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Introduction

These notes continue the notes of Anand Pillay on model theory and diophantine
geometry. In my lectures I describe a model theoretic approach to some analogues
of the Mordell-Lang conjecture for Drinfeld modules. Many questions remain open
and algebraic proofs along the lines of the proof of the Manin-Mumford conjecture
described by Pillay may be possible. We discuss these questions and potential
alternate approaches to these problems throughout these notes.

These notes are organized as follows. We begin in Section 1 with a discussion
of the Mordell-Lang conjecture in its original form and some of its generalization.
A discussion of Drinfeld modules and the Drinfeld module analogues of the the
Mordell-Lang conjectures raised by Laurent Denis follows in Section 2. In Section 3
we discuss the general technique for proving Mordell-Lang type theorems by working
with locally modular groups in enriched fields. In Section 5 we outline a weak
solution to the the Drinfeld module Mordell-Lang conjecture proved using the model
theory of separably closed fields. In Section 4 we prove the the Drinfeld module
version of the Manin-Mumford conjecture using the model theory of difference fields.
In Section 6 we end these notes with several open questions.

1. The Mordell-Lang conjecture

The Mordell-Lang conjecture and its proofs are the subject of several survey
papers. The number theoretic approach to this conjecture is well exposed in the
book [11] and the survey article [13]. The model theoretic approaches to these
problems are described in the book [2] and the paper [19].

The Mordell-Lang conjecture concerns the structure induced on certain arith-
metic subgroups of algebraic groups from the ambient algebraic variety.

As was pointed out in Pillay’s notes [18], the model-theoretic approach to al-
gebraic geometry tends to follow the Weil-style foundations in which varieties are
identified with their set of points over a very large algebraically closed fields, mor-
phisms are identified with the corresponding function on these sets points, et cetera.
While there is much truth in this observation, we will not make such identifications
in these notes. When we wish to apply facts about definable sets in certain enriched
fields to prove results about varieties (or even schemes), we will explicitly describe
the required interpretations.

Definition 1.1. The additive group scheme, Ga, is the commutative group scheme
whose corresponding functor of points Ga : Sch → Ab is defined by S 7→ (OS ,+).
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The additive group scheme, Gm, is the commutative group scheme whose functor
of points Gm : Sch→ Ab is given by S 7→ (O×S , ·).

Definition 1.2. Let K be a field. An abelian variety over K is a nontrivial,
connected, complete algebraic group defined over K. An algebraic torus over K is
an algebraic group T which when considered as an algebraic group over the algebraic
closureKalg ofK is isomorphic to some Cartesian power of the multiplicative group.
A semi-abelian variety over K is an algebraic group S which fits into an exact
sequence

0 −−−−→ T −−−−→ S −−−−→ A −−−−→ 0

where T is an algebraic torus and A is an abelian variety.

The reader may wish to consult [16], [10], or [14] for more details about abelian
varieties. We recall that every abelian variety admits a projective embedding. So,
we could have defined an abelian variety to be a projective, connected algebraic
group. If K = C and A is an algebraic group over K, then A is an abelian variety
if and only if A(C) is a compact, connected Lie group, or equivalently, isomorphic
as a Lie group to a Cartesian power of circle groups.

Using the above isomorphism, it is easy to see that for a semiabelian variety S
over C and a positive integer n, the n-torsion group

S[n](C) := {x ∈ S(C) | [n]S(x) = 0}

is isomorphic (as a group) to (Z/nZ)t+2a where t = dimT is the dimension of the
toric part of S and a = dimA is the dimension of the abelian part. Moreover, the
full torsion group

S(C)tor := {x ∈ S(C) | (∃n ∈ Z+)[n]S(x) = 0}

is dense (in the Zariski as well as the archimedian topologies) in S(C).
These properties of the torsion groups of semiabelian varieties hold over other

algebraically closed fields of characteristic zero, and in a revised form, over all
algebraically closed fields. In characteristic zero, one can use the fact that the
theory of algebraically closed fields of characteristic zero is complete to pass from C
to general algebraically closed fields of characteristic zero generally. Alternatively,
one can develop a purely algebraic theory of abelian varieties which applies equally
well to abelian varieties over fields of positive characteristic.

The arithmetic of abelian varieties is instrumental in understanding the diophan-
tine geometry of curves and other higher dimensional varieties. Given an algebraic
curve C over some field K, there is an associated abelian variety J (called the Jaco-
bian of C). Given the additional datum of a K-rational point P ∈ C(K), provided
that the genus of C is positive, one obtains an embedding C ↪→ J defined over K.
We denote the embedded curve by C as well. In this way, one may identify the set
of K-rational points on C with the intersection of the Kalg-points on C with the
group of K-rational points on J . This may not seem like much of a reduction until
one sees that whenever K is a finitely generated field and A is an abelian variety
over K, the group A(K) is a finitely generated abelian group. Consequently, in
order to understand the structure of rational points on curves over finitely gener-
ated fields, one need only understand intersections of finitely generated subgroups
of abelian varieties with curves over algeraically closed fields.
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The Mordell-Lang conjecture grew out of these considerations, but gives a stronger
conclusion than merely what the structure of rational points on curves is. We recall
that if Γ is an abelian group, then the (rational) rank of Γ is rk(Γ) := dimQ(Γ⊗Q).

Theorem 1.3 (Mordell-Lang conjecture). Let S be a semiabelian variety over C
and let Γ < S(C) be a subgroup of the C-points of S having finite rational rank. If
X ⊆ S is a subvariety, then X(C)∩ Γ is a finite union of cosets of subgroups of Γ.

Theorem 1.3 as stated above is due to McQuillan, though the main case of Γ
finitely generated was proved by Faltings. Various other people (including, but not
limited to, Vojta, Lang, and Raynaud) made deep contributions to its solution.
The special case of rkΓ = 0 goes by the name of the Manin-Mumford conjecture
and its proof is the topic of Pillay’s second lecture. Characteristic p versions of
the Mordell-Lang conjecture are known, but in this case one must make allowances
in some way for varieties defined over finite fields. Our aim is to transpose this
problem to Drinfeld modules.

2. Drinfeld modules

In this section we introduce the theory of Drinfeld modules and Denis’ Mordell-
Lang-like conjectures for Drinfeld modules. The main reference for this section
is [6]. We treat Drinfeld modules as analogues of elliptic curves, emphasizing their
algebraic, as opposed to their analytic, theory.

If S is a semi-abelian variety over a field K, then the ring of algebraic endomor-
phisms of S defined over K, EndK(S), is a finitely generated ring. In particular,
regardless of the size of K, the ring EndK(S) is countable. This fact does not hold
for arbitrary commutative algebraic groups. For example, if R is any commutative
ring, then for each λ ∈ R scalar multiplication by λ defines an algebraic endomor-
phism of the additive group. If K is a field of characteristic zero, then one may
identify EndKGa with K. This is not the case in positive characteristic.

If R is a commutative ring of characteristic p > 0, then the map τ : R→ R given
by x 7→ xp is a ring endomorphism of R. (We write τ for this p-power Frobenius
morphism on all rings of characteristic p.) Moreover, this Frobenius map gives an
algebraic endomorphism of the additive group over R. As such, polynomials in τ
over R give algebraic endomorphisms of the additive group.

Definition 2.1. Let R be a ring and σ : R → R a ring endomorphism. We
define the ring of linear σ-operators over R to be the simple ring extension R{σ} =
{
∑d

i=0 aiτ
i : ai ∈ R} subject to the commutation conditions σa = σ(a)σ for a ∈ R.

While each element of R{τ} may be naturally regarded as an additive map on
R, it is more than that. Each φ ∈ R{τ} may be identified with a morphism of
algebraic groups φ : Ga → Ga. As such, we have a map R{τ} → End(Ga/R) which
is actually an isomorphism between the twisted polynomial ring in τ over R and
the ring of algebraic endomorphisms of the additive group defined over R.

A Drinfeld module may be regarded as a choice of a finitely generated subring
of exotic algebraic endomorphisms of the additive group.

Definition 2.2. Let K be a field of characteristic p. A Drinfeld module over K
(for Fp[t]) is a homomorphism ϕ : Fp[t]→ EndK(Ga) = K{τ} for which ϕ(t) is not
a scalar. That is, if we write ϕ(t) =

∑d
i=0 aiτ

i, then ai 6= 0 for some i > 0.
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For many purposes, one requires a more general definition of a Drinfeld module
than what we have in Definition 2.2. There are technical advantages to working
with more general rings than just Fp[t] in our proof of the Drinfeld module version
of the Manin-Mumford conjecture. The applications of Drinfeld modules to positive
characteristic class field theory rely heavily upon these generalizations.

Notation 2.3. Let q be a power of the prime p. Let C be an absolutely irreducible
curve over Fq. Let ∞ ∈ C be a closed point on C. Let C ′ := C \ {∞} be the
open curve obtained by removing ∞ from C. We denote by A the ring of regular
functions on C ′. We denote by K the field of rational functions on C, the field of
fractions of A.

Taking q = p, C := P1 the projective line over Fp, and ∞ ∈ C the point at
infinity on P1, we obtain C ′ = A1

/Fp
and A ∼= Fp[t].

With A fixed, we have our general notion of a Drinfeld module.

Definition 2.4. Let K be a field of characteristic p. A Drinfeld module over K
(for A) is a ring homomorphism ϕ : A → EndKGa whose image is not contained
in the ring of scalars. That is, there is some a ∈ A for which if we write ϕ(a) =∑d

i=0 αiτ
i ∈ K{τ}, then αi 6= 0 for some i > 0.

For a ∈ A we write ϕa for ϕ(a) considered as an endomorphism of Ga.

A Drinfeld module gives the additive group an exotic A-module structure. That
is, if R is a K-algebra, then we may regard R as an A-module via a ∗ x := ϕa(x)
for a ∈ A and x ∈ R. Via the diagonal action, we may regard any Cartesian power
Ga

g of the additive group as an A-module.
We define now the notion of a morphism between Drinfeld modules.

Definition 2.5. If ϕ and ψ are two Drinfeld modules over the field K, then the
group of homomorphisms from ϕ to ψ over K is

HomK(ϕ,ψ) := {α ∈ EndKGa | (∀a ∈ A)α ◦ ϕa = ψa}

If ψ = ϕ, then we write
EndK(ϕ) = HomK(ϕ,ϕ)

for the endomorphism ring of ϕ.

For a general Drinfeld module ϕ, the endomorphism EndK(ϕ) is a finitely gen-
erated ring. The endomorphism ring EndK(ϕ) is commutative for ϕ of generic
characteristic.

Definition 2.6. Let ϕ : A → K{τ} be a Drinfeld module. Let π : K{τ} →
K{τ}/(τ) ∼= K be the quotient map modulo the two-sided ideal generated by τ .
Set ι := π ◦ ϕ : A→ K. We define the characteristic of ϕ to be the ideal ker ι. We
say that ϕ has generic characteristic when the characteristic is (0) and that ϕ has
finite characteristic otherwise.

When ϕ : A → Fpn{τ} is a Drinfeld module over a finite field, then necessarily
ϕ has finite characteristic p (as the image of ι is a subring of Fpn). Moreover, as
τn commutes with every element of Fpn{τ} we see that τn ∈ EndFpn (ϕ). As the
endomorphism ring is integral over A, we see that τn satisfies an integral equation
over A. Write the minimal polynomial of τn over A as Pn(X) ∈ A[X]. An analogue
of Weil conjectures is known for the roots of Pn.
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Suppose that the image of the Drinfeld module ϕ : A → K{τ} is actually con-
tained in R{τ} for some subring R ⊆ K of K. If ν : R→ R′ is any homomorphism,
then ν extends to a map R{τ} → R′{τ}. Composing ϕ with this map we obtain a
morphism ϕ : A → R′{τ}. In the case that R′ is a field, we actually have a new
Drinfeld module.

Suppose now that R′ is a domain. Let P := ker ν be the kernel of ν. Let p be
the characteristic of ϕ. Then we say that ϕ has good reduction at P if for each
a ∈ A the degree of ϕa as a polynomial in τ is the same as that of ϕa. The set of
primes of good reduction is a dense Zariski open subset of the spectrum of R.

Definition 2.7. Let ϕ : A → K{τ} be a Drinfeld module. For a ∈ A we define
ϕ[a] := kerϕa. For I ⊆ A an ideal we define the prime-to-I torsion of ϕ in R to
be ϕI′−tor(R) :=

⋃
a∈A\I ϕ[a](R).

The map ν : R → R′ induces a natural map ϕp′−tor(R) → ϕp′−tor(R′). Under
the hypothesis that ϕ has good reduction at p, this map must be injective.

The analytic theory of Drinfeld modules is developed in analogy with the analytic
theory of elliptic curve. Let K∞ be the completion with respect to the ∞-adic
topology of K. Let C∞ be the completion of the algebraic closure of K∞. The
valued field C∞ plays the rôle of C. If ϕ : A → C∞{τ} is a Drinfeld module over
C∞ of generic characteristic, then one can find a power series f ∈ C∞[[X]] such
that f(x) converges for every x ∈ C∞, f defines a surjective additive function from
C∞ to itself, and f(ax) = ϕa(f(x)) for all a ∈ A and x ∈ C∞.

Building on the analogy between Drinfeld modules and elliptic curves, L. Denis
raised a conjecture for Drinfeld modules based on the Mordell-Lang conjecture.

Conjecture 2.8 (Denis). Let K be an algebraically closed field of characteristic
p. Let ϕ : A → EndKGa be a Drinfeld module of generic characteristic. Let
Γ ≤ Ga(K) be an A-submodule of Ga(K) with dimK(Γ ⊗A K) < ∞. If X ⊆ Ga

g

is a subvariety of some Cartesian power of the additive group, then X(K) ∩ Γg is
a finite union of cosets of A-submodules of Γg.

Conjecture 2.8 is still open, but we shall outline proofs of a special case (the
analogue of the Manin-Mumford conjecture) and of a slightly different version of
the case for finitely generated A-modules.

We discuss the Drinfeld module version of the Manin-Mumford conjecture in
Section 4.

Theorem 2.9 (Drinfeld module Manin-Mumford). Let K be an algebraically closed
field of characteristic p. Let ϕ : A → EndKGa be a Drinfeld module of generic
characteristic. Let Γ := ϕtor := {x ∈ Ga(K) | (∃a ∈ A \ {0})ϕa(x) = 0} be the
module of A-torsion. Let X ⊆ Ga

g be a subvariety of some Cartesian power of the
additive group. Then X(K)∩Γg is a finite union of cosets of A-submodules of Γg.

We had proposed a version of Conjecture 2.8 as a project for this Winter School,
but as Dragos Ghioca has pointed out, what I had thought was the missing algebraic
lemma is actually contained in the Ph.D. thesis of Thomas Blossier [1]. We outline
a proof of this version of the conjecture in Section 5. This proof leaves open even
the case of Conjecture 2.8 for Γ a finitely generated A-module. We discuss the
open problems and the revised project in Section 6. In any case, let us state the
main theorem to be proved there.
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Theorem 2.10. Let K be an algebraically closed field of characteristic p. Let
ϕ : A→ EndKGa be a Drinfeld module of finite characteristic. Suppose, moreover,
that ϕ has generic moduli in the sense that for no λ ∈ K× does λϕλ−1 take values
in EndFalg

p
Ga. Let Γ ≤ Ga(K) be a finitely generated A-module. Then, if X ⊆ Ga

g

is a subvariety of some Cartesian power of the additive group, X(K)∩Γg is a finite
union of cosets of subgroups of Γg.

3. General strategy via locally modular groups

Our proofs of Theorems 2.9 and 2.10 follow the methods developed by Hrushovski
in his proofs of the Manin-Mumford conjecture [8] and the function field Mordell-
Lang conjecture [9]. We find some expansion of the theory of fields and definable
groups in those expansions for which the induced structure on these definable groups
reflects the induced structure on the arithemtically defined group Γ. The auxilliary
theories differ (ACFA for Theorem 2.9 and SCF for 2.10), but the general ideas are
the same.

Suppose that we wish to prove something like Theorem 2.10. The group Γ itself
may not lend itself to direct geometric arguments. However, by working in some
field U extending K and some expansion of the language of rings, we might find
some definable group Γ̃ ≤ S(U) with Γ ≤ Γ̃ with the property that for any variety
X the intersection X(U) ∩ Γ̃ is a finite union of cosets of subgroups of Γ. It would
then follow that Γ has the same property.

The truth of Theorem 2.10 implies that one could take K = U and expand the
language of rings by a predicate for Γ taking Γ̃ = Γ. Of course, such an argument
would be circular. So, if one wishes to apply this technique to prove a nontrivial
theorem, one must find appropriate enriched fields and groups Γ̃ definable in these
expansions for which one can prove the characteristic property (that X(U)∩ Γ̃ is a
finite union of cosets of subgroups of Γ̃ for each variety X).

The specific expansions that have been used in such proofs all fit under the rubric
of D-fields.

3.1. D-rings. The abstract notion of a D-ring subsumes the notions of difference
and differential rings while including some exotic structures. The notion of a D-ring
is associated to that of a D-functor.

Definition 3.1. Fix a commutative ring k. A D-functor over k is a projective
system of ring schemes {π`,n : D` → Dn}0≤n≤` over k whose additive groups
{Ga(π`,n) : Ga ◦ D` → Ga ◦ Dn} form a projective system of unipotent algebraic
groups over k and such that D0 is the identity fuctor.

We denote the pro-ring scheme lim←−Dn by D̂.

Our defintion of a D-functor is a bit abstract. Let us instantiate with our basic
examples.

Example 3.2. Define Dn : Ring → Ring by Dn(R) := Rn+1 with π`,n : D` → Dn

defined to be the projection onto the first n+ 1 coordinates.

Example 3.3. Let e > 0 be a positive integer. Define Dn : Ring → Ring by
Dn(R) := R[ε1, . . . , εe]/(ε1, . . . , εe)n+1 and π`,n : D` → Dn as the reduction modulo
(ε1, . . . , εe)n+1 map. Taking {

∏e
i=1 ε

ji

i : 0 ≤ ji ≤ n} as a basis for Dn(R) over R,
we obtain an isomorphism νn : Ga ◦ Dn → Ga

e(n+1).
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In the above examples one may work over Z. In the next example, we work over
a polynomial ring in positive characteristic.

Example 3.4. Let e > 0 be a positive integer. Let k := Fp[t1, . . . , te] be the poly-
nomial ring in e indeterminates over the field of p elements. For n ∈ N a natural
number and R a k-algebra, we set Dn(R) := R ⊗k Fp[t

p−n

1 , . . . , tp
−n

e ]. We take the
maps πn+`,n : Dn+` → Dn in the projective system to be τ `.

Given a D-functor we has an associated notion of a D-ring.

Definition 3.5. Fix k a commutative ring and {Dn}∞n=0 a D-functor over k. A D-
ring is a k-algebra R given together with a section D : R→ D̂(R) of the projection
map π : D̂(R)→ D0(R) = R.

Given a natural transformation Ψ : D → D ◦ D, we say that the the D-ring
(R,D) is (Ψ)-iterative if the following diagram is commutative.

R
D−−−−→ D̂(R)

D

y y bD(D)

D̂(R) −−−−→
Ψ

D̂(D̂(R))

As each Ga ◦ Dn is unipotent, we may choose coordinates identifying the un-
derlying scheme of Dn with some affine space Amn . We may thus express D as a
sequence 〈Dn,i : 0 ≤ n, 1 ≤ i ≤ mn〉 of function Dn,i : R → R. Likewise, the natu-
ral transformation Ψ : D → D ◦D may be expressed in terms of a coherent system
of additive polynomials. The condition that D = 〈Dn,i〉 defines a the structure of
a D-ring on R then translates into equations of the form

• Dn,i(1) = cn,i for appropriate constants cn,i,
• Dn,i(x+y) = An,i(Dn,1(x), . . . , Dn,mn(x);Dn,1(y), . . . , Dn,mn(y)) for some

polynomial An,i, and
• Dn,i(x · y) = Pn,i( ~D(x), ~D(y)) for an appropriate polynomial Pi, and
• Dn,i(x) = π`,n;i(D`,1(x), . . . , D`,m`

(x)) where π`,n;i is the ith coordinate of
map π`,n : D` → Dn considered in coordinates.

If the ground ring k has characteristic zero, then the condition that D be Ψ-
iterative translates into the additional assertion thatDn,i◦D`,j(x) is some particular
k-linear combination of 〈Ds,t(x)〉. When k has characteristic p, one might have to
allow for a k{τ}-linear combination.

Let us consider now what the associated notions of D-rings are for our above
examples.

Example 3.6. In Example 3.2, a D-ring is just a ring R given together with a
sequence of endomorphisms Di : R→ R. If we define Ψ : D̂ → D̂ ◦ D̂ by 〈xi〉∞i=0 7→
〈〈xi+j〉∞i=0〉∞j=0, then this D structure is iterative if and only if Di = Di

1 for every i.

Example 3.7. In Example 3.3, a D-ring is just a ring R given together with e
stacks of commuting Hasse derivations. If R is a Q-algebra, then such a structure
is determined by specifying e commuting derivations ∂i : R → R and defining
D : R→ D̂(R) = R[[ε1, . . . , εe]] by
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r 7→
∞∑

α1,...,αe=0

1
α1! · · ·αe!

∂α1
1 · · · ∂αe

e (r)εα1
1 · · · εαe

e

In any case, we write Dα(x) for the coefficient of εα in D(x).
If we regard D̂ ◦ D̂(R) as R[[ε1, . . . , εe]][[δ1, . . . , δe]], then we may define Ψ : D̂ →

D̂◦D̂ via the continuous map ofR-algebrasR[[η1, . . . , ηe]]→ R[[ε1, . . . , εe; δ1, . . . , δe]]
which sends ηi to (εi + δi). Then, the D-ring is iterative just in case Dα ◦ Dβ =(
α+β

α

)
Dα+β for all multi-indices α and β.

Example 3.8. Consider now Example 3.4. We may write Dn(R) as

⊕pn−1
j1,...,je=0R(1⊗

pn−1∏
i=0

tjip
−n

i )

Let (R,D) be a D-ring. Write Dn(x) =
∑

I Dn,I(x)( pn√
t)I . As Dn : R → Dn(R)

is a section of τn : Dn(R) → R, we have x =
∑

I [Dn,I(x)]p
n

tI . We obtain a map
Ψ : D̂ → D̂ ◦ D̂ from the k-linear maps kp−(n+m) → kp−n ⊗k k

p−m

defined on the
basis element

∏
tjip

−(n+m)

i as (
∏
tjip

−n

i )⊗ (
∏
tjip

−m

i ).

Associated to each of these notions of a D-ring, there is a theory of D-rings.
Fix a D-functor 〈Dn〉∞n=0 (over some ring k). Fix also isomorphisms Dn

∼= Amn

and a natural trasformation Ψ : D̂ → D̂ ◦ D̂. The language of D-rings, LD, is
the language of rings L(+,×, 0, 1) augmented by unary function symbols α· (scalar
multiplication by α for each α ∈ k) and Dn,i for each n ∈ N and i ≤ mn. Given a
D-ring (R,D), there is a natural way to put a LD-structure on R. The theory of
D-fields, TD, is the the first-order theory of the class of interative D-fields (K,D)
in the language LD.

We say that the D-field (K,D) is D-closed if it is existentially closed in the
class of iterative D-fields as an LD-structure. In two of the cases considered above
(provided that we take k = Q), the class of D-closed iterative D-fields is first order
axiomatizable, and has been intensively studied.

If D comes from Example 3.2, then the model companion of TD is the theory of
existentially closed diffence fields, ACFA, described in Pillay’s lectures. Recall that
a difference field (K,σ) is exististentially closed if and only if K = Kalg, σ is an
automorphism, and for any irreducible variety X over K, any irreducible subvariety
V ⊆ X ×Xσ, and any dense Zariski open U ⊆ V , there is a point a ∈ X(K) with
〈a, σ(a)〉 ∈ U(K).

If D comes from Example 3.3 (and k = Q), then the model completion of TD is (a
definitional expansion of) the theory of differentially closed fields of characteristic
zero with e commuting derivations. While this theory is central in algebraic model
theory, it does not play a rôle in our work here.

If D comes from Example 3.4, then the framework of D-fields is still valuable,
but the most reasonable model complete theory in LD is that of separably closed
fields having t1, . . . , te as a p-basis (ie [K : Kp] = pe and K = Kp(t1, . . . , te)). We
denote this theory by SCFp,e.

Associated to any iterativeD-ring (R,D) we have aD-ringR〈X〉D ofD-polynomials
over R. This ring is the universal simple iterative D-ring extension of R and
may be expressed as a quotient of the ordinary polynomial ring over R in the
variables Dn,iX for n > 0 and 0 < i ≤ mn. Iterating this process, we obtain
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the D-ring R〈X1, . . . , Xd〉D of D-polynomials over R in d indeterminates. Each
f ∈ R〈X1, . . . , Xd〉D may be expressed as an ordinary polynomial F in the vari-
ables Dn,iXj (i ≤ mn, 1 ≤ j ≤ d) for an approproiate n ≥ 0. If (R,D) is an
iterative D-field, then every quantifier-free formula in LD,R is equivalent to a finite
Boolean combination of D-polynomial equations.

If (R,D)→ (R′, D) is a map ofD-rings and a = 〈a1, . . . , an〉 ∈ (R′)n is an n-tuple
from R′, then the the D-ideal of a over R′, I(a/R′), is the set {f ∈ R〈X1, . . . , Xn〉 :
f(a) = 0}.

3.2. Stability and simplicity. Many of the model-theoretic tools used in our
proofs of Theorems 2.9 and 2.10 come from the study of stable, and more generally
simple, theories and the auxilliary theories we use, namely ACFA and SCF, are
simple. In this section we survey some of the basic properties of and concepts for
stable and simple theories. This treatment is by necessity very brief. You may wish
to consult [12] or [22] for more details.

We start by recalling the notion of a type.

Definition 3.9. Let L be a first-order language, M an L-structure, A ⊆M a subset
of the universe of M, and b ∈Mn an tuple of elements of M . Recall that LA is the
expansion of the language L by new constant symbols a for each a ∈ A. We regard
M as an LA-structure by interpreting aM = a. An n-type over A is a complete,
consistent extension of the LA-theory of M in the language LA(x1, . . . , xn). The
set of all n-types over A is denoted by Sn(A). The type of b over A is the set
tp(b/A) := {φ(x1, . . . , xn) ∈ LA(x1, . . . , xn) : M |= φ(b)}.

With the definition of type in place, we can give a quick definition of stability.
However, the definition we present here is more useful for set theoretic problems
(ie counting the number of models), than for the algebraic problems to which we
wish to apply stability.

Definition 3.10. Let L be a first-order language, T an L-theory, and κ an infinite
cardinal. We say that T is κ-stable if for every model M |= T with |M | ≤ κ, we
have |S1(M)| ≤ κ. We say that T is stable if it is κ-stable for some κ.

Example 3.11. Using quantifier elimination in the language of rings for algebraically
closed fields, one shows that for K = Kalg an algebraically closed field there
is a natural bijection between Sn(K) and Spec(K[x1, . . . , xn]). In particular, as
Spec(K[x]) = {(0)}∪{(x−a) : a ∈ K}, we have |S1(K)| = |K|. That is, the theory
of algebraically closed fields if κ-stable for every κ ≥ ℵ0.

Besides the set-theoretic aspect of stability, there are two key features of sta-
ble theories. First, in a stable theory, every type over a model is definable (for-
mally: if M is a model of a stable theory, p(x) ∈ Sn(M) is a type over M , and
φ(x1, . . . , xn; y1, . . . , ym) is an L-formula, then the set {b ∈ Mm : φ(x; b) ∈ p} is
definable by a formula in LM ). Secondly, in a stable theory one can develop a
good notion of independence generalizing linear independence in vector spaces and
algebraic independence in fields. The definability of types is equivalent to stability,
and to date, no good substitute for it is known in more general theories. If one
gives too strong a definition of good notion of independence, then this aspect is also
equivalent to stability. However, there are many other theories which possess an
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indepedence notion naturally generalizing the independence notion of stable theo-
ries. Simple theories fall into this class. We give the formal definition of simplicity
and of independence now.

Definition 3.12. Let M be an L-structure for some first-order language L. Let
A ⊆ M be a subset of the universe of M. Let φ(x1, . . . , xn; y1, . . . , ym) be an L-
formula and b ∈Mm anm-tuple from M. We say that φ(x; b) divides over A if there
are a natural number k and an infinite sequence 〈bi〉∞i=0 of realizations of tp(b/A)
(in some elementary extension N �M) such that for any k-sequence j1 < · · · < jk
of natural numbers we have N 6|= (∃x)

∧k
i=1 φ(x; bji

).
We say that the partial type Σ(x) forks over A if it implies a finite disjunction

of formulas each of which divides over A.

Example 3.13. If φ(x1, x2; y) is the formula x2 = x1 + y (in the language of abelian
groups), M = (Q,+, 0) is the field of rational numbers considered as an additive
group, and b is any nonzero element of Q, then φ(x; b) divides over ∅.

Our independence notion is taken from forking.

Definition 3.14. Let M be an L-structure for some first-order language L. Let
B ⊆ C ⊆ M and B ⊆ A ⊆ M be subsets of the universe of M. We say that A is
free from C over B if tp(A/C) does not fork over B.

We say that the L-theory T is simple if for any model M |= T and sets B ⊆ A ⊆
M and B ⊆ C ⊆M , if A is free from C over B, then C is free from A over B.

While it is not immediately obvious from the defintions we have given here,
every stable theory is simple. Forking has a natural algebraic interpretation in
the theories ACFA, DCF0, and SCF. Let K be a model of one of these theories.
For B ⊆ A ⊆ K and B ⊆ C ⊆ K, A is free from C over B if and only if the
algebraic closure of the D-field generated by A is algebraically independent from
the algebraic closure of the D-field generated by C over the algebraic closure of the
D-field generated by B.

Simple theories come equipped with many dimension functions. We make par-
ticular use of Lascar (or U or SU) rank. This rank is defined as follows. Work
inside a very saturated model of some theory. Take a a tuple and A a small subset.
We always have U(a/A) ≥ 0. For λ a limit ordinal we have U(a/A) ≥ λ ⇔ (∀α <
λ)U(a/A) ≥ α. Finally, U(a/A) ≥ α+1 if and only if there is some set B ⊇ A such
that tp(a/B) forks over A and U(a/B) ≥ α.

In our applications, we work in cases where the U -rank is finite. In a D-field, if
A = K is a D-subfield, then U(a/K) ≤ tr.degK(K〈a〉) where K〈a〉 is the D-field
generated by K and a.

We use U -rank to analyze groups. If H ≤ G is a definable subgroup of G and
U(H) = U(G) < ∞, then H is of finite index in G. When G is a group of finite
U -rank and N E G is a normal subgroup, then U(G) = U(N) + U(G/N).

3.3. Modular groups. The relevance of stability theory to Mordell-Lang-type
problems is seen through the theory of modular groups.

Definition 3.15. Let M be an L-structure for some first-order language L. Let
G ⊆ Mn be a group living as a definable subset of some Cartesian power of M
and having a definable group operation. Let Γ ≤ G be a subgroup of G (not
necessarily definable!). We say that Γ is modular if for every natural number m
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and every quantifier-free LM -definable subset of X ⊆ Gm there is another set
Y ⊆ Gm which is a finite Boolean combination of definable subgroups of Gm such
that X ∩ Γm = Y ∩ Γm.

Note that the set Y ∩ Γn of the above definition is itself a finite Boolean combi-
nation of cosets of subgroups of Γn.

Remark 3.16. Our use of the term modular is not standard. First, the term is usu-
ally reserved for definable, or at worst type-definable, groups. By expanding L with
a predicate for Γ, we may regard Γ as definable. The second more serious difference
is that we are considering only quantifier-free formulas while one usually asks that
every definable subset of Γm be a finite Boolean combination of cosets. Thirdly, we
work in a fixed structure M rather than in the class of all elementarily equivalent
structures. This distinction is relevant to issues of uniformity. Finally, the correct
historical term would be weakly normal group. The term modular is derived from
the theory of combinatorial geometries. In the case that G is a strongly minimal
group, it is modular in the above sense if and only if its associated combinatorial
pre-geometry is modular.

We note that Theorem 2.10 may be interpreted as asserting the modularity of
Γ.

Proposition 3.17. Let K be a field. Let G be an algebraic group over K. Let
Γ ≤ G(K) be a subgroup of the K-rational points of G. Then Γ is modular if and
only if for any variety X ⊆ Gm defined over K the set X(K)∩Γm is a finite union
of cosets of subgroups of Γm.

Proof. The right-to-left implication is immediate.
The left-to-right implication is only slightly less immediate. Let X ⊆ Gm be a

subvariety of Gm. Noting that X(K)∩Γm = X(K) ∩ Γm(K)∩Γm, we may assume
that X meets Γm in a Zariski dense set. Moreover, writing X as a finite union of
its irreducible components, we may assume that X is irreducible.

Now, X(K)∩Γm is a quantifier-free definable subset of Γm so that by modularity
of Γ, this set is a finite Boolean combination of subgroups of Γm. Write

X(K) ∩ Γm =
d⋃

j=1

[(aj +Hj) \ (
mj⋃
i=1

bi,j +Mi,j)]

where for each j we have Hj = Hj(K) ∩ Γn, Hj is connected as an algebraic
group, Mi,j < Hj for each i ≤ mn, and bi,j +Mi,j ⊆ aj +Hj .

Let

Yj := (aj +Hj) \ (
mj⋃
i=1

bi,j +Mi,j)

We claim that Yj = aj +Hj is a translate of an algebraic subgroup of Gn. To see
this, choose any

h ∈ Hj \
mj⋃

i,`=1

(ai − a`) +
mj∑
k=1

Mi,j

Then

aj +Hj = [(aj +Hj) \ (
mj⋃
i=1

bi,j +Mi,j)] ∪ h+ [(aj +Hj) \ (
mj⋃
i=1

bi,j +Mi,j)]
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Thus, aj +Hj = Yj ∪ (h+ Yj). As Hj is connected, either Yj = aj +Hj (as we
claimed) or Yj = (aj − h) +Hj = aj + [(−h) +Hj ] = aj +Hj , again as we claimed.

As X is irreducible, we have X = Yj for some j. We compute X(K) ∩ Γm =
Yj(K) ∩ Γm = (aj + Hj(K)) ∩ Γm = aj + (Hj(K) ∩ Γm) which is a coset of a
subgroup of Γm. �

Remark 3.18. Using definablity of types in stable theories, one can derive a stronger
version of Proposition 3.17 which itself implies automatic uniformity in such Mordell-
Lang-type theorems (see [17, 8, 21]).

We are left with proving that the group Γ is modular. To do so we prove that
some supergroup is modular.

Proposition 3.19. Let Γ ≤ Γ̃ ≤ G be subgroups of some definable group G. If Γ̃
is modular, then Γ is also quantifier-free modular.

Proof. Let X ⊆ Gm be a quantifier-free definable set. By hypothesis, there is a
set Y ⊆ Gm which is a finite Boolean combination of cosets of definable subgroups
such that Y ∩ Γ̃ = X ∩ Γ̃. But then X ∩Γ = (X ∩ Γ̃)∩Γ = (Y ∩ Γ̃)∩Γ = Y ∩Γ. �

In our proofs of Theorems 2.9 and 2.10, we take Γ̃ to be an appropriately chosen
group definable in either ACFA or SCF. For these theories (and some others) there
are tractable criteria for recognizing modular definable groups. These criteria are
derived from the positive answer to Zilber’s conjecture for these theories.

We state Zilber’s conjecture in a form directly applicable to our problems. Before
doing so we need another definition.

Definition 3.20. We say that the groupG (type-definable in some some sufficiently
saturated structure) is c-minimal if G is infinite, but every type-definable subgroup
H < G of infinite index must be finite.

Definition 3.21. Let T be a first-order theory. We say that the Zilber dichotomy
holds for T if for every non-modular c-minimal group G type-definable in some
(sufficiently saturated) model of T there is a type-definable field k, an algebraic
group H over k, and a definable subgroup Ψ ≤ H(k)×G for which the projection
map (to either factor) restricted to Ψ has finite kernel and image of finite index.

Remark 3.22. The Zilber dichotomy is usually stated as a trichotomy for strongly
minimal sets. Recall that a definable set X (in some sufficiently saturated struc-
ture) is strongly minimal if X is infinite but every definable subset of X is either
finite or cofinite. Zilber had conjectured that every strongly minimal set falls into
one of three mutually exclusive classes: trivial (every definable relation on Xn is
reducible to binary relations), non-trivial locally modular (there is an interpretable
modular group G and a definable finite-to-finite correspondence between G and X),
or field-like (there is an interpretable algebraically closed field K and a finite-to-
finite correspondence between K and X). The Zilber trichotomy fails in general,
but (properly understood) it holds in the theories we consider here. Nevertheless,
even in these cases this statement of the trichotomy is not immediately meaningful
as there are no strongly minimal sets in either ACFA or SCF.

So, to prove that a group definable in some theory in which the Zilber dichotomy
holds is modular, we show that the group has a decomposition series in terms of
c-minimal groups each of which cannot be put into a finite-to-finite correspondence



MODEL THEORY AND DIOPHANTINE GEOMETRY LECTURES 3, 4 AND 5 13

with the k-rational points of an algebraic group. That this suffices requires an extra
argument and facts about the ambient theory (simplicity and weak elimination of
quantifiers). The specific groups we consider are actually c-minimal so that this
issue does not arise in our proofs, but you should be aware of it before attempting
to generalize these arguments.

Conjecture 2.8 asserts more than merely the modularity of the group Γ. Specifi-
cally, it is conjectured that the quantifier-free definable sets in Γg must be translates
of A-modules. In general, one cannot recognize this property in the combinatorial
geometry of the enveloping definable groups. However, we can reduce the issue to
the study of subgroups of Γ× Γ.

Proposition 3.23. Let G be a c-minimal modular group. Assume that G has the
property that every definable subgroup of some Cartesian power of G is of finite
index in a quantifier-free definable group. Suppose that R is a (not necessarily
commutative) subring of the ring of quantifier-free definable endomorphisms of G.
Suppose, moreover, that every definable subgroup of G is commensurable with a R-
module (in the sense that for every definable H ≤ G×G there is some R-submodule
M ≤ G×G with |H/(M ∩H)| < ℵ0 and |M/(H ∩M)| < ℵ0), then every definable
subgroup of every Cartesian power of G is commensurable with an R-module.

4. Difference closed fields and the Drinfeld module Manin-Mumford
conjecture

In this section we outline a proof of Theorem 2.9. Details of this proof are given
in [20].

The proof breaks into several distinct parts. First, we find an existentially closed
difference field (U, σ) with K ≤ U and a definable group Γ ≤ Ga(U) containing
the torsion module and which stands a good chance of being modular. We then
establish the modularity of Γ by mixing the main dichotomy theorem of [4] with
results of Gekeler on Drinfeld modules over finite fields. If we were satisfied to
show that every variety meets the torsion on Ga

g in a finite union of cosets, then
we could stop here, but we wish to show that the cosets are actually translates of
modules. To establish this, we mix some difference algebra with the analytic theory
of Drinfeld modules to show that every quasi-endomorphism is a module, and then
prove a general result on rank one groups to conclude the full result.

As Pillay suggests in his lectures, the techniques in his proof of Manin-Mumford
probably apply to the case of this Drinfeld module version.

The proof of Theorem 2.9 begins very much like the proof of usual Manin-
Mumford conjecture. We find a finitely generated ring R ≤ K for which the Drinfeld
module ϕ : A→ K{τ} factors through R{τ} ↪→ K{τ}. We then find two maximal
ideals P,Q ⊆ R of good reduction for ϕ with p := ι−1P and q := ι−1Q coprime in
A. Write ϕP for the reduction of ϕ at P and ϕQ for the reduction of ϕ at Q.

Let v be a valuation of K extending the P-adic valuation on the field of fractions
of R and w a valuation extending the Q-adic valuation. Then it is not hard to see
that prime-to-p torsion submodule of the full torsion module consists entirely of
v-unramified points. Moreover, as the w-unramified torsion contains the p-torsion,
the full torsion group is contained in the sum of the v-unramified torsion and the
w-unramified torsion.

Let n := [R/P : Fp] and m := [R/Q : Fp]. Let P (X) ∈ A[X] be the minimal
polynomial of τn considered as an element of End(ϕP) and Q(X) ∈ A[X] the
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minimal polynomial of τm considered as an element of End(ϕQ). If σ ∈ Aut(K/R)
extends the relative (pn-power) Frobenius on the maximal v-unramified extension
of R, then P (σ) vanishes on the v-unramified torsion. Likewise, if ρ extends the
relative (pm-power) Frobenius on the maximal w-unramified extension of R, then
Q(ρ) vanishes on the w-unramified torsion. Possibly at the cost of replacing R by
a finite extension (and therefore n and m by some powers), we may find a single
automorphism σ : K → K so that P (σ) ◦ Q(σ) vanishes on all of the torsion. We
fix (U, σ) an extension of (K,σ) to a sufficiently saturated model of ACFA. We
take Γ̃ := kerP (σ) ◦Q(σ) : Ga(U)→ Ga(U).

We note that Γ̃ = kerP (σ)(U)+kerQ(σ)(U) so that it suffices to show that each
summand is modular, c-minimal, and that every definable subgroup of its square
is commensurable with an A-module. The arguments that follow are insensitive to
the differences between P and Q. We work with P , but everything follows mutatis
mutandis for Q. To ease notation, write Ξ := kerP (σ)(U).

To prove modularity of Ξ, one first shows that Ξ has no proper infinite A-
submodules of infinite index. This fact is itself proved in steps. Working with
prolongations, one shows that every definable A-submodule of Ξ must be com-
mensurable with a module defined by an equation of the form R(σ) = 0 for some
R ∈ A[X]. So, because P is irreducible, Ξ satisfies the conditions of c-minimality
for A-modules. To prove that Ξ is c-minimal it suffices to show that every infinite
definable subgroup of Ξ is commensurable with an A-module. For this one needs
to work out the arithemetic of the ring U{τ}[σ] and then apply some facts about
the roots of P .

If Ξ is not modular, then the non-modularity of G is witnessed by a finite-
to-finite definable correspondence between Ξ and the k-rational points of some
algebraic group over some definable field k. Such fields are completely classified;
they must take the form Fix(σiτ j) := {x ∈ U : σi(xpj

) = x} for some i ∈ Z+ and
j ∈ Z. Using this fact and the structure theorem for algebraic groups, one converts
the existence of such a correspondence into a specific equation in the skew-field of
quotients of U{τ}. Using facts about the roots of P (X), one shows that such an
equation cannot hold. Thus, Ξ is modular.

Using our general result about modular c-minimal groups, to finish the proof of
the theorem, it suffices to show that every infinite quantifier-free definable subgroup
of Υ ≤ Ξ × Ξ for which the projection in either direction has finite kernel is com-
mensurable with an A-module. This is done in several steps. First, one notes that
any such group must be defined over algebraic closure of the fixed field of σ. Next,
one notes that the algebraic points on Ξ are exactly the torsion points. Thus, after
massaging Υ a bit, we see that Υ restricts to give a finite-to-finite correspondence
on the torsion module. Working analytically, one sees that the commutator of Υ
with ϕa (for a ∈ A) (or of its converse relation) defines a contraction mapping
∞-adically close to the origin which takes torsion to torsion. For Galois-theoretic
reasons this is seen to be impossible.

5. Separably closed fields and the Drinfeld module Mordell-Lang
conjecture

In this section we outline a proof of Theorem 2.10. As we noted in the introduc-
tion, we had intended for theorem to be addressed as our associated project, but
what we had thought was the missing algebraic lemma had actually been included
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in Thomas Blossier’s thesis [1]. At the end of this section we discuss a revised
version of the project.

Our proof of Theorem 2.10 follows along the lines of Hrushovski’s proof of the
positive characteristic function field Mordell-Lang theorem in [9].

We start by finding a finitely generated field L ≤ K be a finitely generated field
for which the image of ϕ is contained in EndLGa and Γ ≤ Ga(L).

Fix some t ∈ A\Falg
p . We take U to be a saturated elementary extension of Lsep

and define ϕ](U) :=
⋂

n≥0 ϕtn(U).

Claim 5.1. If ϕ](U) is modular, then Theorem 2.10 follows.

Proof. It suffices to show that if X is an irreducible variety and X(U) ∩ Γg is
Zariski dense in X, then X is a translate of an algebraic group. Let X be a
potential counterexample to this assertion. If ϕ](U) is modular, then it follows
by the compactness theorem that there is a natural number n such that for any
a ∈ Ga

g(U) the set (X + a)(U)∩ϕtn(U)g is a finite union of cosets of subgroups of
ϕtn(U)g. However, group Γg is contained in finitely cosets C1, . . . , Cs of ϕtn(U)g.
But then, X(U) ∩ Γg =

⋃
(X(U) ∩ Ci) ∩ Γg. Each of the sets X(U) ∩ Ci is a finite

union of cosets. It follows that intersection with Γg has the same form. �

We wish to prove that ϕ](U) is modular by using an algebraic test for modularity.
Such tests exist for minimal groups and we check now that ϕ](U) is minimal.

Claim 5.2. ϕ](U) is a minimal group.

Proof. Visibly, ϕ](U) is infinite, so it suffices to show that U(ϕ](U)) ≤ 1. Let
a ∈ ϕ](U) be any point. Then, as a general result U(a/L) ≤ tr.degLL〈a〉 where
L〈a〉 is the D-field generated by a over L. By Lemma 2.15 of [9] (slightly modified)
this last transcendence degree is bounded by one. �

The main result of [3] shows that if G ≤ Ga(U) is a definable subgroup of the
additive group, then either G is modular, or there is a definable isogeny α : G →
Ga(Up∞). Lemme 3.4.27 of [1] shows that if θ ∈ τU{τ} is an inseparable twisted
polynomial in the Frobenius over U and θ](U) :=

⋂
n≥0 θ

n(U) is minimal, then
either θ](U) is modular, or there is some λ ∈ U× such that λθλ−1 ∈ Up{τ}. Using
the saturation of U, we may conclude from Blossier’s lemma that either θ](U) is
modular or there is some λ ∈ U× such that λθλ−1 ∈ Up∞{τ}. Thus, if ϕ](U) is not
modular, we may find some λ ∈ U× such that λϕtλ

−1 ∈ Up∞{τ}.

Claim 5.3. We may find µ ∈ (Lsep)× so that µϕtµ
−1 ∈ Falg

p {τ}.

Proof. The main point is that if we expand the language of fields by a predicate for a
subfield, then (Lalg,Falg

p ) � (Ualg,Up∞) is an elementary extension (see Proposition
7.7 of [15]). Writing ϕt =

∑d
j=1 ajτ

j we have

(Ualg,Up∞) |= (∃λ 6= 0)λϕt

d∧
j=1

S(λpj−1aj)

It follows that (Lalg,Falg
p ) is a model of the same sentence witnessed by some µ ∈

Lalg. Choose j ≤ d with aj 6= 0. Let µj := µpj−1aj ∈ (Falg
p )×. The polynomial

Xpj−1 − µja
−1
j ∈ Lsep[X] is separable, so we actually have µ ∈ Lsep. �
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With this claim we finish the proof as we had assumed that ϕ could not be
conjugated to a Drinfeld module over a finite field.

6. Questions

Theorem 2.10 is related to Denis’ conjecture, but it is incomplete in at least two
ways. First, we have not shown that the groups which arise as intersections with
varieties must be A-modules. Secondly, we have not directly addressed the problem
raised in Denis’ conjecture: the case of Drinfeld modules of generic characteristic.
Our revised project concerns these extensions.

The issue of whether the exceptional groups must be A-modules is related to the
more general question of the structure of the quasi-endomorphism rings of modular
minimal groups in separably closed fields.

Question 6.1. Let K = Ksep be a saturated separably closed field of characteristic
p. Let φ ∈ τK{τ}\{0} be an inseparable polynomial in the Frobenius over K. ) Let
φ](K) :=

⋂
n≥0 φ

n(K). Suppose that α ≤ φ](K) × φ](K) is a connected definable
subgroup. Must there exist a positive integer n such that α commutes with φn?

A positive answer to the following question could be instrumental in resolving
Question 6.1.

Question 6.2. Let K be a finitely generated field of characteristic p. Let ϕ :
A → K{τ} be a Drinfeld module over K of finite characteristic. Let a ∈ A
with ϕa ∈ τK{τ}. Let L := Ksep be the separable closure of K. Suppose that
x ∈

⋂
n≥0 ϕan(L). Is x necessarily an A-torsion point?

Denis’ Drinfeld module version of the Mordell-Lang conjecture remains open.
However, Theorem 2.10 should imply a weak function-field version of Denis’ con-
jecture.

Conjecture 6.3. Let K = Kalg be an algebraically closed field of characteristic p.
Let ϕ : A → K{τ} be a Drinfeld module over K. We assume that there does not
exist λ ∈ K× and L ≤ K a subfield of absolute transcendence degree ≤ 1 such that
λ−1ϕλ : A → L{τ}. Let Γ ≤ Ga(K) be a finitely generate A-module. If X ⊆ Ga

g

is a subvariety of some Cartesian power of the additive group, then X(K) ∩ Γg is
a finite union of cosets of subgroups of Γg.

I have in mind a reduction of Conjecture 6.3 to Theorem 2.10 based on a spe-
cialization of ϕ to a Drinfeld module of finite characteristic which does not descend
to a finite field. Provided that one chooses the specialization so that it is injective
on Γ, the conclusion should follow.

While the theories of specific kinds of D-fields (difference fields, differential fields,
separably closed fields, et cetera) have been studied extensively, the general theory
has not been worked out.

Problem 6.4. Study the model theory of D-rings. Specifically,

• For which D-functors does a model companion of the theory of D-domains
exist?
• Which of these theories are simple? stable?
• Describe the definable groups in these theories.
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