in On

K . More

precisely, we denote by Ñm the number of elements y in (OK/$
m+1OK)n such that

y ≡ x mod $m+1, with x in On
K such that f(x) = 0. The corresponding generating

series

P (T ) :=
∑
m≥0

ÑmT
m

was first considered by Serre who raised the question of its rationality, that was
solved (in characteristic zero) by Denef in [9].

1.4.1. Theorem (Denef). Assume K is of characteristic zero. Then the series P (T )
is rational. More precisely it is of the form

R(T )∏
j∈F (1− q−ajT bj )

with R(T ) in Z[p−1][T ], F finite, aj in Z and bj in N \ {0}.

Since

Ñm = q(m+1)nµn({y ∈ On
K |∃x, f(x) = 0, x ≡ y mod $m+1}),

one can reduce the rationality of P (T ) to the rationality of the integral

J(s) :=

∫
On

K

d(x, V )s|dx|,

where d(x, V ) is the distance function to the hypersurface V defined by f = 0. One
then sees that a major difference with the Igusa case 1.3 occurs: the function d(x, V )
is in general not analytic, due to the presence of quantifiers in its definition. So,
in the proof of his Theorem, Denef had to use Macintyre’s Theorem on quantifier
elimination, which we shall explain now.
Let us mention that, in the positive characteristic case, the rationality of Q(T ) would
follow at once, as soon as Hironaka resolution will be known. For the rationality of
P (T ), the situation is much more open, since, in this setting, one does not know,
even conjecturally, what could be a sensible analogue of Macintyre’s Theorem.
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1.5. Definable subsets of Qp. For simplicity we shall assume K = Qp, the case
of finite extensions of Qp being quite similar.
Let LMac denote the first order language whose variables run over Qp and with
symbols to denote +,−×, 0, 1 and, for every d = 2, 3, 4 . . . , a symbol Pd to denote
the predicate “x is a d-th power in Qp”. Moreover, for every element in Zp, there
is a symbol to denote that element. As for any first order language, formulas of
LMac are built up from the above specified symbols and variables, together with the
logical connectives ∧ (and), ∨ (or), ¬ (not), the quantifiers ∃, ∀ and the equality
symbol =. Macintyre’s Theorem [36] states that Qp has quantifier elimination in the
language LMac, meaning that every formula in that language is equivalent in Qp to
a formula without quantifiers. A subset of Qn

p is called semi-algebraic if is definable
by a (quantifier-free) formula in LMac.
We shall also consider the first order language LPres of Presburger arithmetic. In this
language variables run over Z and symbols are +,≤, 0, 1 and, for every d = 2, 3, 4
. . . , a symbol to denote the binary relation x ≡ y mod d. One should note there is
no symbol in LPres for multiplication. It is an old result of Presburger that Z has
quantifier elimination in the language LPres.
It is also useful to consider the first order language L with two sorts of variables: a
first sort of variable running over Qp and a second sort running over Z. The symbols
of L consist of the symbols of LMac for the first sort, the symbols of LPres for the
second sort, and a symbol to denote the valuation function ord : Qp \ {0} → Z.
As remarked in [9], it follows from Macintyre’s Theorem that Qp has elimination
of quantifiers in the language L and every subset of Qn

p which is definable in L is
semi-algebraic. A function is called L-definable if its graph is L-definable.

1.6. Denef’s Cell Decomposition Theorem. In [9] Denef gave two proofs of
Theorem 1.4.1. We already mentioned the first one, which uses Hironaka resolution
and Macintyre’s Theorem. The second one was based on the following cell decom-
position Theorem 1.6.1 which Denef originally deduced from Macintyre’s Theorem
(in fact, Macintyre’s Theorem also easily follows from Theorem 1.6.1). Then, in [11]
Denef gave a direct proof of Theorem 1.6.1

1.6.1. Theorem (Denef’s p-adic cell decomposition). Let fi(x, t), 1 ≤ i ≤ m, be
polynomials in Qp[x, t], with x = (x1, . . . , xn−1) and t another variable. Fix an
integer d ≥ 2. There exists a finite partition of Qn

p into subsets (called cells) of the
form

A =
{

(x, t) ∈ Qn
p

∣∣∣ x ∈ C and |a1(x)|�1|t− c(x)|�2|a2(x)|
}
,

where C is an L-definable subset of Qn−1
p , �i denotes either ≤, <, or no condition,

and ai(x) and c(x) are L-definable functions from Qn−1
p to Qp such that, for every

(x, t) in A,

fi(x, t) = ui(x, t)
dhi(x)(t− c(x))νi ,

for 1 ≤ i ≤ m, where ui(x, t) is a unit on A, hi(x) is an L-definable function, and
νi is in N.
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1.7. Basic Theorem on p-adic integration and applications. The following
general result is proved by successive application of the cell decomposition Theorem
and integration with respect to the t-variable, cf. [10] and [13].

1.7.1. Theorem (Denef). Let (Aλ,`)λ∈Qk
p ,`∈Zr be an L-definable family of bounded

subsets of Qn
p , meaning that the relation x ∈ Aλ,` may be expressed by a formula in

the language L, with variables x, λ and `. Let α(x, λ, `) be a Z-valued L-definable
function on Qn

p ×Qk
p × Zr. Assume that all values of α are ≥ 0. Then the integral

Iλ,` :=

∫
Aλ,`

p−α(x,λ,`)|dx|

is a Q-valued function of λ, ` belonging to the Q-algebra generated by functions of
the form θ(λ, `) and pθ(λ,`) with θ(λ, `) a Z-valued L-definable function.

In the special case where there is no variable λ, the function I(λ) in Theorem 1.7.1
is particularly simple: it is built from Presburger functions (i.e. LPres-definable
functions) using multiplication, exponentiation and Q-linear combinations. From
this observation Denef could deduce in an elementary way the following general
rationality statement.

1.7.2. Theorem (Denef). Assume the notation of Theorem 1.7.1 with no λ involved.
Then the series ∑

`∈Nr

I(`)T `

in Q[[T1, . . . , Tr]] is a rational function of T .

Remark that the rationality of Q(T ) and P (T ) is a direct consequence of Theorem
1.7.2.
We now give a striking application to the problem of counting subgroups. For a
finitely generated group G and an integer n ≥ 1, let us denote by an(G) the number
number of subgroups of order n in G. This is always a finite number (cf. [30]).
The following Theorem is due to Grunewald, Segal and Smith [30]:

1.7.3. Theorem. If G is a torsion-free finitely generated nilpotent group, then the
series

∑
m apm(G)Tm is rational, for every prime p.

The Theorem is proved by expressing apm(G) in terms of a p-adic integral∫
Am

p−θ(x)|dx|,

with (Am)m∈N and θ definable in L and applying Theorem 1.7.2.

2. Prehistory of motivic integration: Proving results over C by
computing p-adic integrals

2.1. The topological zeta function. LetX be a smooth complex algebraic variety
of dimension n and D an effective divisor on X. By a log-resolution of (X,D)
we mean a proper birational morphism h : Y → X with Y smooth, which is an
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isomorphism away from the preimage of the support of D and such that h−1(D) a
divisor with normal crossings. We denote by Ei, i ∈ J the irreducible components
of h−1(D) (in particular each Ei is smooth). We set EI = ∩i∈IEi, for I ⊂ J
and E◦

I = EI \ ∪j /∈IEj. Finally we denote by Ni the multiplicity of Ei in h−1(D),
i.e. h−1(D) =

∑
i∈J NiEi and also we write Ωn

Y = h∗Ωn
X +

∑
i∈J(νi − 1)Ei, where

Ωn stands for the sheaf of algebraic differential forms of degree n. (We use here
the same notation for invertible sheaves and the corresponding divisors.) Let W
be a complex algebraic variety. We denote Eu(W ) its topological Euler-Poincaré
characteristic with compact supports: Eu(W ) :=

∑
i(−1)irkCH

i
c(W (C)). In fact, it

can be shown, but we shall not use it, that Eu(W ) is also equal to the topological
Euler-Poincaré characteristic with compact supports

∑
i(−1)irkCH

i(W (C)).
Now, we can state the following result, which was first proved using p-adic integra-
tion in [14]:

2.1.1. Theorem (Denef-Loeser). Let X be a smooth complex algebraic variety of
dimension n and D a divisor on X. Then the rational function

(2.1.1) Ztop(X,D)(s) :=
∑
I⊂J

Eu(E◦
I )∏

i∈I(Nis+ νi)

does not depend of the choice of a log-resolution h : Y → X, but only of the pair
(X,D).

Let us explain the idea of the proof. We shall assume, as in [14], that X = An and
D = f−1(0), with f a polynomial in C[x1, . . . , xn] but the proof in general works
just the same. We shall write Ztop,f (s) for Ztop(X,D)(s). Now, we shall make the
assumption that the coefficients of f all lie in the same number field K, i.e. f is in
K[x1, . . . , xn] (in general, we can only assume they lie in a field of finite type over
Q, but the basic idea of the proof still remains the same, see [14]).
Now for every prime ideal P in the ring of integers OK , we denote by KP the
corresponding local field, with ring of integers OP and residue field kP. We consider
the local zeta function

Zf,KP
(s) :=

∫
On

P

|f |sP|dx|P,

where | |P stands for the P-adic norm on KP. Consider now a log-resolution h :
Y → X defined over K. It follows from a formula of Denef [12] that, for almost all
P,

(2.1.2) Zf,KP
(s) = q−n

∑
I⊂J

card(E◦
I (kP))

∏
i∈I

(q − 1)q−(Nis+νi)

1− q−(Nis+νi)
,

with q = cardkP. Here we should explain what we mean by card(E◦
I (kP)). For Z

a variety over K we choose a model Z over OK , i.e. a variety over OK wich is
isomorphic to Z over K, and we set card(X(kP)) = card((X ⊗ kP)(kP)). Of course,
this may depend on the choice of the model X , but this will be the case only for
a finite number of prime ideals P, so it makes sense to consider card(X(kP)) for
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almost all P. For e ≥ 1, let us write K
(e)
P for the unramified extension of KP of

degree e. Its residue field k
(e)
P has qe elements. Also, for almost all P, equation

(2.1.2) still holds when replacing KP by K
(e)
P , yielding

(2.1.3) Z
f,K

(e)
P

(s) = q−en
∑
I⊂J

card(E◦
I (k

(e)
P ))

∏
i∈I

(qe − 1)q−e(Nis+νi)

1− q−e(Nis+νi)
.

Now, taking formally the limit as e 7→ 0 in (2.1.3) gives us (2.1.1). This is quite

clear, once we know that lime7→0 cardW (k
(e)
P ) = EuW (C), for almost all P, when W

is a variety over K. This last fact follows from Grothendieck’s trace formula for the
Frobenius acting on `-adic cohomology and standard comparison results between

`-adic and classical Betti cohomology. Indeed, we have cardW (k
(e)
P ) =

∑
αe

i −
∑
βe

j ,
with αi and βj the eigenvalues, respectively in even and odd degree, of the Frobenius
acting on `-adic cohomology groups with compact supports with compact supports,
and taking e = 0 just gives the trace of the identity, i.e. the alternating sum of the
ranks of `-adic cohomology groups with compact supports. Of course, this is just a
rough sketch of the proof and further work is required in order to show this process
of taking limits as e 7→ 0 really makes sense.

2.2. Birational Calabi-Yau varieties have the same Betti numbers. Let X
be a smooth complex projective variety of dimension n. We say X is Calabi-Yau if X
admits a nowhere vanishing degree n algebraic differential form ω. This is equivalent
to the sheaf Ωn

X being trivial. Recall the Betti numbers bi(X) are the ranks of the
cohomology groups H i(X(C),C). Considerations from theoretical physics (string
theory) led to the guess that birational Calabi-Yau varieties should have the same
Betti numbers (and even the same Hodge numbers, cf. 3.2.4).
This was proved by Batyrev [4] using p-adic integration and the Weil conjectures.

2.2.1. Theorem (Batyrev). Let X and X ′ be complex Calabi-Yau varieties of di-
mension n. Assume X and X ′ are birationally equivalent. Then they have the same
Betti numbers.

Let us sketch the proof. For simplicity, we assume, as in the proof of Theorem
2.1.1 that X, X ′ and all the data are defined over some number field K (in general
they are defined only over some field of finite type, but the basic idea of the proof
is the same). We keep the notation of 2.1. By Hironaka there exists a smooth
projective Y defined over K, and birational proper morphisms (also defined over
K) h : Y → X and h′ : Y → X ′. Furthermore we may assume there exists a
divisor with normal crossings E = ∪i∈JEi such that the exceptional locus of h and
h′ respectively, is a finite union of Ei’s. We may write Ωn

Y = h∗Ωn
X +

∑
i∈J(νi− 1)Ei

and Ωn
Y = h′∗Ωn

X′ +
∑

i∈J(ν ′i − 1)Ei. Since h∗Ωn
X and h′∗Ωn

X′ are both trivial, it
follows1 that νi = ν ′i for every i in J . One then deduces follows from the change of

1This is not completely evident, but can be proved quite easily using elementary algebraic
geometry. Check it as an exercise.
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variables formula, that for almost all P, with a slight abuse of notation, with have∫
X(KP)

|ω|P =

∫
X′(KP)

|ω′|P

and the same holds for all unramified extensions K
(e)
P . Indeed, we may express

by the change of variables formula both integrals as the same integral over the
rational points of Y . Since, for almost all P and every e,

∫
X(K

(e)
P )

|ω|P is equal to

q−encard(X(k
(e)
P )) (this is a special case of Denef’s result above mentionned that

goes back at least to A. Weil), it follows that for almost all P, the reductions of
(some model of) X and X ′ mod MP have same the zeta function. On the other
side, for proper smooth varieties over a finite field, the zeta function determines the
`-adic Betti numbers by Deligne’s proof of the Weil conjectures, hence the result
follows from standard comparison results between `-adic and usual Betti numbers.

2.2.2. Remark. The above proof gives in fact the following stronger result (see [4]):
if X and X ′ are two n-dimensional smooth proper complex varieties that are K-
equivalent, meaning that there exists birational proper morphisms h : Y → X and
h′ : Y → X ′ with Y smooth proper such that the invertible sheaves h∗(Ωn

X) and
h∗(Ωn

X′) are isomorphic, then X and X ′ have the same Betti numbers.

2.3. Towards motivic integration. The fact that one can use p-adic integration
to prove results over C may look appealing to model theorists - after all using finite
fields to prove surjectivity of injective polynomial complex morphisms goes back to
Ax [3] - but it was challenging for geometers to find a more direct approach. Of
course, one obvious try would like to perform some kind of integration over the field
C((t)), but since it is not locally compact it is hopeless to construct any reasonable
real valued measureon it. The real breakthrough happened at the end of 1995, when
Maxim Kontsevich got the idea of motivic integration: one should replace the real
numbers by (the completion of) the Grothendieck ring of algebraic varieties as he
explained in his seminal Orsay talk [35].

3. Additive invariants and Grothendieck rings

3.1. Additive invariants of algebraic varieties. Let R be a ring. We denote by
VarR the category of algebraic varieties over R, i.e. reduced and separated schemes
of finite type over R. If X and X ′ are varieties over R, we denote by X ×X ′ their
cartesian product in VarR. By definition X×X ′ is equal to (X⊗SpecRX

′)red, that is
the scheme X ⊗SpecR X

′ endowed with its reduced structure. An additive invariant

λ : VarR −→ S,

with S a ring, assigns to any X in VarR an element λ(X) of S such that

λ(X) = λ(X ′)

for X ' X ′,
λ(X) = λ(X ′) + λ(X \X ′),
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for X ′ closed in X, and
λ(X ×X ′) = λ(X)λ(X ′)

for every X and X ′.
Let us remark that additive invariants λ naturally extend to take their values on
constructible subsets of algebraic varieties. Indeed a constructible subset W may
be written as a finite disjoint union of locally closed subvarieties Zi, i ∈ I. One
may define λ(W ) to be

∑
i∈I λ(Zi). By the very axioms, this is independent of the

decomposition into locally closed subvarieties.

3.2. Examples.

3.2.1. There exists a universal additive invariant [ ] : VarR → K0(VarR) in the sense
that composition with [ ] gives a bijection between ring morphisms K0(VarR) → S
and additive invariants VarR → S. The construction of K0(VarR) is quite easy: take
the free abelian group on isomorphism classes [X] of objects of VarR and mod out
by the relation [X] = [X ′]+ [X \X ′] for X ′ closed in X. The product is now defined
by [X][X ′] = [X ×X ′].
We shall denote by L the class of the affine line A1

R in K0(VarR). An important
role will be played by the ring MR := K0(VarR)[L−1] obtained by localization with
respect to the multiplicative set generated by L. This construction is analogue to
the construction of the category of Chow motives from the category of effective
Chow motives by localization with respect to the Lefschetz motive. (Remark that
the morphism χc of 3.2.5 sends L to the class of the Lefschetz motive.)
One should stress that very little is known about the structure of the rings K0(VarR)
and MR even when R is a field. Let us just quote a result by Poonen [40] saying
that when k is a field of characteristic zero the ring K0(Vark) is not a domain.
For instance, even for a field k, it is not known whether the localization morphism
K0(Vark) →Mk is injective or not.

3.2.2. Remark. In fact, the ring K0(Vark) as well as the canonical morphism χc :
K0(Vark) → K0(CHMotk), were already considered by Grothendieck in a letter to
Serre dated August 16, 1964, cf. p. 174 of [29].

3.2.3. Euler characteristic. Here R = k is a field. When k is a subfield of C,
the Euler characteristic Eu(X) :=

∑
i(−1)irkH i

c(X(C),C) give rise to an additive
invariant Eu : Vark → Z. For general k, replacing Betti cohomology with compact
support by `-adic cohomology with compact support, ` 6= chark, one gets an additive
invariant Eu` : Vark → Z, which does not depend on `. Since the Euler number of
the affine line is 1, the Euler characteristic extends to a morphism Mk → Z.

3.2.4. Hodge polynomial. Let us assume R = k is a field of characteristic zero.
Then it follows from Deligne’s Mixed Hodge Theory that there is a unique additive
invariant H : Vark → Z[u, v], which assigns to a smooth projective variety X over k
its usual Hodge polynomial

H(u, v) :=
∑
p,q

(−1)p+qhp,q(X)upvq,
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with hp,q(X) = dimHq(X,Ωp
X) the (p, q)-Hodge number of X. This is is also a

consequence of Bittner’s Theorem that we shall explain in 3.3. Since H(A1
k) = uv,

h extends to a ring morphism Mk → Z[u, v, (uv)−1].

3.2.5. Virtual motives. More generally, when R = k is a field of characteristic zero,
there exists by Gillet and Soulé [25], Guillen and Navarro-Aznar [28], a unique
additive invariant χc : Vark → K0(CHMotk), which assigns to a smooth projective
variety X over k the class of its Chow motive, where K0(CHMotk) denotes the
Grothendieck ring of the category of Chow motives over k (with rational coefficients).
Let us explain what Chow motives and the category K0(CHMotk) are. Let V denote
the category of smooth and projective C-schemes. For an object X in V and an
integer d, Zd(X) denotes the free abelian group generated by irreducible subvarieties
of X of codimension d. We define the rational Chow group Ad(X) as the quotient
of Zd(X) ⊗ Q modulo rational equivalence. For X and Y in V , we denote by
Corrr(X, Y ) the group of correspondences of degree r from X to Y . If X is purely
d-dimensional, Corrr(X, Y ) = Ad+r(X × Y ), and if X =

∐
Xi, Corrr(X, Y ) =

⊕Corrr(Xi, Y ). The category Mot of C-motives may be defined as follows (cf.
[41]). Objects of Mot are triples (X, p, n) where X is in V , p is an idempotent (i.e.
p2 = p) in Corr0(X,X), and n is an integer in Z. If (X, p, n) and (Y, q,m) are
motives, then

HomMot((X, p, n), (Y, q,m)) = qCorrm−n(X, Y ) p.

Composition of morphisms is given by composition of correspondences. The category
Mot is additive, Q-linear, and pseudo-abelian. There is a natural tensor product on
Mot, defined on objects by

(X, p, n)⊗ (Y, q,m) = (X × Y, p⊗ q, n+m).

We denote by h the functor h : V◦ → Mot which sends an object X to h(X) =
(X, id, 0) and a morphism f : Y → X to its graph in Corr0(X, Y ). This functor is
compatible with the tensor product and the unit motive 1 = h(Spec C) is the identity
for the product. We denote by L the Lefschetz motive L = (Spec C, id,−1). One
can prove there is a canonical isomorphism h(P1) ' 1 ⊕ L, so, in some sense, L
corresponds to H2(P1).
Since algebraic correspondences naturally act on cohomology, any cohomology the-
ory on the category V factors through CHMotk hence motives have canonical Betti
and Hodge realizations.

3.2.6. Theorem. There exists a unique morphism of rings

χc : K0(Vark) −→ K0(CHMotk)

such that χc([X]) = [h(X)] for X projective and smooth.

Remark that χc([L]) = L.
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3.2.7. Counting points. Counting points also yields additive invariants. Assume
k = Fq, then Nn : X 7→ |X(Fqn)| gives rise to an additive invariant Nn : Vark → Z.
Similarly, if R is (essentially) of finite type over Z, for every maximal ideal P of R
with finite residue field kP, we have an additive invariant NP : VarR → Z, which
assigns to X the cardinality of (X ⊗ kP)(kP).

3.3. Bittner’s Theorem. We assume form now on that k is a field of characteristic
zero. It is a rather straightforward consequence of Hironaka’s theorem that K0(Vark)
is generated by classes of smooth irreducible projective varieties. More subtle is the
following presentation by generators and relations of K0(Vark) due to F. Bittner
[5]. We denote by Kbl

0 (Vark) the quotient of the free abelian group on isomorphism
classes of irreducible smooth projective varieties over k by the relations

[BlYX]− [E] = [X]− [Y ],

for Y andX irreducible smooth projective over k, Y closed inX, BlYX the blowup of
X with center Y and E the exceptional divisor in BlYX. As for K0(Vark), cartesian
product induces a product on Kbl

0 (Vark) which endows it with a ring structure.
There is a canonical ring morphism Kbl

0 (Vark) → K0(Vark), which sends [X] to [X].

3.3.1. Theorem (Bittner [5]). Assume k is of characteristic zero. The canonical
ring morphism

Kbl
0 (Vark) → K0(Vark)

is an isomorphism.

The proof is based on Hironaka resolution of singularities and the weak factorization
theorem of Abramovich, Karu, Matsuki and W lodarczyk [1] which we quote in the
following version:

3.3.2. Theorem (Weak factorization theorem). Let k be a field of characteristic zero.
Let φ : X1 99K X2 be a birational map between proper smooth irreducible varieties
over k. Let U ⊂ X1 be the largest open subset on which φ is an isomorphism. Then
φ can be factored into a sequence of blowing ups and blowing down with smooth
centers disjoint from U : φi : Vi−1 99K Vi, i = 1, . . . , `, with V0 = X1, V` = X2, with
φi or φ−1

i blowing ups with smooth centers away from U . Moreover there exists i0
such that Vi 99K X1 is defined everywhere and projective for i ≤ i0 and Vi 99K X2 is
defined everywhere and projective for i ≥ i0.

Theorem 3.3.1 is a very efficient tool to provide additive invariants. Indeed, it
is enough to know the invariant for smooth projective varieties and to check it
behaves properly for blowing ups with smooth centers. In particular it is now a
straightforward consequence of theorem 3.3.1 (but using the full strenght of weak
factorization) that the Hodge-Deligne polynomial of 3.2.4 and the virtual motives
of 3.2.5 are well-defined additive invariants.
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3.4. Grothendieck rings of first order theories. The Grothendieck ringK0(Vark)
may be generalized as follows to any first order theory. Let L be a first order lan-
guage and let T be a theory in the language L.
We denote by K0(T ) the quotient of the free abelian group generated by symbols
[ϕ] for ϕ a formula in L by the subgroup generated by the following relations

(1) If ϕ is a formula in L with free variables x = (x1, . . . , xn) and ϕ′ is a formula
in L with free variables x′ = (x′1, . . . , x

′
n′), then [ϕ] = [ϕ′] if there exists a

formula ψ in L, with free variables (x, x′), such that

T |= [∀x(ϕ(x) → ∃!x′ : (ϕ′(x′) ∧ ψ(x, x′)))] ∧ [∀x′(ϕ′(x′) → ∃!x : (ϕ(x) ∧ ψ(x, x′)))].

(2) [ϕ ∨ ϕ′] = [ϕ] + [ϕ′]− [ϕ ∧ ϕ′], for ϕ and ϕ′ formulas in L.

Furthermore one puts a ring structure on K0(T ) by setting

(3) [ϕ(x)] · [ϕ′(x′)] = [ϕ(x) ∧ ϕ′(x′)], if ϕ and ϕ′ are formulas in L with disjoint
free variables x and x′.

For every interpretation of a theory T1 in a theory T2 there is a canonical morphism of
rings K0(T1) → K0(T2), and this gives rise to a functor from the category of theories
in L, morphisms being given by interpretation, to the category of commutative rings.

If k is a field and Tac is the theory of algebraically closed fields containing k, then
K0(Tac) is isomorphic to K0(Vark). If TR is the theory of real closed fields in the
language of ordered rings, then K0(TR) is isomorphic to Z. Recently, Cluckers and
Haskell [7] proved that the theory of any fixed p-adic field, in the language of rings,
has trivial Grothendieck group. In fact, Cluckers proved in [8] that for any two
p-adic semi-algebraic X and X ′ sets of the same dimension d > 0, there exists a
semi-algebraic isomorphism between X and X ′.

4. Geometric motivic integration

4.1. Arc spaces. Arc spaces are the k[[t]]-analogue of p-adic points. Let k be a
field of characteristic 0. Many of the results presented in these lectures do not hold
anymore or become unknown in positive characteristic.
For n ≥ 0, we introduce the space of n-arcs on X, denoted by Ln(X). This is an
algebraic variety which represents the functor:

k − algebras −→ Sets

R 7→ Homk−schemes(Spec(R[t]/(tn+1), X) := X(R[t]/(tn+1)).

For example when X is an affine variety with equations fi(~x) = 0, i = 1, · · · ,m,
~x = (x1, · · · , xr), then Ln(X) is given by the equations, in the variables ~a0, · · · ,~an,
expressing that fi(~a0 + ~a1t+ · · ·+ ~ant

n) ≡ 0 mod tn+1, i = 1, · · · ,m.
We have canonical isomorphisms L0(X) = X and L1(X) = TX, where TX denotes
the tangent space of the variety X.
For m ≥ n there are canonical morphisms θn

m : Lm(X) → Ln(X). In general, when
X is not smooth, they need nor to be surjective. When X is smooth of dimension
d, θn

m is a locally trivial fibration for the Zariski topology with fiber A(m−n)d.
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Taking the projective limit of these algebraic varieties Ln(X) we obtain the arc space
L(X) of X. A priori this is just a pro-scheme, but since the transition maps θn

m are
affine it is indeed a k-scheme.
In general, L(X) is not of finite type over k. The K-rational points of L(X) are
the K[[t]]-rational points of X. These are called K-arcs on X. For example when
X is an affine variety with equations fi(~x) = 0, i = 1, · · ·m,~x = (x1, · · · , xr), then
the K-rational points of L(X) are the sequences (~a0,~a1,~a2, · · · ) ∈ (Kn)N satisfying
fi(~a0+~a1t+~a2t

2+· · · ) = 0, for i = 1, · · · ,m. For every n we have natural morphisms

πn : L(X) → Ln(X)

obtained by truncation. For any arc γ on X (i.e. a K-arc for some field K containing
k), we call π0(γ) the origin of the arc γ.
One can easily check that L(X) represents the functor

k − algebras −→ Sets

R 7→ Homk−schemes(Spec(R[[t]]), X) := X(R[[t]]).

It also represents the functor

k − schemes −→ Sets

S 7→ Homlocally ringed spaces((S,OS[[t]]), X).

If f : Y → X is a morphism of varieties, we shall still denote by f the corresponding
morphism L(Y ) → L(X).

4.2. Completing Mk. We want to assign a measure to subsets of L(X). This
measure will take values in a ring related to K0(Vark). In the analogy with p-adic
integration, K0(Vark) is the analogue of Z and Mk is the analogue of Z[p−1] (the
number of rational points of the affine line over Fp is p). Since in R, p−n 7→ 0 as
n 7→ ∞, we shall complete Mk is such a way that L−n 7→ 0 as n 7→ ∞. This is
achieved in the following way: we define FmMk to be the subgroup of Mk generated
by elements of the form [S]L−i, with dimS − i ≤ −m. We have Fm+1 ⊂ Fm,

L−m ∈ Fm and F nFm ⊂ F n+m. We denote by M̂k the completion of Mk with
respect to that filtration.
A minor technical issue shows up here, since it is not known whether the canonical

morphism Mk → M̂k is injective or not. Nevertheless, this is not too much a
problem for applications by the following:

4.2.1. Proposition. Invariants Eu : Mk → Z (Euler number) and H : Mk →
Z[u, v, (uv)−1] (Hodge polynomial) factor through the image Mk of Mk in M̂k.

Proof. Since Eu = H(1, 1), it is enough to prove the result for H. But if a is in
FmMk, the total degree of h(a) is ≤ −2m, so if a belongs to the kernel ∩mF

mMk

of Mk → M̂k, h(a) should be zero. �
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4.3. Measurable sets. For more details about this section, see the appendix to
[18]. Let X be an algebraic variety over k of dimension d, maybe singular. By
a cylinder in L(X), we mean a subset A of L(X) of the form A = π−1

n (C) with
C a constructible subset of Ln(X), for some n. We say A is stable (at level n) if
furthermore πm+1(L(X)) → πm(L(X)) is a piecewise Zariski fibration over πm(A)
with fiber Ad

k for all m ≥ n. By a piecewise Zariski fibration over πm(A) we mean
that there exists a finite partition of πm(A) into locally closed subsets of Lm(X)
over which the morphism is a locally trivial fibration for the Zariski topology.
If A is a stable cylinder at level n, we set

µ̃(A) := [πn(A)]L−(n+1)d

in Mk. Remark that the stability condition insures that we would get the same
value by viewing A as a stable cylinder at level m, m ≥ n. Also, it can be proved
that if X is smooth, all cylinders are stable. In particular, in this case L(X) itself
is a stable cylinder and µ̃(L(X)) = [X]L−d.

In general, we can assign to any cylinder A in L(X) a measure µ(A) in M̂k by a
limit process as follows: for e ≥ 0, set L(e)(X) := L(X) \ π−1

e (πe(L(Xsing))), where
Xsing denote the singular locus of X and we view L(Xsing) as a subset of L(X).
The set L(e)(X) should be viewed as L(X) minus some tubular neighborhood of
the singular locus. It can be proved that A ∩ L(e)(X) is a stable cylinder and that

µ̃(A ∩ L(e)(X)) does have a limit in M̂k as e goes to ∞. We denote this limit by
µ(A). This apply in particular to A = L(X) when X is not smooth.
We shall define

|| || : M̂k :→ R≥0

to be given by ||a|| = 2−n if a ∈ F nM̂k and a /∈ F n+1M̂k, where F •M̂k denotes the

induced filtration on M̂k.
We shall say a subset A of L(X) is measurable if, for every ε > 0, there exists
cylinders Ai(ε), i ∈ N, such that (A∪A0(ε))\ (A∩A0(ε)) is contained in ∪i≥1Ai(ε),
and ||µ(Ai(ε))|| ≤ ε, for every i ≥ 1. Then one can show (cf. appendix to [18]) that
µ(A) := limε7→0 µ(A0(ε)) exists and is independent of the choice of the Ai(ε)’s. We
say that A is strongly measurable if moreover we can take A0(ε) ⊂ A.
Let A be a measurable subset of L(X) and α : A → Z ∪ {∞} be a function such
that all its fibers are measurable. We shall say Lα is integrable if the series∫

A

L−αdµ :=
∑
n∈Z

µ(A ∩ α−1(n))L−n

is convergent in M̂k.

4.4. Semi-algebraic subsets. An important class of measurable sets is that of
semi-algebraic subsets of L(X). We shall explain here only what are semi-algebraic
subsets of L(An

k), the definition for general X being deduced by using charts from
the affine case.
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We shall view points of L(An
k) as n-uplets of formal power series. A semi-algebraic

subset of L(An
k) is a finite boolean combination of subsets defined by conditions of

the form

(1) ordf1(x1, . . . , xm) ≥ ordf2(x1, . . . , xm) + L(`1, . . . , `r)

(2) ordf1(x1, . . . , xm) ≡ L(`1, . . . , `r) (mod d)

and

(3) h(ac(f1(x1, . . . , xm)), . . . , ac(fm′(x1, . . . , xm))) = 0,

where fi are polynomials with coefficients in k[[t]], h is a polynomial with coefficients
in k, L is a polynomial of degree ≤ 1 over Z, d ∈ N, and ac(x) is the coefficient
of lowest degree in t of x if x 6= 0, and is equal to 0 otherwise. Here we use the
convention that ∞ + ` = ∞ and ∞ ≡ ` mod d, for all ` ∈ Z. In particular the
algebraic condition f(x1, . . . , xm) = 0, for f a polynomial over k[[t]], defines a semi-
algebraic subset.
The following (consequence of a) quantifier elimination Theorem of J. Pas [39] is of
fundamental use in the theory:

4.4.1. Theorem. Let π : An
k → An−1

k be the projection on the n−1 first coordinates.
If A is a semi-algebraic subset of L(An

k), then π(A) is a semi-algebraic subset of
L(An−1

k ).

One can prove that every semi-algebraic subset of L(X) is strongly measurable.
Furthermore, we have the following nice description of µ(A) in this case, which is
an analogue of a p-adic result of Oesterlé [38], cf. [16]:

4.4.2. Theorem (Denef-Loeser). If A is a semi-algebraic subset of L(X), with X

of dimension d, then µ(A) is equal to limit of [πn(A)]L−(n+1)d in M̂k.

Note that [πn(A)] in the above statement makes sense since one can deduce from
Pas’ Theorem that πn(A) is constructible.

4.5. Pas quantifier elimination. We give here the original statement of Pas quan-
tifier elimination. This subsection may be skipped at first reading but it will be used
later in the lectures. Let K be a valued field, with valuation ord : K → Γ ∪ {∞},
where Γ is an ordered abelian group. We denote by OK the valuation ring, by MK

the valuation ideal, by U the group of units in OK , by k the residue field, and by
Res : OK → k the canonical projection. We assume that K has an angular compo-
nent map. By this we mean a map ac : K → k such that ac0 = 0, the restriction of
ac to K× is multiplicative and the restriction of ac to U coincides with the restriction
of Res. From now on we fix that angular component map ac.
We consider 3-sorted first order languages of the form

L = (LK ,Lk,LΓ, ord, ac),

consisting of

(i) the language LK = {+,−,×, 0, 1} of rings as valued field sort,
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(ii) the language Lk = {+,−,×, 0, 1} of rings as residue field sort,
(iii) a language LΓ, which is an extension of the language {+, 0,∞,≤} of ordered

abelian groups with an element ∞ on top, as the value sort,
(iv) a function symbol ord from the valued field sort to the value sort, which

stands for the valuation,
(v) a function symbol ac from the valued field sort to the residue field sort, which

stands for the angular component map.

In the following we shall assume that K is henselian and that k is of characteristic
zero. We consider (K, k,Γ ∪ {∞}, ord, ac) as a structure for the language L, the
interpretations of symbols being the standard ones. By an henselian L-extension
of K, we mean an extension (K ′, k′,Γ′ ∪ {∞}, ord′, ac′) of the structure (K, k,Γ ∪
{∞}, ord, ac) with respect to the language L, with K ′ a henselian valued field. (By
an extension, we mean a structure for the language L which contains the original
structure as a substructure.) By abuse of language we shall say that K ′ is a henselian
L-extension of K.
We may now state the quantifier elimination Theorem of Pas [39].

4.5.1. Theorem (Pas). Let K be a valued field which satisfies the previous con-
ditions. For every L-formula ϕ there exists an L-formula ϕ′ without quantifiers
over the valued field sort, such that ϕ is equivalent in K ′ to ϕ′, for every henselian
L-extension K ′ of K.

In particular, when the value group is Z, we shall use the language

LPas = (LK ,Lk,LPR∞, ord, ac),

where LPres∞ = LPres ∪ {∞}, whith LPres the Presburger language.

4.6. Change of variables formula. We have the following motivic analogue of
the p-adic change of variables formula 1.2.1:

4.6.1. Theorem (Change of variables formula). Let X be an algebraic variety over
k of dimension d. Let h : Y → X be a proper birational morphism. We assume
Y to be smooth. Let A be a subset of L(X) such that A and h−1(A) are strongly
measurable. Assume L−α is integrable on A. Then∫

A

L−αdµ =

∫
h−1(A)

L−α◦h−ordh∗(Ωd
X)dµ.

We should explain what is meant by ordh∗(Ωd
X). Firstly, if I is some ideal sheaf

on Y , we denote by ordI the function which to a arc ϕ in L(Y ) assigns inf ordg(ϕ)
where g runs over local sections of I at π0(ϕ). We set Ωd

X to be the d-th exterior
power of Ω1

X , the Kähler differentials. The image of h∗(Ωd
X) in Ωd

Y is of the form
IΩd

Y and we set ordh∗(Ωd
X) := ordI.

The proof of Theorem 4.6.1, given in section 3 of [16] (for A semi-algebraic), relies
on the following geometric statement (Lemma 3.4 of [16]):
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4.6.2. Proposition (Denef-Loeser). Let X be an algebraic variety over k. Let h :
Y → X be proper birational morphism. We assume Y to be smooth. For e and e′

in N, we set

∆e,e′ :=
{
ϕ ∈ L(Y )

∣∣∣ ordh∗(Ωd
X)(ϕ) = e and h(ϕ) ∈ L(e)(X)

}
.

Then there exists c > 0 such that, for n ≥ sup(2e, e+ ce′),

(1) The image ∆e,e′,n of ∆e,e′ in Ln(Y ) is a union of fibers of hn, the morphism
induced by h.

(2) The morphism hn : ∆e,e′,n → hn(∆e,e′,n) is a piecewise Zariski fibration with
fiber Ae

k.

4.7. Some applications. We can now reprove and reinterpret the results in section
2 using motivic integration.
Let us begin by Batyrev’s Theorem 2.2.1.

4.7.1. Theorem (Kontsevich). Let X and X ′ be two proper smooth varieties over
k. Assume there are K-equivalent, i.e. that there exists birational proper morphisms
h : Y → X and h′ : Y → X ′ with Y smooth proper such that the invertible sheaves
h∗(Ωn

X) and h∗(Ωn
X′) are isomorphic. The [X] = [X ′] in Mk.

Proof. Since
∫
L(Y )

L−ordh∗(Ωd
X)dµ =

∫
L(Y )

L−ordh′∗(Ωd
X′ )dµ, it follows from the change

of variables formula that µ(L(X)) = µ(L(X ′)), hence [X] = [X ′], since X and X ′

are smooth. �

4.7.2. Corollary. Let X and X ′ be two proper smooth varieties over k. Assume
there are K-equivalent (this holds in particular if they are both Calabi-Yau). Then
they have the same Hodge numbers and Betti numbers.

4.7.3. Remark. Theorem 4.7.1 can also be proved as a consequence of the weak
factorization Theorem 3.3.2.

Now we shall give an intrisic meaning to the topological zeta function. Let X be
a smooth algebraic variety of dimension n over k and D a divisor on X. For any
integer m ≥ 0 we may consider Xn := {ϕ ∈ Lm(X)|ordf(ϕ) = m}, whet f is a local
equation for d at π0(ϕ). We consider Zmot,naive(X,D)(T ) to be the formal series

Zmot,naive(X,D)(T ) :=
∑
m∈N

[Xn]L−mnTm

in Mk[[T ]]. This is the naive motivic zeta function attached to the pair (X,D).
One deduces from Proposition 4.6.2 the following formula for Zmot,naive(X,D)(T ) in
terms of a log-resolution of (X,D).

4.7.4. Proposition (Denef-Loeser). Let h : Y → X be a log-resolution of (X,D).
With the notations of 2.1 we have

Zmot,naive(X,D)(T ) = L−n
∑
I⊂J

[E◦
I ]

∏
i∈I

(L− 1)L−νiTNi

1− L−νiTNi
.
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Let us formally evaluate Zmot,naive(X,D)(T ) at T = L−s for s an integer ≥ 1. We
obtain from the above Proposition a well defined element

L−n
∑
I⊂J

[E◦
I ]

∏
i∈I

(L− 1)L−(Nis+νi)

1− L−(Nis+νi)
.

in the ring Mk,loc obtained from Mk by inverting the the elements [Pi
k] = 1 + L +

L2 + · · ·+Li, for i = 1, 2, 3, · · · , where Pi
k denotes the i-dimensional projective space

over k. The ring morphism Eu : Mk → Z extends uniquely to a ring morphism
Eu : Mk,loc → Q.
Hence we deduce the following conceptual and intrinsic interpretation of Ztop(X,D)(s):

4.7.5. Proposition (Denef-Loeser). For every integer s ≥ 1,

(4.7.1) Ztop(X,D)(s) = Eu(Zmot,naive(X,D)(L−s)).

4.7.6. Remark. One may also prove Theorem 2.1.1 by using the weak factorization
Theorem 3.3.2 (which was not available at the time of the first two proofs), but then
one would miss the intrinsic interpretation (4.7.1).

Another important feature of Zmot,naive is that it “contains” also the corresponding
p-adic integrals. More precisely:

4.7.7. Proposition (Denef-Loeser). Let K be a number field, set X = An
K and let

D be the divisor of a polynomial f in K[x1, . . . , xn]. For almost all P,

NP(Zmot,naive(X,D)(L−s))

is equal to the p-adic integral

Zf,KP
(s) :=

∫
On

P

|f |sP|dx|P.

Here, we extend NP to MK(L−s) by sending L−s to q−s, with q the cardinal of kP.

Proof. Follows directly from (2.1.2) and Proposition 4.7.4. �

4.8. Geometrization of Q. Let us now slighly generalize the Poincaré series Q
and P . For X a variety over a OK , for K a finite extension of Qp. We set Nm :=
|X(OK/$

m+1)|, for m ≥ 0 and consider the series Q(T ) :=
∑

m≥0NmT
m. The series

Q(T ) is still rational (cf. [37], see also the review MR 83g:12015). Also, we denote
by Ñm the cardinality of the image of X(OK) in X(OK/$

m+1). In other words,
Ñm is the number of points in X(OK/$

m+1) that may be lifted to actual points in
X(OK) and we set P (T ) :=

∑
m≥0 ÑmT

m. Denef’s rationality proof extends to this
setting. When X is defined by f = 0 in the affine space one recovers the previous
definitions.
It follows from Proposition 4.7.7 that, when X is an hypersurface in the affine space
defined over some number field K, NP(Qgeom(T )) = QX⊗OKP

(T ). forr almost all P.

This may be extended to any X over a number field K (cf. [20]).
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4.9. Geometrization of P . As a geometric analogue of the Serre series P (T ), it
is natural to consider, for a variety X over a field k, the generating series

Pgeom(T ) :=
∑
m≥0

[πm(L(X))]Tm

in Mk[[T ]]. Here we should check that the image πm(L(X)) of L(X) in Lm(X) is
a constructible subset of Lm(X). This holds thanks to Greenberg’s Theorem on
solutions of polynomial systems in Henselian rings [27], which states that πm(L(X))
is equal to θm

n (Ln(X)) for some n ≥ m, together with Chevalley’s constructibility
Theorem.

4.9.1. Theorem (Denef-Loeser [16]). Assume chark = 0. The series Pgeom(T ) in
Mk[[T ]] is rational of the form

R(T )∏
(1− LaT b)

,

with R(T ) in Mk[T ], a in Z and b in N \ {0}.

The prove of this result follows similar lines than the proof of Theorem 1.4.1, us-
ing motivic integration instead of p-adic integration and Pas’ quantifier elimination
instead of Macintyre’s.

4.10. Towards Par. When X is defined over a number field K, a quite natural guess
would be, by analogy with what we have seen so far, that, for almost all finite places
P, NP(Pgeom(T )) = PX⊗OKP

(T ). But such a statement cannot hold true as can be

seen on some simple examples. This is due to the fact that, in the very definition
of P (T ), one is concerned in not considering extensions of the residue field, while in
the definition of Pgeom(T ) extensions of the residue field k are allowed. To remedy
this, one needs to be more careful about rationality issues concerning the residue
field, and this will be the topic of the next section.

5. Assigning virtual Chow motives to formulas

5.1. Subassignments. Fix a ring R. We denote by FieldR the category of R-
algebras that are fields. For an R-scheme X, we denote by hX the functor which to
a field K in FieldR assigns the set hX(K) := X(K). By a subassignment h ⊂ hX

of hX we mean the datum, for every field K in FieldR, of a subset h(K) of hX(K).
We stress that, contrarly to subfunctors, no compatibility is required between the
various sets h(K).
All set theoretic constructions generalize in an obvious way to the case of subassign-
ments. For instance if h and h′ are subassignments of hX , then we denote by h∩ h′
the subassignment K 7→ h(K) ∩ h′(K), etc.
Also, if π : X → Y is a morphism of R-schemes and h is a subassignment of hX , we
define the subassignment π(h) of hY by π(h)(K) := π(h(K)) ⊂ hY (K).
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5.2. Definable subassignments. Let R be a ring. By a ring formula ϕ over R,
we mean a first order formula in the language of rings with coefficients in R and free
variables x1, . . . xn.
To a ring formula ϕ over R with free variables x1, . . . xn one assigns the subassign-
ment hϕ of hAn

R
defined by

(5.2.1)

hϕ(K) :=
{

(a1, . . . , an) ∈ Kn
∣∣∣ ϕ(a1, . . . , an) holds in K

}
⊂ Kn = hAn

R
(K).

Such a subassignment of hAn
R

is called a definable subassignment. More generally,
using affine coverings, cf. [17], one defines definable subassignments of hX for X a
variety over R.
It is quite easy to show that if π : X → Y is an R-morphism of finite presentation,
π(h) is a definable subassignment of hY if h is a definable subassignment of hX .
In our situation, we are concerned with the subassignment π(hL(X)) ⊂ hLn(X). Re-
mark that πn : L(X) → Ln(X) is not of finite type. Nevertheless, it follows from
Pas’ Theorem (cf. Proposition 6.2.2) that π(hL(X)) is a definable subassignment of
hLn(X).

5.3. Pseudo-finite fields. Let ϕ be a formula over a number field K. For almost
all finite places P with residue field k(P), one may extend the definition in (5.2.1)
to give a meaning to hϕ(k(P)). If ϕ and ϕ′ are formulas over K, we set ϕ ≡ ϕ′ if
hϕ(k(P)) = hϕ′(k(P)) for almost all finite places P.
It follows from a fundamental result of J. Ax [2] that ϕ ≡ ϕ′ if and only if hϕ(L) =
hϕ(L′) for every pseudo-finite field L containing K. We recall that a pseudo-finite
field L is a perfect infinite field which has exactly one extension of each degree and
such that every absolutely irreducible variety over L has a rational point over L. J.
Ax proved [2] that an infinite field F is pseudo-finite if and only if every sentence in
the first order language of rings which is true in all finite fields is also true in F . We
recall also that the property of being a pseudo-finite field is stable by ultraproducts.

5.4. A brief review on quantifier elimination for Galois formulas. Let A be
an integral and normal scheme. A morphism of schemes h : C → A is a Galois cover
if C is integral, h is étale (hence C is normal) and there is a finite group G = G(C/A),
the Galois group, acting on C such that A is isomorphic to the quotient C/G in such
a way that h is the composition of the quotient morphism with the isomorphism.
We say that the Galois cover h : C → A is colored if G(C/A) is equipped with a
family Con of subgroups of G(C/A) which is stable by conjugation under elements
of G(C/A).
Let S be an integral normal scheme and let XS be a variety over S. A normal
stratification of XS,

A = 〈XS, Ci/Ai | i ∈ I〉,
is a partition ofXS into a finite set of integral and normal locally closed S-subschemes
Ai, i ∈ I, each equipped with a Galois cover hi : Ci → Ai.
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A normal stratification A may be augmented to a Galois stratification

A = 〈XS, Ci/Ai,Con(Ai) | i ∈ I〉,
if for each i ∈ I, Con(Ai) is a family of subgroups of G(Ci/Ai) which is stable by
conjugation under elements in G(Ci/Ai), i.e. (Ci → Ai,Con(Ai)) is a colored Galois
cover.
Let U = SpecR be an affine scheme, which we assume to be integral and normal.
For any variety XU over U and any closed point x of U , we denote by Fx the residual
field of x on U and by Xx the fiber of XU at x. More generally, for any field M
containing Fx, we shall denote by Xx,M the fiber product of XU and SpecM over x.
Let XU be a variety over U . Let A = 〈XU , Ci/Ai,Con(Ai) | i ∈ I〉 be a Galois strati-
fication of XU and let x be a closed point of U . Let M be a field containing Fx and let
a be an M -rational point of Xx belonging to Ai,x. We denote by Ar(Ci/Ai, x, a) the
conjugacy class of subgroups of G(Ci/Ai) consisting of the decomposition subgroups
at a. We shall write

Ar(a) ⊂ Con(A)

for

Ar(Ci/Ai, x, a) ⊂ Con(Ai).

For x a closed point of U and M a field containing Fx, we consider the subset

Z(A, x,M) :=
{
a ∈ XU(M)

∣∣∣ Ar(a) ⊂ Con(A)
}

of XU(M).
Let A = 〈Am+n

U , Ci/Ai,Con(Ai) | i ∈ I〉 be a Galois stratification of Am+n
U . Let

Q1, . . . , Qm be quantifiers. We denote by ϑ or by ϑ(Y) the formal expression

(Q1X1) . . . (QmXm) [Ar(X,Y) ⊂ Con(A)]

with X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn). We call ϑ(Y) a Galois formula over
R in the free variables Y.
Now to a Galois formula ϑ, to a closed point x of U and to a field M containing Fx,
one associates the subset

Z(ϑ, x,M) :={
b = (b1, . . . , bn) ∈Mn

∣∣∣ (Q1a1) . . . (Qmam) [Ar(a,b) ⊂ Con(A)]
}

of Mn, where the quantifiers Q1a1, . . . , Qmam run over M .
Let ϕ(Y1, . . . , Yn) be a formula in the first order language of rings with coefficients
in the ring R and free variables Y1, . . . , Yn. For every closed point x in U and every
field M containing Fx we denote by Z(ϕ, x,M) the subset of Mn defined by the
(image over Fx of the) formula ϕ. Assume now ϕ is in prenex normal form, i.e. a
formula of the form

(5.4.1) (Q1X1) . . . (QmXm)
[ k∨

i=1

l∧
j=1

fi,j(X,Y) = 0 ∧ gi,j(X,Y) 6= 0
]
,
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with fi,j and gi,j in R[X,Y]. The formula between brackets defines an U -construct-
ible subset W of Am+n

U to which one associates a Galois stratification by taking any
normal stratification with all strata contained either in W or in its complement,
by taking the identity morphism as Galois cover on each stratum, and taking for
Con(Ai) the family consisisting of the group with one element if Ai ⊂ W and the
empty family otherwise. In this way one obtains a Galois formula ϑ over R such that
Z(ϑ, x,M) = Z(ϕ, x,M) for every closed point x in U and every field M containing
Fx.
There exists several versions of quantifier elimination for Galois formulas [24], [22],
[23]. We shall use the following one which is a special case of Proposition 25.9 of
[23].

5.4.1. Theorem (Fried-Jarden). Let k be a field. Let A be a Galois stratification of
Am+n

k and let ϑ be a Galois formula

(Q1X1) . . . (QmXm) [Ar(X,Y) ⊂ Con(A)]

with respect to A. There exists a Galois stratification B of An
k such that, for every

pseudo-finite field F containing k,

Z(ϑ, Spec k, F ) = Z(B, Spec k, F ).

5.4.2. Corollary. Let ϕ(Y1, . . . , Yn) be a formula in the first order language of rings
with coefficients in a field k and free variables Y1, . . . , Yn. There exists a Galois
stratification B of An

k such that, for every pseudo-finite field F containing k,

Z(ϕ, Spec k, F ) = Z(B, Spec k, F ).

5.5. Assigning virtual motives to formulas. Let k be a field of characteristic
zero. Let us consider the Grothendieck ring K0(PFFk) of the theory of pseudo-
finite fields over k as defined in 3.4. It follows from 3.2.5 that we have a canonical
morphism χc : K0(Vark) → K0(CHMotk). We shall denote by Kmot

0 (Vark) the image
of K0(Vark) in K0(CHMotk) under this morphism. Remark that the image of L in
Kmot

0 (Vark) is not a zero divisor since it is invertible in K0(CHMotk). We shall now
explain the construction of a canonical ring morphism

χc : K0(PFFk) −→ Kmot
0 (Vark)⊗Q

extending the one in 3.2.5.

5.5.1. Theorem (Denef-Loeser [17],[19]). Let k be a field of characteristic zero.
There exists a unique ring morphism

χc : K0(PFFk) −→ Kmot
0 (Vark)⊗Q

satisfying the following two properties:

(i) For any formula ϕ which is a conjunction of polynomial equations over k,
the element χc([ϕ]) equals the class in Kmot

0 (Vark)⊗Q of the variety defined
by ϕ.



p-ADIC AND MOTIVIC INTEGRATION 23

(ii) Let X be a normal affine irreducible variety over k, Y an unramified Galois
cover of X, and C a cyclic subgroup of the Galois group G of Y over X.
For such data we denote by ϕY,X,C a ring formula, whose interpretation in
any field K containing k, is the set of K-rational points on X that lift to a
geometric point on Y with decomposition group C (i.e. the set of points on
X that lift to a K-rational point of Y/C, but not to any K-rational point of
Y/C ′ with C ′ a proper subgroup of C). Then

χc([ϕY,X,C ]) =
|C|

|NG(C)|
χc([ϕY,Y/C,C ]),

where NG(C) is the normalizer of C in G.

Moreover, when k is a number field, for almost all finite places P, NP(χc([ϕ])) is
equal to the cardinality of hϕ(k(P)).

The above Theorem is a variant of results in §3.4 of [17]. A sketch of proof is given
in [19].

Some ingredients in the proof. Uniqueness uses quantifier elimination for pseudo-
finite fields from which it follows by Corollary 5.4.2 that K0(PFFk) is generated
as a group by classes of formulas of the form ϕY,X,C . Thus by (ii) we only have to
determine χc([ϕY,Y/C,C ]), with C a cyclic group. But this follows directly from the
following recursion formula:

(5.5.1) |C| [Y/C] =
∑

A subgroup of C

|A|χc([ϕY,Y/A,A]).

This recursion formula is a direct consequence of (i), (ii), and the fact that the
formulas ϕY,Y/C,A yield a partition of Y/C. The proof of existence is based on
work of del Baño Rollin and Navarro Aznar [6] who associate to any representation
over Q of a finite group G acting freely on an affine variety Y over k, an element
in the Grothendieck group of Chow motives over k. By linearity, we can hence
associate to any Q-central function α on G (i.e. a Q-linear combination of characters
of representations of G over Q), an element χc(Y, α) of that Grothendieck group
tensored with Q. Using Emil Artin’s Theorem, that any Q-central function α on G
is a Q-linear combination of characters induced by trivial representations of cyclic
subgroups, one shows that χc(Y, α) ∈ Kmot

0 (Vark) ⊗Q. For X := Y/G and C any
cyclic subgroup of G, we define χc([ϕY,X,C ]) := χc(Y, θ), where θ sends g ∈ G to 1
if the subgroup generated by g is conjugate to C, and else to 0. With some more
work we prove that the above definition of χc([ϕY,X,C ]) extends by additivity to a
well-defined map χc : K0(PFFk) −→ Kmot

0 (Vark)⊗Q. �

Clearly χc(ϕ) depends only on hϕ and the construction easily extends by additivity
to definable subassignments of hX , for any varietyX over k. So, to any such definable
subassignment h, we may associate χc(h) in Kmot

0 (Vark)⊗Q.
The invariants Eu and H being cohomological they factor through Kmot

0 (Vark). One
can show, cf. [20], that for any definable subassignment h, Eu(χc(h)) belongs to Z.
Such an integrality result does not hold for H as shown by the following example: Let
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n be a integer ≥ 1 and assume k contains all n-roots of unity. Consider the formula
ϕn : (∃y)(x = yn and x 6= 0) ; then χc(ϕn) = L−1

n
. In particular Eu(χc(ϕn)) = 0

and H(χc(ϕn)) = uv−1
n

. (This example contradicts the example on page 430 line -2
of [17] which is unfortunately incorrect.)

6. Arithmetic motivic integration

6.1. The series Par. We now consider the series

Par(T ) :=
∑
n≥0

χc(πn(hL(X)))T
n

in Kmot
0 (Vark)⊗Q.

6.1.1. Theorem (Denef-Loeser [17]). Assume chark = 0.

1) The series Par(T ) in Kmot
0 (Vark)⊗Q is rational of the form

R(T )∏
(1− LaT b)

,

with R(T ) in (Kmot
0 (Vark)⊗Q)[T ], a in Z and b in N \ {0}.

2) If X is defined over some number field K, then, for almost all finite places
P,

NP(Par(T )) = PX⊗OKP
(T ).

Here we use implicitely that NP factors through Kmot
0 (Vark) which follows from the

fact there exists, by Grothendieck trace formula, a cohomological expression for NP.
The proof of Theorem 6.1.1 relies on the theory of arithmetic motivic integration
we shall now explain.

6.2. Definable subassignments of hL(X). We shall use now the notations and
definitions in 4.5, assuming that K = k((t)), that κ = k, with k a field of char-
acteristic zero, and that ord and ac have their classical meaning for formal power
series.

Let R be a subring of k. By an LPas-formula with coefficients in R in the valued field
sort and in the residue field sort, we mean a formula in the language obtained from
LPas by adding, for every element of R, a new symbol to denote it in the valued field
sort and in the residue field sort. We shall consider LPas-formulas with coefficients
in R in the valued field sort and in the residue field sort, free variables x1, . . . , xm

running over the valued field sort and no free variables running over the residue field
or the value sort. We shall call such formulas formulas on R[[t]]m for short

One may deduce the following statement of Ax/Ax-Kochen-Eršov type from the Pas
Theorem.

6.2.1. Proposition. Let R be a normal domain of finite type over Z with field of
fractions k. Let σ be a sentence in the language LPas with coefficients in R in
the valued field sort and in the residue field sort. The following statements are
equivalent:
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(1) The sentence σ is true in F ((t)) for every pseudo-finite field F containing k.
(2) There exists f in R \ {0} such that, for every closed point x in SpecRf , the

sentence σ is true in Fx((t)).

If, furthermore, k is a finite extension of Q, the previous statements are also equiv-
alent to the following:

(3) There exists f in R \ {0}, multiple of the discriminant of k/Q, such that,
for every closed point x in SpecRf , the sentence σ is true in kx,

where kx denotes the completion of k at x. Remark that, the extension k/Q being
non ramified at x, the field kx admits a canonical uniformizing parameter, hence
also a canonical angular component map.

Let k be a field and let X be a variety over k. We consider the functor hL(X) : K 7→
X(K[[t]]) from Fieldk to the category of sets.
Let ϕ be a formula on k[[t]]m. For every field K in Fieldk, denote by Z(ϕ,K[[t]])
the subset of of all x in K[[t]]m = Am

k (K[[t]]) for which ϕ(x) is true in K((t)). This
defines a subassignment K 7→ Z(ϕ,K[[t]]) of the functor hL(Am

k ). We call such a
subassignment a definable subassignment of hL(Am

k ).
By using affine coverings, one may also define definable subassignments of hL(X), for
X any variety over k.
We shall denote by Defk(L(X)) the set of definable subassignments of hL(X). Clearly
Defk(L(X)) is stable by finite intersection and finite union and by taking comple-
ments.
For n in N, recall the canonical truncation morphism πn : L(X) → Ln(X). Hence
if h is a subassignment of hL(X) (resp. of hLn(X)) we may consider πn(h) : K 7→
πn(h(K)) (resp. π−1

n (h) : K 7→ π−1
n (h(K))) which is a subassignment of hLn(X) (resp.

of hL(X)).

6.2.2. Proposition. Let h be a definable subassignment of hL(X). Then, for every
n in N, πn(h) is a definable subassignment of hLn(X) and π−1

n πn(h) is a definable
subassignment of hL(X).

6.3. Arithmetic motivic integration. Now let us explain briefly how arithmetic
motivic integration is constructed. We shall denote by Mmot

k the image of Mk in
K0(CHMotk) by the morphism χc. We endow Mmot

k with the filtration F •, image

by χc of the filtration F • on Mk and we denote by M̂mot
k the completion of Mmot

k

with respect to that filtration.
Arithmetic motivic integration will assign to subassignments h of hL(X) a measure

ν(h) in M̂mot
k ⊗Q. The idea of the construction is very much the same as the one

in 4.3, starting from stable cylinders. Since we are concerned only with definable
subassignments, we shall not talk about measurable subassignments here. For a
definable subassignment h of L(X) which is a stable cylinder (this is defined in a
completely similar way than in the geometric case), the sequence χc(πn(h))L−(n+1)d

has a constant value ν̃(h) in Mmot
k ⊗Q for large n, with d the dimension of X.
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6.3.1. Theorem-Definition (Denef-Loeser). There exists a unique mapping

ν : Defk(L(X)) −→ M̂mot
k ⊗Q

satisfying the following properties.

(1) If h is a stable cylinder which is a definable subassignment of hL(X), then

ν(h) is equal to the image of ν̃(h) in M̂mot
k ⊗Q.

(2) If h and h′ are definable subassignments of hL(X), then

ν(h ∪ h′) = ν(h) + ν(h′)− ν(h ∩ h′).

(3) If h(E) = h′(E) for every pseudo-finite field E containing k, then ν(h) =
ν(h′).

(4) Let h be a definable subassignment of hL(X). If there exists a subvariety S
of X with dimS ≤ d− 1 such that h ⊂ hL(S), then ν(h) = 0.

(5) Let hn be a definable partition of a definable subassignment h with parameter

n ∈ N. Then the series
∑

n∈N ν(hn) is convergent in M̂mot
k ⊗Q and

ν(h) =
∑
n∈N

ν(hn).

(6) Let h and h′ be definable subassignments of hL(X). Assume h ⊂ h′. If ν(h′)

belongs to F eM̂mot
k ⊗ Q, then ν(h) also belongs to F eM̂mot

k ⊗ Q. (Here

F •M̂mot
k ⊗Q denotes the filtration induced by F • on M̂mot

k ⊗Q.)

We call ν(h) the arithmetic motivic volume of h.

We have the following analogue of Theorem 4.4.2:

6.3.2. Theorem. Let X be a variety over k of dimension d. Let h be a definable
subassignment of hL(X). Then

lim
n→∞

χc(πn(h)) L−(n+1)d = ν(h)

in M̂mot
k ⊗Q.

Also, if α : h→ N is a definable function on the definable subassignment h, meaning
that, for every field K containing k, we have a function α(K) : h(K) → N and that
the graph of these functions are definable in L(X)×N, we may consider the integral∫

h
L−αdν. In particular, we have a direct analogue of the change of variables formula

(Theorem 4.6.1) for arithmetic motivic integration, with a similar proof relying on
Proposition 4.6.2.
We have also general rationality Theorems, for which we refer to § 7 of [17]. Using
Proposition 6.2.1, one may also prove general specialization results of arithmetic
integrals to p-adic ones (cf. § 8 of [17]). In particular Theorem 6.1.1 concerning Par

may be obtained as a consequence of these rationality and specialization statements.
Here is a typical example of such a statement:
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6.3.3. Theorem (Denef-Loeser [17]). Let K be a number field. Let ϕ be a first order
formula in the language LPas with coefficients in K and free variables x1, . . . , xn.
Let f be a polynomial in K[x1, . . . , xn]. For P a finite place of K, denote by KP the
completion of K at P. For almost all P, applying the operator NP to the motivic
integral

∫
h
L−s(ordf)dν gives the p-adic integral∫

hϕ(KP)

|f |sP|dx|P

Let us remark that this result is sufficient to get the specialization statement in
Theorem 6.1.1 about Par. Indeed, one may as well assume f is a definable function
in Theorem 6.3.3, since by a graph construction one may always replace f by a
coordinate.

6.4. “All natural p-adic integrals are motivic”. Theorem 6.3.3 is an illustration
of the principle “All natural p-adic integrals are motivic”. It applies in particular
to integrals occuring in p-adic harmonic analysis, like orbital integrals. This has led
recently Tom Hales [31] to propose that many of the basic objects in representation
theory should be motivic in nature and to develop a beautiful conjectural program
aiming to the determination of the virtual Chow motives that should control the
behavior of orbital integrals and leading to a motivic fundamental lemma (see [26]
and [32] for recent progress on these questions).

References

1. D. Abramovich, K. Karu, K. Matsuki, J. W lodarczyk, Torification and factorization of
birational maps, J. Amer. Math. Soc. 15 (2002), 531–572.

2. J. Ax, The elementary theory of finite fields, Ann. of Math. 88 (1968), 239–271.
3. J. Ax, Injective endomorphisms of varieties and schemes, Pacific J. Math. 31 (1969), 1–7.

14.15
4. V. Batyrev, Birational Calabi-Yau n-folds have equal Betti numbers, New trends in algebraic

geometry (Warwick, 1996), 1–11, London Math. Soc. Lecture Note Ser., 264, Cambridge
Univ. Press, Cambridge, 1999.

5. F. Bittner, The universal Euler characteristic for varieties of characteristic zero,
math.AG/0111062, to appear in Compositio Math.

6. S. del Baño Rollin, V. Navarro Aznar, On the motive of a quotient variety, Collect. Math.
49 (1998), 203–226.

7. R. Cluckers, D. Haskell, Grothendieck rings of Z-valued fields, Bull. Symbolic Logic 7 (2001),
262–269.

8. R. Cluckers, Classification of semi-algebraic p-adic sets up to semi-algebraic bijection, J.
Reine Angew. Math. 540 (2001), 105–114.
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