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PART I: Introduction and motivation

The term “anabelian” was invented by Grothendieck, and a possible transla-
tion of it might be “beyond Abelian”. The corresponding mathematical notion
of “anabelian Geometry” is vague as well, and roughly means that under certain
“anabelian hypotheses” one has:

∗ ∗ ∗ Arithmetic and Geometry are encoded in Galois Theory ∗ ∗ ∗

It is our aim to try to explain the above assertion by presenting/explaining some
results in this direction. For Grothendieck’s writings concerning this the reader
should have a look at [G1], [G2].

A) First examples:

a) Absolute Galois group and real fields

LetK be an arbitrary field,Ka an algebraic extension,Ks the separable exten-
sion ofK insideKa, and finally GK = Aut(Ks|K) = Aut(Ka|K) the absolute Ga-
lois group of K. It is a celebrated well known Theorem by Artin–Schreier from
the 1920’s which asserts the following: If GK is a finite non-trivial group, then
GK
∼= GR and K is real closed. In particular, char(K) = 0, and Ka = K[

√
−1].

Thus the non-triviality + finiteness of GK imposes very strong restrictions on K.
Nevertheless, the kind of restrictions imposed on K are not on the isomorphism
type of K as a field, as there is a big variety of isomorphy types of real closed
fields (and their classification up to isomorphism seems to be out of reach). The
kind of restriction imposed on K is rather one concerning the algebraic behavior
of K, namely that the algebraic geometry over K looks like the one over R.

b) Fundamental group and topology of complex curves

Let X be a smooth complete curve over an algebraically closed field of char-
acteristic zero. Then using basic results about the structure of algebraic funda-
mental groups, it follows that the geometric fundamental group π1(X) of X is
isomorphic – as a profinite group – to the profinite completion Γ̂g of the funda-
mental group Γg of the compact orientable topological surface of genus g. Hence
π1(X) is the profinite group on 2g generators σi, τi (1 ≤ i ≤ g) subject to the
unique relation

∏
i[σi, τi] = 1. In particular, the genus g of the curve X is en-

coded in π1(X). But as above, the isomorphy type of the curve X, i.e., of the
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object under discussion, is not “seen” by its geometric fundamental group π1(X)
(which in some sense corresponds to the absolute Galois group of the field K).
Precisely, the restriction imposed by π1(X) on X is of topological nature (one on
the complex points X(C) of the curve).

B) Galois characterization of global fields

More than forty years after the result of Artin–Schreier, it was Neukirch

who realized (in the late 1960’s) that there must be a p-adic variant of the
Artin–Schreier Theorem; and that such a result would have highly interesting
consequences for the arithmetic of number fields (and more general, global fields).
The situation is as follows: In the notations from a) above, suppose that K is
a field of algebraic numbers, i.e., K ⊂ Qa. Then the Artin–Schreier Theorem
asserts that if GK is finite and non-trivial, then K is isomorphic to the field of
real algebraic numbers Rabs = R∩Qa. This means that the only finite non-trivial
subgroups of GQ are the ones generated by the GQ-conjugates of the complex con-
jugation; in particular, all such subgroups have order 2, and their fixed fields are
the conjugates of the field of real algebraic numbers. Now the idea of Neukirch

was to understand the fields of algebraic numbers K ⊂ Qa having absolute Galois
group GK isomorphic (as profinite group) to the absolute Galois group GQp of the
p-adics Qp. Note that GQp is much more complicated than GR. It is nevertheless
a topologically finitely generated field, and its structure is relatively known, by
work of Jakovlev, Poitou, Jannsen–Wingberg, etc, see e.g. [J–W]. Finally,
Neukirch proved the following surprising result, which in the case of subfields
K ⊂ Q is the perfect p-adic analog of the Theorem of Artin–Schreier:

Theorem (See e.g. Neukirch [N1]).
For fields of algebraic numbers K,K ′ ⊂ Qa the following hold:

(1) Suppose that GK
∼= GQp. Then K is the decomposition field of some

prolongation of | |p to Qa. Or equivalently, K is GQ-conjugated to the field of
algebraic p-adic numbers Qabs

p .

(2) Suppose that GK′ is isomorphic to an open subgroup of GQp. Then there
exists a unique K ⊂ Qa as at (1) above such that K ′ is a finite extension of K.

The Theorem above has the surprising consequence that an isomorphism of
Galois groups of number fields gives rise functorially to an arithmetical equivalence
of the number fields under discussion. The precise statement is as follows: For
number fields K, let P(K) denote the set of their places. Let Φ : GK → GL

be an isomorphism of Galois groups of number fields. Then a consequence of
the above Theorem reads: Φ maps the decomposition groups of the places of K
isomorphically onto the decomposition places of L. This bijection respects the
arithmetical invariants e(p|p), f(p|p) of the places p|p, thus defines an arithmetical
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equivalence:
ϕ : P(K)→ P(L).

Finally, applying basic facts concerning arithmetical equivalence of number fields,
one gets: In the above context, suppose that K|Q is a Galois extension. Then
K ∼= L as fields. Naturally, this isomorphism is a Q-isomorphism. Since K|Q
is a normal extension, it follows that K = L when viewed as sub-extensions of
fixed algebraic closure Qa. In particular, GK = GL as subgroups of GQ. Thus
the open normal subgroups of GQ are equivariant, i.e., they are invariant under
automorphisms of GQ. This lead Neukirch to the following questions:

1) Does GQ have inner automorphisms only?

2) Is every isomorphism Φ : GK → GL as above defined by the conjugation
by some element inside GQ?

Finally, the first peak in this development was reached at the beginning of the
1970’s, with a positive answer to Question 1) by Ikeda [Ik] (and partial results by
Komatsu), and the break through by Uchida [U1], [U2], [U3] (and unpublished
notes by Iwasawa) showing that the answer to Question 2) is positive. Even
more, the following holds:

Theorem. Let K and L be global fields. Then the following hold:

(1) If GK
∼= GL as profinite groups, L ∼= K as fields.

(2) More precisely, for every profinite group isomorphism Φ : GK → GL, there
exists a unique field isomorphism φ : Ls → Ks defining Φ, i.e., such that

Φ(g) = φ−1 ◦ g ◦ φ for all g ∈ GK .

In particular, φ(L) = K. And therefore we have a bijection:

Isomfields(L,K) ∼= Outprof.gr.(GK , GL)

This is indeed a very remarkable fact: The Galois theory of the global fields
encodes the isomorphism type of such fields in a functorial way! Often this result
is called the Galois characterization of global fields.

We recall briefly the idea of the proof, as it is very instructive for the future
developments. First, recall that by results of Tate and Shafarevich, we know
that the virtual `-cohomological dimension vcd`(K) := vcd(GK) of a global field
K is as follows, see e.g. Serre [S1], Ch.II:

i) If K is a number field, then vcd`(K) = 2 for all `.

ii) If char(K) = p > 0, then vcdp(K) = 1, and vcd`(K) = 2 for ` 6= p.

In particular, if GK
∼= GL then K and L have the same characteristic.

Case 1. K,L ⊂ Qa are number fields. Then the isomorphism Φ : GK → GL

defines an arithmetical equivalence of K and L. Therefore, K and L have the
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same normal hull M0 over Q inside Qa; and moreover, for every finite normal sub-
extensionM |Q of Qa which containsK and L one has: Φ maps GM isomorphically
onto itself, thus defines an isomorphism

ΦM : Gal(M |K)→ Gal(M |L)

In order to conclude, one shows for a properly chosen Abelian extension M1|M ,
every isomorphism ΦM which can be extended to an isomorphism ΦM1 , can also
be extended to an automorphism of Gal(M |Q). Finally, one deduces from this
that Φ can be extended to an automorphism of GQ, etc.

Note that the fact that the arithmetical equivalence of normal number fields
implies their isomorphism relies on the Chebotarev Density Theorem, thus ana-
lytical methods. Until now we do not have a purely algebraic proof of that fact.

Case 2. K,L are global fields over Fp. First recall that the space of all the
non-trivial places P(K) of K is in a canonical bijection with the closed points
of the unique complete smooth model X → Fp of K. In particular, given an
isomorphism Φ : GK → GL, the “arithmetical equivalence” of K and L, is just a
bijectionX0 → Y 0 from the closed points ofX to the closed points of the complete
smooth model Y → Fp of L. And the problem is now to show that this abstract
bijection comes from geometry. The way to do it is by using the class field theory of
global function fields as follows: First, one recovers the Frobenius elements at each
place p of K; and then the multiplicative group K× by using Artin’s reciprocity
map; and finally the addition on K = K× ∪ {0}. Since the recipe for recovering
these objects is invariant under profinite group isomorphisms, it follows that
Φ : GK → GL defines a group isomorphism φK : K× → L×. Finally, one shows
that φK respects the addition, by reducing it to the case φK(x+1) = φK(x)+1.
Moreover, by performing this construction for all finite sub-extensions K1|K of
Ks|K, and the corresponding finite sub-extensions L1|L of Ls|L, and using the
functoriality of the class field theory, one finally gets a field isomorphism φ :
Ks → Ls which defines Φ, i.e., Φ(g) = φ ◦ g ◦ φ−1 for all g ∈ GK .

PART II: Grothendieck’s Anabelian Geometry

The natural context in which the above result appears as a first prominent ex-
ample is Grothendieck’s anabelian geometry, see [G1], [G2]. We will formulate
Grothendieck’s anabelian conjectures in a more general context later, after hav-
ing presented the basic facts about étale fundamental groups. But it is easy
and appropriate to formulate here the so called birational anabelian Conjectures,
which involve only the usual absolute Galois group.

A) Warm-up: Birational anabelian Conjectures

The so called birational anabelian Conjectures place the Results by Neu-

kirch, Ikeda, Iwasawa, Uchida et al —at least conjecturally— into a bigger
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picture. And in their most naive form, these conjectures assert that the isomor-
phy type of the absolute Galois group encodes the isomorphy type of a finitely
generated infinite field up to a finite purely inseparable extension. Recall that for
an arbitrary field K we denote by K i its maximal purely inseparable extension.
Thus if char(K) = 0, then K i = K. Further, we say that two field homomor-
phisms φ, ψ : L → K differ by an absolute Frobenius twist, if ψ = φ ◦ Frobn on
Li for some power Frobn of the absolute Frobenius Frob.

Birational anabelian Conjectures.

(1) There exists a group theoretic recipe in order to recover finitely generated
fields K from their absolute Galois groups GK . In particular, if for such fields K
and L one has GK

∼= GL, then K i ∼= Li.

(2) Moreover, given such fields K and L, one has the following:

• Isom-form: Every isomorphism Φ : GK → GL is defined by a field isomor-
phism φ : La → Ka, and φ is unique up to Frobenius twists. In particular, one
has φ(Li) = K i.

• Hom-form: Every open homomorphism Φ : GK → GL is defined by a field
embedding φ : La ↪→ Ka, and φ is unique up to Frobenius twists. In particular,
one has φ(Li) ⊆ K i.

As in the case of global fields, the Isom-form of the Birational anabelian Con-
jecture is also called the Galois characterization of the finitely generated infinite
fields. The main known facts are summarized below:

Theorem.
(1) (See Pop [P2], [P3]) There is a group theoretical recipe by which one can

recover in a functorial way finitely generated infinite fields K from their absolute
Galois groups GK .

Moreover, this recipe works in such a way that it implies the Isom-form of the
birational anabelian Conjecture, i.e., every isomorphism Φ : GK → GL is defined
by an isomorphism φ : La → Ka, and φ is unique up to Frobenius twists.

(2) (See Mochizuki [Mzk3], Theorem B) The relative Hom-form of the bi-
rational anabelian Conjecture is true in characteristic zero, which means the fol-
lowing: Given function fields K and L over Q, every open GQ-homomorphism
Φ : GK → GL is defined by a unique field embedding φ : La → Ka, which in
particular, maps L into K.

We give here the sketch of the proof of the Isom-form. Mochizuki’s Hom-
form relies on his proof of the anabelian conjectures for curves over sub-p-adic
fields, and we will say some words about that later on in the Lecture.

The main steps of the proof are the following:
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The first part of the proof consists in developing a higher dimensional Local
Theory which, roughly speaking, is a direct generalization of Neukirch’s result
above concerning the description of the places of global fields. Nevertheless, there
are some difficulties with this generalization, because in higher dimensions the
finitely generated fields do not have unique normal (or smooth) complete models.
Recall that a model X → Z for such a field K is by definition a separated,
integral scheme of finite type over Z whose function field is K. We will consider
only quasi-projective normal models, maybe satisfying some extra conditions, like
regular, etc. In particular, if X is a model of K, then the Kronecker dimension
dim(K) of K equals dim(X) as a scheme. One has:

• K is a global field if and only if every normal model X of K is an open
of either XK := SpecOK if K is a number field, or of the unique complete
smooth model XK → Fp of K, if K is a global function field with char(K) = p.
Further, there exists a natural bijection between the prime Weil divisors of XK

and the non-archimedean places of K. The basic result by Neukirch [N1] can
be interpreted as follows: First let us say that a closed subgroup Z ⊂ GK is a
divisorial like subgroup, if it is isomorphic to a decomposition group Zq over some
prime q of some global field L. Note that the structure of such groups as profinite
groups is known, see e.g., Jannsen–Wingberg [J–W]. Then the decomposition
groups over the places of K are the maximal divisorial like subgroups of GK .

This gives then the group theoretic recipe for describing the prime Weil divi-
sors of XK in a functorial way.

• In general, i.e., if K is not necessarily a global field, there is a huge variety
of normal complete models X → Z of K. In particular, we cannot hope to obtain
much information about a single specific model X of K, as in general there is no
privileged model for K as in the global field case. (Well, maybe with the exception
of arithmetical surfaces, where one could choose the minimal model, but this
doesn’t help much...) A way to avoid this is to consider –in a first approximation–
the space of Zariski prime divisors DK of K. This is by definition, the set of all
the discrete valuations v of K defined by the Weil prime divisors of all possible
normal models X → Z of K.

A Zariski prime divisor v is called geometrical if char(K) = char(Kv), or
equivalently, if v is trivial on the prime field of K, and arithmetical otherwise.
Clearly, arithmetical Zariski prime divisors exist only if char(K) = 0. If so, and
if v is defined by a Weil prime divisor X1 of some normal model X → Z, then
v is geometric if and only if v is a “horizontal” divisor of X → Z. We denote by
D1

K the space of all geometrical Zariski prime divisors of K.
For every Zariski prime divisor v ∈ DK of K, let Zv be the decomposition

group of some prolongation vs of v to Ks. We will call the totality of all the closed
subgroups of the form Zv the divisorial subgroups ofGK or ofK. Finally, as above,
a closed subgroup Z ⊂ GK is called divisorial like subgroup, if it is isomorphic to
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a divisorial subgroup of a finitely generated field L with dim(L) = dim(K). The
main results of the Local Theory are as follows, see [P1]:

a) For a Zariski prime divisor v, the numerical data char(K), char(Kv), and
dim(K) are group theoretically encoded in Zv; in particular, whether v is ge-
ometric or not. Further, the inertia group Tv ⊂ Zv of vs|v, and the canonical
projection πv : Zv → GKv are also encoded group theoretically in Zv. In particu-
lar, the residual absolute Galois group GKv at all the Zariski prime divisors v of
K is group theoretically encoded in GK .

b) Every divisorial like subgroup Z ⊂ GK is contained in a unique divisorial
subgroup Zv of GK . Thus the divisorial like subgroups of GK are exactly the
maximal divisorial like subgroups of GK . And the space DK is in bijection with
the conjugacy classes of divisorial subgroups of GK .

The results from the local theory above suggest that one should try to prove
the birational anabelian Conjecture by induction on dim(K). This is the idea
for developing a Global Theory along the following lines:

First, the Isom-form of the birational anabelian Conjecture for global fields,
i.e., dim(K) = 1, is known; and we think of it as the first induction step. Now
suppose that dim(K) = d > 1. By the induction hypothesis, suppose that the
Isom-form of the birational anabelian Conjecture is true in dimension < d. Then
one recovers the field K i up to Frobenius twists from GK along the following steps
(and from this recipe it will be clear, what we do mean by a “group theoretic
recipe”).

Step 1) Recover the cyclotomic character χK : GK → Ẑ× of GK .

The recipe is as follows: Since dim(Kv) = dim(K) − 1 < d, the cyclotomic
character χKv is “known” for each geometric Zariski prime divisor v ∈ D1

K .
Therefore, the cyclotomic character

χv : Zv
πv−→GKv

χ
Kv−→ Ẑ×

is known for all v ∈ D1
K . On the other hand, using the higher dimensional Cheb-

otarev Density Theorem, see e.g., Serre [S3], it follows that ker(χK) is the closed
subgroup of GK generated by all the ker(χv), v ∈ D1

K . Thus χK is the unique
character χ : GK → Ẑ× which coincides with χv on each Zv.

Next let TK = lim←−m
µm be the Tate module of K. Denote by Ẑ′(1) the adic

completion of Z with respect to all integers m relatively prime to char(K), and
fix an identification ı of these two GK-modules. The Kummer Theory gives a
functorial completion homomorphism as follows:

K×

K−→ K̂ δ̂−→H1(K, Ẑ′(1)),
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where “functorial” means that performing this construction for finite extensions
M |K inside Ka|K, we get corresponding commutative “inclusion-restriction” di-
agrams (which we omit to write down here). An essential point to make here is
that the completion morphism K : K× → K̂ is injective. This follows by induc-
tion on dim(K) by using the following fact: Let K|k be the function field of a
geometrically irreducible complete curve X → k. Then K×/k× is the group of
principal divisors of X, thus a free Abelian group. And for K a number field, one
knows that K×/µK is a free Abelian group.

Step 2) Recover the geometric small sets of Zariski prime divisors.

We will say that a subset D ⊂ D1
K of Zariski prime divisors is geometric, if

there exists a quasi-projective normal model X → k of K such that D = DX is
the set of Zariski prime divisors of K defined by the Weil prime divisors of X.
Here, k is the field of constants of K. It is a quite technical point to show —by
induction on d = td(K), that the geometric sets of Zariski prime divisors can be
recovered from GK , see Pop [P3]. Next let D = DX be a geometric set of Zariski
prime divisors. One has a canonical exact sequence

1→ UD → K× → Div(X)→ Cl(X)→ 0,

where UD are the units in the ring of global sections onX, and the other notations
are standard. Since the base field k is either finite or a number field, the Weil
divisor class group Cl(X) is finitely generated. Thus if X is “sufficiently small”,
then Cl(X) = 0. A geometric set of Zariski prime divisors D = DX will be called
a small geometric set of Zariski prime divisors, if the adic completion Ĉl(X) is
trivial. One shows that the small geometric sets of Zariski prime divisors can be
recovered form GK , see loc.cit. In this process, one shows that the adic completion
of the above exact sequence can be recovered form GK too:

1→ ÛD → K̂× → D̂iv(X) = ⊕̂vẐ
′ → Ĉl(X)→ 0,

Step 3) Recover the multiplicative group K× inside K̂.

Let D = DX be a small geometric set of Zariski prime divisors of K. The
resulting exact sequence defined above becomes 1 → ÛD → K̂ → ⊕̂vẐ

′ → 0, as
Ĉl(X) = 0. Next let v ∈ D be arbitrary. Then the group of global units UD is con-
tained in the group of v-units O×v . Thus the (mod mv) reduction homomorphism
pv : O×v → Kv× is defined on UD. Using some arguments involving Hilbertian
fields, one shows that there exist “many” v ∈ D such that UD as well as ÛD are
actually mapped isomorphically into Kv×, respectively K̂v; and moreover, that
inside K̂v one has

(∗) pv(UD) = p̂v(ÛD) ∩Kv×.

On the Galois theoretic side, the reduction map pv is defined by the restriction
coming from the inclusion Zv ↪→ GK . And moreover, since UD is contained in the
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v-units, it follows that under the restriction map K̂ → H1(Zv, Ẑ
′(1)), the image

of ÛD is contained in the image of the inflation map inf(πv) : K̂v → H1(Zv, Ẑ
′(1))

defined by the canonical projection πv : Zv → GKv.

Finally, the recipe to recover K× inside K̂ is as follows. First, for each small
geometric set of Zariski prime divisors D and v as above, UD is exactly the
preimage of p̂v(ÛD) ∩Kv×, by assertion (∗) above. Since K× = ∪DUD, when D
runs over smaller and smaller (small) geometric sets of Zariski prime divisors, we
finally recover K× inside K̂.

Step 4) Define the addition in K = K× ∪ {0}.
This is easily done using the induction hypothesis: Let namely x, y ∈ K× be

given. Then x+y = 0 iff x/y = −1, and this fact is encoded in K×. Now suppose
that x+ y 6= 0. Then x+ y = z in K iff for all v such that x, y, z are all v-units
one has: pv(x) + pv(y) = pv(z). On the other hand, this last fact is encoded in
the field structure of GKv, which we already know.

Finally, in order to conclude the proof of the Isom-form of the birational an-
abelian Conjecture, we proceed as follows: Let Φ : GK → GL be an isomorphism
of absolute Galois group Φ : GK → GL. Then the recipe of recovering the fields
K and L are “identified” via Φ, and shows that the p-divisible hulls of K and
L inside K̂ ∼= L̂ must be the same, where p = char(K). This finally leads to an
isomorphism φ : La → Ka which defines Φ. Its uniqueness up to Frobenius twists
follows from the fact that given two such field isomorphisms φ′, φ′′, then setting
φ := φ′−1 ◦φ′′ we obtain an automorphism of Ka which commutes with GK . And
one checks that any such automorphism is a Frobenius twist.

B) Anabelian Conjectures for Curves

a) Étale fundamental groups

Let X be a connected scheme endowed with a geometric base point x. Recall
that the étale fundamental group π1(X,x) of (X,x) is the automorphism group of
the fiber functor on the category of all the étale connected covers of X. The étale
fundamental group is functorial in the following sense: Let connected schemes
with geometric base points (X,x) and (Y, y), and a morphism φ : X → Y be
given such that y = φ ◦ x. Then φ gives rise to a morphism between the fiber
functors Fx and Fy, which induces a continuous morphism of profinite groups
π1(φ) : π1(X,x) → π1(Y, y) in the canonical way. In particular, setting Y = X

and y some geometric point of X, a “path” from between x and y, gives rise to
an inner automorphism of π1(X,x). In other words, π1(X,x) is determined by X
up to inner automorphisms. (This means that the situation is completely parallel
to the one in the case of the topological fundamental group.) It is one of the
basic properties of the étale fundamental group that it is invariant under radicial
morphisms, in particular under purely inseparable covers and Frobenius twists.
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Next let G be the category of all profinite groups and outer continuous homo-
morphisms as morphisms. The objects of G are the profinite groups, and for given
objects G and H, a G-morphism from G to H is a set of the form Inn(H) ◦ f ,
where f : G → H is a morphism of profinite groups, and Inn(H) is the set of
all the inner automorphisms of H. Clearly, if f, g : G → H differ by an inner
automorphism of G, then Inn(H) ◦ f = Inn(H) ◦ g, thus they define the same
G-homomorphism from G to H. Further, Inn(H) ◦ f is a G-isomorphism if and
only if f : G→ H is an isomorphism of profinite groups.

Therefore, viewing the étale fundamental group π1 as having values in G rather
than in the category of profinite groups, the relevance of the geometric points x
vanishes. Therefore, we will simply write π1(X) for the fundamental group of a
connected scheme X.

In the same way, if S is a connected base scheme, and X is a connected S-
scheme, then the structure morphism ϕX : X → S gives rise to an augmentation
morphism pX : π1(X) → π1(S). Thus the category SchS of all the S-schemes
is mapped by π1 into the category GS of all the π1(S)-groups, i.e. the profinite
groups G with an “augmentation” morphism prG : G→ π1(S).

Now let us consider the more specific situation when the base scheme S is a
field, and the k-schemes X are geometrically connected. Denote X = X×k k

s the
base to the separable closure of k (in some fixed “universal field”), and remark
that by the facts above one has an exact sequence of profinite groups of the form

1→ π1(X)→ π1(X)→ Gk → 1.

In particular, we have a representation ρX : Gk → Out(π1(X)) = AutG(π1(X))
which encodes most of the information carried by the exact sequence above. The
group π1(X) is called the algebraic (or geometric) fundamental group of X. In
general, little is known about π1(X), and in particular, even less about π1(X).
Nevertheless, if X is a k-variety, and k ⊂ C, then the base change to C gives a
realization of π1(X) as the profinite completion of the topological fundamental
group of Xan = X(C).

In terms of function fields, if X → k is geometrically integral, one has the
following: Let k(X) ↪→ k(X) be the function fields of X → X. Then the algebraic
fundamental group π1(X) is (canonically) isomorphic to the Galois group of a
maximal unramified Galois field extension KX | k(X).

Finally, we recall that π1(X) is a birational invariant in the caseX is complete
and regular. In other words, if X and X ′ are birationally equivalent complete
regular k-varieties, then π1(X) ∼= π1(X ′) and π1(X) ∼= π1(X ′) canonically.

b) Étale fundamental groups of curves

Specializing even more, we turn our attention to curves, and give a short
review of the basic known facts in this case. In this discussion we will suppose
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that X is a smooth connected curve, having a smooth completion say X0 over k.
We denote S = X0\X, and S = X0\X. We will say that X is a (g, r) curve,
if X0 has (geometric) genus g, and |S| = r. We will say that X is a hyperbolic
curve, if its Euler–Poincaré characteristic 2− 2g− r is negative. And we will say
that a curve X as above is virtually hyperbolic, if it has an étale connected cover
X ′ → X such that X ′ is a hyperbolic curve in the sense above. (Note that every
étale cover f : X ′ → X as above is smooth and has a smooth completion which
is a (g′, r′)-curve with g ≤ g′ and r′ ≤ r deg(f) over some finite k′|k.)

In the above notations, let X → k be a (g, r) curve. Then a short list of the
known facts about the algebraic fundamental group π1(X) is as follows. First, let
Γg,r be the fundamental group of the orientable compact topological surface of
genus g with r punctures. Thus

Γg,r = < a1, b1, . . . , ag, bg, c1, . . . , cr |
∏

i [ai, bi]
∏
cj = 1 >

is the discrete group on 2g + r generators a1, b1, . . . , ag, bg, c1, . . . , cr with the
given unique relation. (The generators ai, bi, cj have a precise interpretation as
loops around the handles, respectively around the missing points.) In particular,
if r > 0, then Γg,r is the discrete free group on 2g + r − 1 generators. It is well
known that Γg,r is residually finite, i.e., Γg,r injects into its profinite completion:

Γg,r ↪→ Γ̂g,r .

Finally, given a fixed prime number p, respectively arbitrary prime numbers `,
we will denote by Γ̂g,r → Γ̂′g,r the maximal prime-p quotient of Γ̂g,r, and by
Γ̂g,r → Γ̂`

g,r the maximal pro-` quotient of Γg,r.

Case 1. char(k) = 0.

Using the remark above, in the case k ↪→ C, it follows that π1(X) ∼= Γ̂g,r via
the base change X ×k C → X. If κ(X) is the function field of X, then π1(X)
is the Galois group of a maximal Galois unramified field extension Kk(X)|k(X).
Moreover, the loops cj ∈ Γg,r around the missing points xi ∈ X0\X are canonical
generators of inertia groups Txi over these points in π1(X). In particular we have:

a) X is a complete curve of genus g if and only if π1(X) has 2g generators
ai, bi with the singe relation

∏
i[ai, bi] = 1, provided X is not A1

k.

b) X is of type (g, r) with r > 0 if and only if π1(X) is a profinite free group
on 2g + r − 1 generators, provided X is not k-isomorphic to A1

k or P1
k.

Clearly, the dichotomy between the above subcases a) and b) can be as well
deduced from the pro-` maximal quotient π`

1(X) of π1(X), by simply replacing
“profinite” by “pro-`”.

Further, the following conditions on X are equivalent:

(i) X is hyperbolic
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(ii) X is virtually hyperbolic.
(iii) π1(X) is non-Abelian, or equivalently, (iii)` π`

1(X) is non-Abelian.

Case 2. char(k) > 0.

First recall that the tame fundamental group πt
1(X) of X is the maximal quo-

tient of π1(X) which classifies étale connected covers X ′ → X whose ramification
above the missing points xi ∈ X0\X is tame. We will denote by πt

1(X) the tame
quotient of π1(X), and call it the tame algebraic fundamental group ofX. Now the
main technical tools used in understanding π1(X) and its tame quotient πt

1(X)
are the following two facts:

Shafarevich’s Theorem.
In the context above, set char(k) = p > 0, and denote by πp

1(X) the maximal
pro-p quotient of π1(X). Further let rX0

= dimFpJacX0 [p] denote the Hasse–Witt
invariant of the complete curve X0. Then one has:

(1) If X = X0, then πp
1(X) is a pro-p free group on rX0 ≤ g generators.

(2) If X is affine, then πp
1(X) is a pro-p free group on |ka| generators.

Let k be an arbitrary base field, and v a complete discrete valuation with
valuation ring R = Rv of k and residue field kv = κ. Let X → k be a smooth
curve which has a smooth completion X0 → k. We will say that X → k has good
reduction at v, if the following hold: X0 → k has a smooth model X0,R → R over
R, and there exists an étale divisor SR → R of X0,R such that the generic fiber
of the complement X0,R\SR =: XR → R is X.

Now let X → k be a hyperbolic curve having good reduction at v. In the
notations from above, let Xs → κ be the special fiber of XR → R. Then the
canonical diagram of schemes

X ↪→ XR ←↩ Xsy y y
k ↪→ R ←↩ κ

gives rise to a diagram of fundamental groups as follows:

πt
1(X) → πt

1(XR) ← πt
1(Xs)y y y

Gk → G t
k ← Gκ

where πt
1(XR) is the “tame fundamental group” of XR, i.e., the maximal quotient

of π1(X) classifying connected covers ofXR which have ramification only along SR

and the generic point of the special fiber, and this ramification is tame, and G t
k is

the Galois group of the maximal tamely ramified extension of k. The fundamental
result concerning the fundamental groups in the diagram above is the following:
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Grothendieck’s Specialization Theorem.
In the context above, let X be a smooth curve of type (g, r). Further let Rt be

the extension of R to kt, and XR := XR ×R R
t. Then one has:

(1) πt
1(X)→ πt

1(XR) is surjective, and πt
1(XR)← πt

1(Xs) is an isomorphism.
The resulting surjective homomorphism

spv : πt
1(X)→ πt

1(Xs)

is called the specialization homomorphism of tame fundamental groups at v. In
particular, πt

1(X) is a quotient of Γ̂g,r in such a way that the generators cj are
mapped to inertia elements at the missing points xi ∈ X0\X.

(2) Further, let char(k) = p, and denote by π′1(X) the maximal prime to p

quotient of π1(X) (which then equals the maximal prime to p quotient of πt
1(X)

too). Then π′1(X) ∼= Γ̂′g,r, and spv maps π′1(X) isomorphically onto π′1(Xs). In
particular, π′1(X) depends on (g, r) only.

Combining Shafarevich’s Theorem and Grothendieck’s Specialization Theo-
rem above, we immediately see that the following facts and invariants of X → k

are encoded in π1(X):

a) If ` 6= p, then π`
1(X) ∼= Γ̂`

g,r, and πp
1(X) 6∼= Γ̂p

g,r. Therefore, p = char(k) can
be recovered from π1(X), provided X is not P1

k.

a)t The same is true correspondingly concerning the tame fundamental group
πt

1(X), provided X is not isomorphic to A1
k of P1

k.

b) X → k is complete if and only if πp
1(X) is finitely generated.

b)t Correspondingly, X → k is complete if and only if π`
1(X) not pro-`-free,

provided X is not isomorphic to A1
k.

c) In particular, if X is complete, then π`
1(X) has 2g generators, thus g can

be recovered from π`
1(X).

Finally, concerning the virtual hyperbolicity of X we have the following:

d) Every affine curve X is virtually hyperbolic.

Remark.
Clearly, the applicability of Grothendieck’s Specialization Theorem is limited

by the fact that one would need a priori criterions for the good reduction of the
given curve X at the (completions of k with respect to the) discrete valuations v
of k. At least in the case of hyperbolic curves X → k such criteria do exist. The
setting is as follows: Let X → k be a hyperbolic curve, and let v be a discrete
valuation of k. Let Tv ⊆ Zv be the inertia, respectively the decomposition, groups
of some prolongation of v to ks. Recall the canonical projections π1(X)→ Gk and
πt

1(X) → Gk and the resulting Galois representations ρX : Gk → Out(π1(X))
and ρ t

X : Gk → Out(πt
1(X)). Then one can characterize the fact that X has

(potentially) good reduction at v as follows, see Oda [O] in the case of complete

13



hyperbolic curves, and by Tamagawa [T1] in the case of arbitrary hyperbolic
curves:

In the above notations, X → k has good reduction at v if and only if the
representation ρ t

X is trivial on Tv.

The concrete picture of how to apply the above remark in studying funda-
mental groups of hyperbolic curves X → k over either finitely generated infinite
base field k or finitely generated fields over some fixed base field k0 is as follows:
Let X → k be a smooth curve of type (g, r). Further let S be a smooth model of
k over Z, if k is a finitely generated field, respectively over the base k0 otherwise.
For every closed point s ∈ S, there exists a discrete valuation vs whose valuation
ring Rs dominates the local ring OS,s, and having residue field κvs = κ(s). Let us
choose such a valuation vs. Then in the previous notations, X has good reduction
at s if and only if ρt

X is trivial on the inertia group Ts over the point s. Note that
by the uniqueness of the smooth model XRs → Rs —in the case it does exist, the
existence of such a good reduction does not depend on the concrete valuation vs

used. One should also remark here, that in the context above, X → k has good
reduction on a Zariski open subset of S. This follows e.g., from the Jacobian
Criterion for smoothness.

Finally, we now come to announcing Grothendieck’s anabelian Conjectures
for Curves and the Section Conjectures.

Let P be a property defined for some category of schemes X. We will say
that the property P is an anabelian property, if it is encoded in π1(X) in a group
theoretical way, or in other words, if P can be recovered by a group theoretic
recipe from π1(X). In particular, if X has the property P, and π1(X) ∼= π1(Y ),
then Y has the property P.

Examples:

a) In the category of all the fields K, the property “K is real closed” is
anabelian. This is the Theorem of Artin–Schreier from above.

b) In the category of all the smooth k-curves X which are not isomorphic
to A1

k, the property: “X is complete and has genus g” is anabelian. This follows
from the structure theorems for the fundamental group of complete curves as
discussed above.

We will say that a scheme X is anabelian if the isomorphy type of X up to
some natural transformations, which are not encoded in Galois Theory, can be
recovered group theoretically from π1(X) in a functorial way; or equivalently, if
there exists a group theoretic recipe to recover the isomorphy type of X, up to
the natural transformations in discussion, from π1(X). Typical examples of such
“natural transformations” which are not seen by Galois Theory are the radicial
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covers and the birational equivalence of complete regular schemes. Concretely,
for k-varieties X → k with char(k) = p > 0, there are two typical radicial covers:
First the maximal purely inseparable cover X i → ki. And second, the Frobenius
twists X(n)→ k of X → k and/or X i(n)→ ki of X i → ki obtained by acting by
Frobn “on the coefficients”: X(n) := X ×Frobn k → k. In the same way, if X → k

and Y → k are complete regular k varieties which are birationally equivalent,
then π1(X) and π1(Y ) are canonically isomorphic, but X and Y might be very
different.

A good set of examples of anabelian schemes are the finitely generated infinite
fields, as we have seen in the previous section. Given such a field K, one has
π1(SpecK) = GK , and by the birational anabelian Conjectures we know that K
can be recovered from π1(K) in a functorial way, up to pure inseparable extensions
and Frobenius twists.

Anabelian Conjecture for Curves (absolute form)
(1) Let X → k be a virtually hyperbolic curve over a finitely generated base

field k. Then X is anabelian in the sense that the isomorphism type of X can be
recovered from π1(X) up pure inseparable covers and Frobenius twists.

(2) Moreover, given such curves X → k and Y → l, one has the following:
• Isom-form: Every isomorphism Φ : π1(X) → π1(Y ) is defined by an iso-

morphism φ : X i → Y i, and φ is unique up to Frobenius twists.
• Hom-form: Every open homomorphism Φ : π1(X)→ π1(Y ) is defined by a

dominant morphism φ : X i → Y i, and φ is unique up to Frobenius twists.

One could as well consider a relative form of the above conjecture as follows:

Anabelian Conjecture for Curves (relative form)
(1) Let X → k be a virtually hyperbolic curve over a finitely generated base

field k. Then X → k is anabelian in the sense that X → k can be recovered from
π1(X)→ Gk up to pure inseparable covers and Frobenius twists.

(2) Moreover, given such curves X → k and Y → k, one has the following:
• Isom-form: Every Gk-isomorphism Φ : π1(X) → π1(Y ) is defined by a

unique ki-isomorphism φ : X i(n)→ Y i for some n-twist.
• Hom-form: Every open Gk-homomorphism Φ : π1(X) → π1(Y ) is defined

by a unique dominant ki-morphism φ : X i(n)→ Y i of some n-twist.

C) The Section Conjectures

Let X0 → k be an arbitrary irreducible k-variety, and X ⊂ X0 an open k-
subvariety. Let x ∈ X0 be a regular ki-rational point of X0. Then choosing a
system of regular parameters (t1, . . . , td) at x, we can construct —by the stan-
dard procedure— a valuation vx of the function field k(X) of X with value group
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vx(K×) = Zd ordered lexicographically, and residue field k(X)vx = κ(x), thus a
subfield of ki. Let v be a prolongation of vx to k(X)s, and let Tv ⊂ Zv be the
inertia, respectively decomposition group of v|vx in GK . By general valuation
theory, see e.g., Kuhlmann–Pank–Roquette [K–P–R], one has: Tv has com-
plements Gv in Zv. And clearly, since k(X)vx = κ(x) ⊂ ki, under the canonical
exact sequence

1→ Tv → Zv → Gk(X)vx
= Gk → 1 ,

every complement Gv is mapped isomorphically onto Gk = Gki . Therefore, the
canonical projection

(∗) prk(X) : Gk(X) → Gk

has sections sv : Gk → Gv ⊂ Gk(X) constructed as shown above.

Moreover, let us recall that under the canonical projection Gk(X) → π1(X),
the decomposition group Zv is mapped onto the decomposition group Zx of v in
π1(X), and Tv is mapped onto the inertia group Tx of v in π1(X). And finally,
any complement Gv of Tv is mapped isomorphically onto a complement Gx of Tx

in Zx. Clearly Gx → Gk isomorphically, thus

(∗∗) prX : π1(X)→ Gk

has a section sx : Gk → Gx ⊂ π1(X) defined via the ki-rational point x ∈ X(ki).
Moreover, I think it’s instructive to remark that one has to distinct cases:

a) Suppose that x ∈ X. Then Tx = {1}, as the étale covers of X are not
ramified over x. Therefore, Zx = Gx. And in this case the sections of prX of the
form above build a full conjugacy class of sections.

b) Next let x ∈ (X0\X)(ki). Then Tx 6= {1} and Gx 6= Zx in general. There-
fore, for a given ki-rational point x, there might exist several complements Gx

of Tx in Zx, thus sections of prX : π1(X) → Gk, which are not conjugate inside
π1(X). Such sections are called sections at infinity (for the variety X). In the
case of an arbitrary variety X → k it is not known how to classify the conjugacy
classes of such sections. But if X → k is a curve, and char(k) = 0, then these
sections are classified by H1(Gk, Ẑ(1)).

Section Conjectures.
Let X → k be a hyperbolic curve over a finitely generated infinite field k, and

in the case char(k) > 0, suppose that X has no finite covers which are defined
over a finite field. In the notations from above, the following hold:

(1) Birational form: The sections of prk(X) arise from ki-rational points of X0

as indicated above.

(2) Curve form: The sections of prX arise from ki-rational points of X0 of X
as indicated above.
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Concerning Higher dimensional anabelian Conjectures, there are only
vague ideas. There are some obvious necessary conditions which higher dimen-
sional varieties X have to satisfy in order to be anabelian (like being of general
type, being K(π1), etc.). Also, easy counter-examples show that one cannot ex-
pect a naive Hom-form of the conjectures. See Grothendieck [G2], and Ihara–

Nakamura [I–N], Mochizuki [Mzk3], [Mzk4] for more about this.

Remark (Standard reduction technique).
Before going into the details concerning the known facts about the anabelian

Conjectures for curves, let us set the technical frame for a fact used several times
below. Let X → k be a smooth curve over the field k. Suppose that k is either
a finitely generated infinite field, or a function field over some base field k0. Let
S → Z, respectively S → k0 be a smooth model of k.

Next let X → k be a hyperbolic curve, say with smooth completion X0. Let
π1(X) → Gk, respectively πt

1(X) → Gk be the corresponding canonical projec-
tions. Then choosing for each closed point s ∈ S a discrete valuation vs which
dominates the local ring of s, we have the Oda–Tamagawa Criterion (mentioned
above) for deciding whether X → k has good reduction at s. We also know,
that X → k has good reduction on a Zariski open subset of S. In particular, the
Oda–Tamagawa Criterion is a group theoretic criterion for describing the Zariski
open subset of S on which X → k has good reduction. Moreover, if s is a point
of good reduction of X → k, then Grothendieck’s Specialization Theorem for πt

1

gives a commutative diagram of the following form:
πt

1(Xkv)
sps−→ πt

1(Xs)y y
Zv

prv−→ Gκ(s)

where kv is the fixed field of Zv inside ks, thus it is a decomposition field over v.
Therefore, from the data πt

1(X)→ Gk, one recovers in a canonical way its special
fibers πt

1(Xs)→ Gκ(s) at all the points s where X has good reduction.

I) Tamagawa’s Results concerning affine hyperbolic curves

In this subsection we will sketch a proof of the following result by Akio

Tamagawa concerning affine hyperbolic curves.

Theorem. (See Tamagawa [T1])
(1) There exists a group theoretic recipe by which one can recover an affine

smooth connected curve X defined over a finite field from π1(X). Moreover, if X
is hyperbolic, then this recipe recovers X from πt

1(X).
Further, the absolute and the relative Isom-form of the anabelian conjecture

for Curves holds for affine curves over finite fields; and its tame form holds for
affine hyperbolic curves over finite fields.
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(2) There exists a group theoretic recipe by which one can recover affine hy-
perbolic curves X → k defined over finitely generated fields k of characteristic
zero from π1(X).

Further, the absolute and the relative Isom-form of the anabelian conjecture
for Curves holds for affine hyperbolic curves over finitely generated fields of char-
acteristic zero.

The strategy of the proof is as follows:
First consider the case when the base field k is finitely generated and has

char(k) = 0. We claim that the canonical exact sequence

(∗) 1→ π1(X)→ π1(X)→ Gk → 1,

is encoded in π1(X). Indeed, recall that the algebraic fundamental group π1(X) is
a finitely generated normal subgroup of π1(X). Therefore, since Gk has no proper
finitely generated normal subgroups, see e.g. [F–J], Ch.16, Proposition 16.11.6, it
follows that π1(X) is the unique maximal finitely generated normal subgroup of
π1(X). Thus the exact sequence above can be recovered from π1(X). Further, by
either using the characterization of the geometric inertia elements in π1(X) given
by Nakamura [Na1], or by using specialization techniques, one finally recovers
the projection π1(X)→ π1(X0), where X0 is the completion of X.

After having recovered the exact sequence (∗) above, one reduces the case of
hyperbolic affine curves over finitely generated fields of characteristic zero to the
πt

1-case of affine hyperbolic curves over finite fields. This is done by using the
“standard reduction technique” mentioned above.

Tamagawa also shows that the absolute form of the Isom-conjecture and
the relative one are roughly speaking equivalent (using the birational anabelian
Conjecture described at the beginning of Part II).

We now turn our attention to the case of affine curves over finite fields, respec-
tively the πt

1-case of hyperbolic curves over finite fields. Tamagawa’s approach
is a tremendous refinement of Uchida’s strategy to tackle the birational case,
i.e., to prove the birational anabelian Conjecture for global function fields. (Nat-
urally, since π1(X) seems to encode much less information than the absolute
Galois group Gk(X), the things might/should be much more intricate in the case
of curves.) A rough approximation of Tamagawa’s proof is as follows. Let X → k

be an affine smooth geometrically connected curve, where k is a finite field with
char(k) = p. As usual let X0 be the smooth completion of X. Thus we have
surjective canonical projections

π1(X)→ π1(X0)→ Gk → 1

and correspondingly for the tame fundamental groups.
The first part of the proof consists in developing a Local Theory, which as in

the birational case, will give a description of the closed points x ∈ X0 in terms of
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the conjugacy classes of the decomposition groups Zx ⊂ π1(X) above each closed
point x ∈ X.

The steps for doing this are as follows:

Step 1) Recovering the several arithmetical invariants.

Here Tamagawa shows that the canonical projections π1(X) → Gk, thus
π1(X), as well as π1(X) → πt

1(X) are encoded in π1(X). Further, by a combi-
natorial argument he recovers the Frobenius element ϕk ∈ Gk. In particular, one
gets the cyclotomic character of π1(X), and so one knows the `-adic cohomology
of π1(X), as well as the Galois action of Gk on the `-adic Galois cohomology
groups of π1(X).

The next essential remark is that after replacing X by some “sufficiently
general” finite étale cover Y → X, the completion Y0 → k of Y is itself hyperbolic.
In particular, the `-adic Galois cohomology groups Hi(π1(Y 0),Z`(r)) of π1(Y 0)
are the same as the `-adic étale cohomology Hi(Y 0,Z`(r)) of Y 0. Thus by the
remarks above, one can recover the `-adic cohomology of Y 0 for every étale cover
Y → X having a hyperbolic completion Y0.

This is a fundamental observation in Tamagawa’s approach, as it can be
used in order to tackle the following problem:

Which sections of the canonical projection prX : π1(X) → Gk are defined by
points x ∈ X0(k) in the way as described in the Section Conjecture?

We remark that since Gk
∼= Ẑ is profinite free on one generator, one cannot

expect that all such sections are defined by points as asked by the Section Con-
jecture. (Indeed, there are uncountable many such conjugacy classes of sections,
thus too “many” in oder to be defined by points, even if X0 has no k-rational
points.)

Here is Tamagawa’s answer: Let s : Gk → π1(X) be a given section. For every
open neighborhood U ⊂ π1(X) of s(Gk), we denote by XU → X the finite étale
cover of X classified by U . First, since U projects onto Gk, the curve XU → k

is geometrically connected. Further, we have in tautological way: π1(XU ) = U ,
and U := U ∩π1(X) = π1(XU ). Let XU,0 be the smooth completion of XU . Then
by Step 1), the canonical projection π1(XU ) → π1(XU,0) can be recovered from
U = π1(XU ), thus from π1(X) endowed with the section s : G→ π1(X).

Now we remark that for U sufficiently small, the complete curve XU,0 is
hyperbolic, both in the case X is affine, or if X was hyperbolic and we were
working πt

1(X). We set U0 := π1(XU,0) and view it as quotient of π1(XU ), and
U0 = π1(XU,0). Since XU,0 is complete and hyperbolic, the `-adic cohomology
group Hi

et(XU0 ,Z`(1)) equals the Galois cohomology group Hi(π1(XU0),Z`(1)),
thus the cohomology group Hi(U0,Z`(1)) for all i.
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Finally, since the Frobenius element ϕk ∈ Gk is known, by applying the
Lefschetz Trace Formula, we can recover the number of k-rational points of XU0 :

|XU0(k)| =
∑2

i=0(−1)iTr(ϕk)|Hi(U0,Z`(1))

In this way we obtain the technical input for the following:

Proposition. Let s : Gk → π1(X) be a section of prX : π1(X) → Gk. Then
s is defined by a point of X0(k) if and only if for every open sufficiently small
neighborhood U of s(Gk) as above, one has XU0(k) 6= /O.

Step 2) Recover the decomposition groups Zx over closed points.

This is done using the Proposition above. Actually, using the Artin’s Reci-
procity law, one shows that in the case of a complete hyperbolic curve, like the
XU0 above, the set XU0(k) is in bijection with the conjugacy classes of sections s
defining points. And this gives a recipe to recover the points X0(k) which come
from points in XU0(k) for some U as above; thus finally for recovering all the
points in X0(k). By replacing k by finite extension l|k, one recovers in a functo-
rial way X(l) too, etc. Thus finally one recovers the closed points x of X0 as being
in bijection with the conjugacy classes of decomposition groups Zx ⊂ π1(X). Cor-
respondingly the same is done for πt

1-case.

The second part of the proof is to develop a Global Theory, as done by
Uchida in the birational case. Naturally, π1(X) endowed with all the decom-
position groups over the closed points of X0 carries much less information than
Gk(X) endowed with all the decomposition groups Zv over the places v of k(X).

Step 3) Recover the multiplicative group k(X)× together with the valuations
vx : k(X)→ Z.

Since the Frobenius elements ϕx ∈ Zx are known for closed points x ∈ X0,
by applying global class field theory as in the birational case, one gets the mul-
tiplicative group k(X)× together with the valuations vx : k(X)× → Z.

Step 4) Recovering the addition on k(X)× ∪ {0}.
This is much more difficult than that in the birational case. And here is were

the hypothesis that X is affine is used. Namely, if x ∈ X0\X is any point “at
infinity”, then from a decomposition group Zx over x, one finally can recover the
evaluation map

px : k(X)→ ka ∪∞.

One proceeds by applying the following:

Proposition. Let X0 → κ be a complete smooth curve over an algebraically
closed field κ. Suppose that the multiplicative group k(X0)× together with the
valuations vx : k(X0)× → Z at closed points x ∈ X0, and the evaluation of the
functions at at least three k-points x0, x1, x∞ of X are known. Then from these
data the structure field of k(X0) can be recovered.
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In order to conclude the proof of Tamagawa’s Theorem above over finite
fields, we remark that all closed points of X0 were recovered from π1(X) via the
decomposition groups above them. In particular, such a point lies in X if and
only if the inertia group above such a point is trivial. This gives the recipe to
identify X inside X0. Thus we finally have a group theoretic recipe for recovering
the curve X → k from its fundamental group π1(X).

Finally, the functoriality of the recipe for recovering X shows that any isomor-
phism of fundamental groups Φ : π1(X) → π1(Y ) is defined by an isomorphism
of function fields φ : k(X0) → k(Y0) which induces an isomorphism of schemes
X → Y . The uniqueness of φ up to Frobenius twists follows the same pattern as
in the birational case, but using the fact that the center of π1(X) is trivial in the
cases under discussion.

II) Mochizuki’s results for hyperbolic curves in characteristic zero

In this subsection we discuss briefly some of Mochizuki’s results concerning
hyperbolic curves in characteristic zero.

The first such result was announced by Mochizuki shortly after Tamagawa’s
Theorem discussed above. The result deals with hyperbolic curves over finitely
generated fields of characteristic zero, and more or less extends the correspond-
ing result by Tamagawa to complete hyperbolic curves. The proof relies heavily
on Tamagawa’s Theorem, but Mochizuki’s strategy for the proof goes beyond
Tamagawa’s approach.

Theorem (See Mochizuki [Mzk1]).
The hyperbolic curves over finitely generated fields of characteristic zero are

anabelian. Further, both the relative and the absolute Isom-form of the anabelian
Conjecture for hyperbolic curves over such fields hold.

We indicate briefly the idea of the proof. Let X → k be a hyperbolic curve
over a finitely generated field k of characteristic zero. Proceeding as Tamagawa

did in the case of affine hyperbolic curves, we can recover the exact sequence

1→ π1(X)→ π1(X)→ Gk → 1,

and also the projection π1(X) → π1(X0), where X0 is the completion of X. In
this way one reduces the question to the case of complete hyperbolic curves.

Thus let X → k be a complete hyperbolic curve over some finitely generated
field k of characteristic zero. The idea of Mochizuki is to reduce the problem
in this case to the πt

1-case of affine hyperbolic curves over finite fields and then
use Tamagawa’s Theorem for affine hyperbolic curves over finite fields. In order
to do that, Mochizuki uses log-schemes and log-fundamental groups. In essence
one does the following: In the context above, recall the setting explained in the
“standard reduction technique”. In the notations from there, let vs be a discrete
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valuation of k with valuation ring Rs dominating some closed point s ∈ S such
that the residue field equals κ(s), thus finite. Let p = char(κ(s)), thus κ(s) is
finite over Fp. In the case X → k has good reduction at s —and this is the case
on a Zariski open subset of S, in particular if p is big enough, the special fiber
Xs → κ(s) of XRs → Rs at s is a complete hyperbolic curve. Thus one cannot
apply and use Tamagawa’s Theorem in order to recover Xs → κ(s) from πt

1(Xs)
(even if the projection πt

1(Xs) → Gκv is known). Nevertheless, the fact that X
has good reduction at v is encoded in the canonical exact sequence π1(X)→ Gk

endowed with a decomposition group Zvs ⊂ Gk above vs by Oda’s Criterion for
good reduction of hyperbolic complete curves.

In the above notations, suppose that XRs → Rs is smooth. Let us consider
a finite Galois t́ale cover Y (p) → X such that its geometric part Y (p) → X is
the maximal p-elementary Abelian cover of X. After enlarging k, we eventually
can suppose that Y (p) → k is geometrically connected, and that AutX(Y (p)) is
defined over k. Under this hypothesis one has:

deg(Y (p) → X) = p2g
X (gX is the genus of X).

On the other hand, considering the maximal geometric p-elementary Abelian
cover Z(p) → Xs, and recalling that rXs

≤ gXs
= gX denotes the Hasse–Witt

invariant of Xs, we see that

deg(Z(p) → Xs) = pr
Xv ≤ pg

X .

We conclude that Y (p) → k does not have potentially good reduction. Moreover,
for p getting larger, the special fiber Y (p)

s → κs of the stable model of Y (p) → k

(which is defined over some finite extension l|k and corresponding extensions Rw

of Rvs , etc.) has “many” double points. We set Y (p)
s = ∪iYi, where Yi are the

irreducible components of Ys. For each Yi, let Ui be the smooth part of Ys inside
Yi. Since Ys is connected, it follows that each Ui → κw is an affine hyperbolic
curve over the finite field κw.

Now it is part of the theory of log-fundamental groups, that the tame fun-
damental group πt

1(Ui) can be recovered from π1(Y (p)) → Gl. Thus applying
Tamagawa’s Theorem for the πt

1-case of affine hyperbolic curves over finite fields,
we can recover Ui → κw in a functorial way from πt

1(Ui). And finally, one can
recover Y (p)

s → κw, and Xs → κv as well.

One concludes by using the standard reduction/globalization techniques.

The result above by Mochizuki is the precursor of his much stronger result
concerning hyperbolic curves over sub-p-adic fields as explained below. First let
us introduce Mochizuki’s notations. A sub-p-adic field k is any field which can be
embedded into some function field over Qp. Let k be a sub-p-adic field, and let
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X → k be a geometrically connected scheme over k. Consider the exact sequence
of fundamental groups

1→ π1(X)→ π1(X)→ Gk → 1.

We denote ∆X := πp(X) the maximal pro-p quotient of π1(X), and remark that
the kernel N of the map π1(X) → ∆(X) is a characteristic subgroup of π1(X),
i.e., it is invariant under all automorphisms of π1(X). In particular, N is invariant
under the conjugation in π1(X). Thus N is a normal subgroup in π1(X) too. We
will set ΠX = π1(X)/N . Therefore, the above exact sequence gives rise to a
canonical exact sequence of fundamental groups:

1→ ∆X = πp
1(X)→ ΠX = π1(X)/N → Gk → 1.

With these notations, the main result by Mochizuki can be stated as follows:

Theorem (See Mochizuki [Mzk3]).
Let Y → k be a geometrically integral hyperbolic curve over a sub-p-adic field.

Then Y can be recovered from the canonical projection ΠY → Gk.

Moreover, this recipe is functorial in such a way that it implies the following
Hom-form of the relative anabelian Conjecture for curves: Let X → k be a geomet-
rically integral smooth variety. Then every open Gk-homomorphism ΠX → ΠY is
defined in a functorial way by a unique dominant k-morphism φ : X → Y .

The main tools used by Mochizuki are the p-adic Tate–Hodge Theory and
Faltings’ Theory of almost étale morphisms. The proof is very technical and
difficult to follow for non-experts (maybe even for experts!). I will nevertheless
try to summarize here the main points in the proof (which are though more
intricate and complex, than I might suggest here...). I should also mention that
in this case we do not have a recipe to recover X → k from πX → Gk, which
is as explicit as in the previous cases. The main difficulty in this respect lies in
not having an as explicit local theory as in the previous case. In particular and
unfortunately, until now we do not have a way of describing X(k), i.e., we do not
have any kind of an answer to the Section Conjecture so far.

Coming back to the proof of the Theorem above, the first observation is that
via more or less standard specialization techniques, the problem is reduced to
the following case: k|Qp is a finite extension, and X → k is a smooth hyperbolic
curve, and Y → k is a complete hyperbolic curve. And finally replacing X by the
étale cover classified by the image of Φ, one can suppose that Φ is surjective.

One should remark that a further reduction step to the case where X is com-
plete is not at all trivial, and it is one of the facts which complicates things a
lot. Naturally, by using the canonical projection Πk(X) → ΠX , one might re-
formulate the problem above correspondingly, and ask whether every surjective
Gk-morphism Φ : Πk(X) → ΠY is defined by a unique morphism of function
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fields k(Y ) ↪→ k(X) over k. We will nevertheless take this last reduction step for
granted, and only outline the proof of the following:

Let X → k and Y → k be complete hyperbolic curves, where k|Qp is finite.
Then every surjective Gk-homomorphism Φ : ΠX → ΠY is defined by a unique
k-morphism φ : X → Y in a functorial way.

The Local Theory in this case is as follows: As mentioned above, one has
no clue at all how to recover X(k) from the given data ΠX → Gk, and the
situation is not better if we replace ΠX by the full étale fundamental group
π1(X). Nevertheless, Mochizuki develops another kind of a “Local Theory”,
which fortunately does the right job for the problem. The kind of points one can
recover are as follows: Let R be the valuation ring of k, and let XR → R be a
semi-stable model of X → k (such models exist after enlarging the base field k).
Let (Xi)i be the irreducible components of the special fiber Xs → κ of XR → R.
If ηi ∈ XR is the generic point of Xi, then the local ring OXR,ηi is a discrete
valuation ring of k(X) dominating R, and the residue field κ(ηi) is the function
field of Xi → κ. Let us call such points ηi arithmetical points of X (arising for
the several models XR).

Next let (L, v) be a discrete complete valued field over k such that the valua-
tion of L prolongs the p-adic valuation of k, and the residue field Lv | kv is a func-
tion field in one variable. Remark that the completion of k(X) with respect to the
valuation v := vηi defined by an arithmetical point is actually such a discrete com-
plete valued field over k. We denote for short HΩ

L = H1(GLka , ÔLa(1))/(torsion),
where ÔLa is the completion of the valuation ring of La (similar to the completion
Cp of the algebraic closure of Qa

p).

We will say that a Gk-homomorphism ΦX : GL → ΠX is non-degenerate, if
the induced map on the p-adic cohomology

H1(∆X ,Zp(1))
inflΦX−→ H1(GL, ÔLa(1)) can−→HΩ

L

is non-trivial. Now the main technical points of the proof are as follows:

1) In the context above, let Φ : ΠX → ΠY be an open Gk-homomorphism.
Then there exists a non-degenerate Gk-homomorphism φL : GL → ΠX such that
the composition ΦY := Φ ◦ ΦX is a non-degenerate homomorphism. Thinking of
the Local Theory from the birational case, this assertion here corresponds more
or less to the characterization of arithmetical Zariski prime divisors.

2) Every non-degenerate Gk-morphism ΦX : GL → ΠX as above is of geomet-
rical nature: Given such a ΦX , there exists a unique L-rational point ψΦX

: L→ X

defining ΦX in a functorial way.

3) In particular, for Φ and ΦX as at 1) above, there exist L-rational points
ψΦX

: L→ X and ψΦY
: L→ Y defining the non-degenerate morphisms ΦX and

ΦY = Φ ◦ ΦX in a functorial way.

24



Finally, Mochizuki’s Global Theory is a very nice application of the p-adic
Hodge–Tate Theory and of Faltings’ Theory of almost étale morphisms. The idea
is as follows:

First, by the p-adic Hodge–Tate Theory, the sheaf of global differentials on
X, say DX := H0(X,ΩX), can be recovered from the action of Gk on the Cp-
twists with the p-adic cohomology Hi

et(X,Zp(j)) of X. On the other hand, since
X is a complete hyperbolic curve over a field of characteristic zero, thus 6= p, the
p-adic cohomology Hi

et(X,Zp(j)) is the same as the Galois cohomology of ∆X ,
thus known.

Let us denote Di
X = H0(X,Ω⊗i

X ), and let Ri
X := ker(D⊗i

X → Di
X) be the space

of ith homogeneous relations in Di
X . If X is not a hyperelliptic curve (what we

can suppose after replacing X by a properly chosen étale cover whose geometric
part is p-elementary Abelian), then the system of all the Di

X completely defines
X. Equivalently, the system of all the data Ri

X ⊂ D
⊗i
X completely defines X.

Second, let Φ : ΠX → ΠY be a surjective Gk-homomorphism. Then Φ induces
in a functorial way a morphism of k vector spaces ıΦ : DY → DX ; thus also
morphisms of k vector space ı⊗i

Φ : D⊗i
Y → D⊗i

X for each i ≥ 1. And by the
general non-sense concerning the canonical embedding, if each ı⊗i

Φ “respects the
relations”, i.e., it maps Ri

Y into Ri
X , then ıΦ is defined by some dominant k-

morphism φ : X → Y in the canonical way.

Finally, in order to check that ıΦ does indeed respect the relations, one uses
the Local Theory and Faltings’ Theory of almost étale morphisms: Choose a
non-degenerate morphism ΦX : GL → ΠX as at 3) above. Let ΩL denote the p-
adically continuous k-differentials of L, and Ωi

L be its powers. Since ψΦX
is a non-

degenerate point of X, the differential dX := d(ΦX
) : DX → ΩL of ΦX

: L→ X

and its powers di
X : Di

X ↪→ Ωi
L are embeddings. Thus in order to check that

ıΦ respects the relations, it is sufficient to check that this is the case for the
composition

ı⊗i
L : D⊗i

Y → D⊗i
X ↪→ Ω⊗i

L .

On the other hand, the composition of the map ı⊗i
L with Ω⊗i

L → Ωi
L is exactly

the canonical map D⊗i
Y → Di

Y ↪→ Ωi
L defined via the non-degenerate morphism

ΦY = Φ ◦ ΦX and the resulting point ψΦY
: L→ ΠY . This concludes the proof.

Remarks.

1) First, Theorem A′ of Mochizuki [Mzk3] shows that also truncated-ΠX ver-
sions of the assertion of the main result above are valid. One can namely replace
∆X by its central series quotient ∆(n)

X , and consequently ΠX by the corresponding
quotient Π(n)

X which fits into the exact sequence

1→ ∆(n)
X → Π(n)

X → Gk → 1.
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Let n ≥ 3. Then given an open Gk-homomorphism Φ(n+2) : Π(n+2)
Y → Π(n+2)

X

there exists a unique dominant k-homomorphism Y → X such that the canonical
open morphism Π(n)

Y → Π(n)
X induced by φ coincides with Φ(n) on Π(n)

Y .

2) Using specializations techniques, Mochizuki proves the relative Hom-form
of the birational anabelian Conjecture for finitely generated fields over sub-p-adic
fields k as follows:

Theorem (Mochizuki [Mzk3], Theorem B).
Let K|k, L|k be regular function fields. Then every open Gk-homomorphism

Φ : GK → GL is defined functorially by a unique k-embedding of fields L→ K.

I would like to remark that using techniques developed in order to prove a
pro-p form of the birational conjecture, one can sharpen the above result and
show the following: Every open Πk-homomorphism Φ : ΠK → ΠL is defined by a
unique k-embedding L→ K in a functorial way.

3) Mochizuki also shows that hyperbolically fibered surfaces are anabelian.
And moreover, the Isom-form of an anabelian Conjecture for fibered surfaces
is true. Here, a hyperbolically fibered surface X is the complement of an étale
divisor in a smooth proper family X̃ → X1 of hyperbolic complete curves over a
hyperbolic base curve X1. The result is:

Theorem (Mochizuki [Mzk3], Theorem D).
Let Y → k and X → k be geometrically integral hyperbolically fibered surfaces

over a sub-p-adic field k. Then every Gk-isomorphism Φ : π1(Y ) → π1(X) is
defined by a unique k-isomorphism φ : Y → X in a functorial way.

Note that in the Theorem above the full fundamental group π1 is needed. It is
maybe useful to remark that a naive Hom-form of the above Theorem is not true.
Indeed, let k be an infinite base field. Then using general hyperplane arguments,
one can show that for every smooth quasi-projective k-variety X ⊆ PN , there
exist smooth k-curves Y ⊆ X obtained from X → k by intersections with general
hyperplanes such that the canonical map πt

1(Y ) → πt
1(X) is surjective. In a

second step, one can realize πt
1(Y ) in many ways as quotients of fundamental

groups πt
1(Z)→ πt

1(Y ) for several smooth k-varieties (which can be chosen to be
projective, if X is complete), e.g., Z = Y × . . .× Y finitely many times. Finally,
the composition

πt
1(Z)→ πt

1(Y )→ πt
1(X)

is a surjective Gk-morphism, but by its construction, it does not originate from
a dominant k-rational map.

III) Jakob Stix’s results concerning hyperbolic curves in positive characteristic

The results of Stix deal with hyperbolic non-constant curves over finitely
generated infinite fields k of positive characteristic (but apply as well to such
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fields of characteristic zero, where the results are already known). Recall that
given a curve X → k with char(k) = p > 0, one says that X is potentially
isotrivial, if there exists a finite étale cover X ′ → X such that X ′ is defined over
a finite field. One can show that if X is hyperbolic, then X is potentially isotrivial
if and only if there exists a finite field extension k′|k such that the base change
X ′ = X ×k k

′ is defined over a finite field. Further, recall that for a curve X → k

as above, we denote by X i → ki the maximal purely inseparable cover of X → k.
And for every integer n we denote by X i(n)→ ki the relative Frobenius n-twist.

Theorem (Stix [St1], [St2]).
Let X → k be a non potentially isotrivial hyperbolic curve over a finitely

generated infinite field k with char(k) = p > 0. Then one can recover X i → ki

from πt
1(X)→ Gk in a functorial way.

Moreover, the relative Isom-form of the anabelian Conjecture for hyperbolic
curves over k is true in the following sense: Let Y → k be some hyperbolic curve,
and let a Gk-isomorphism Φ : πt

1(X) → πt
1(Y ) be given. Then there exists a

unique n and a ki-isomorphism φ : X i(n)→ Y i defining Φ.

The strategy of proof is as follows:
Let k be a finitely generated infinite field, and X → k a hyperbolic curve over

k. In the notations from the “standard reduction technique”, let XS → S be a
smooth surjective family of hyperbolic curves whose generic fiber is X → k. The
idea is as follows:

Case 1. X → k is an affine hyperbolic curve.
By shrinking S if necessary, we can suppose that X → k has good reduction

at all closed points s ∈ S. From πt
1(X) → Gk one recovers the local projections

Φs : πt
1(Xs) → Gκ(s) for all closed points s ∈ S. By Tamagawa’s Theorem,

we can recover the isomorphy type of X i
s → κ(s) up to Frobenius twists. In

particular, let Φ : πt
1(X) → πt

1(Y ) be a Gk-isomorphism, where Y → k is some
hyperbolic curve over k. By the “standard specialization technique”, we obtain
κ(s)-isomorphisms of some relative Frobenius twists of the special fibers, say
φs : X i

s(ns) → Y i
s defining Φs. Unfortunately, the usual globalization techniques

work only under the hypothesis the Frobenius twists ns are constant, say equal to
n, on a non-empty open of S (and then they turn to be constant on the whole S).
If this is the case, then the local isomorphisms φs originate indeed from a unique
global ki-isomorphism φ : X i(n) → Y i, which defines the given Gk-isomorphism
Φ : πt

1(X)→ πt
1(X).

Here is the way Stix shows that the exponents ns are indeed constant: First,
by replacing X by a properly chosen tame étale cover, we can suppose that the
smooth completion X0 of X is hyperbolic too. Next we fix some m > 2 relatively
prime to p = char(k), and replace k by its finite extension over which the m-
torsion of JacX0 becomes rational. And choose an m-level structure on X0 by
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fixing an isomorphism

ϕX,m : mJacX0 = πab
1 (X0)/m→ (Z/m)2g

Then X0 endowed with ϕX,m is classified by a k-rational point ψX : k →Mg[m].
Moreover, using the “standard reduction technique”, the level structure ϕX,m

gives rise via the specialization homomorphisms sps : π1(X0)→ π1(X0,s) canon-
ically to level structures

ϕXs,m : mJacX0,s = πab
1 (X0,s)/m→ (Z/m)2g.

And this happens in such a way that ψX : k → Mg[m] defined above becomes
the generic fiber of a morphism ψXS

: S → Mg[m] whose special fibers classify
the curves Xs → κ(s) endowed with the level structures ϕXs,m.

Now let us come back to the Gk-isomorphism Φ : πt
1(X) → πt

1(Y ). Clearly,
Φ transports the m-level structure ϕX,m of X0 to an m-level structure ϕY,m for
Y0. And the local Gκ(s)-isomorphisms Φs : πt

1(Xs) → πt
1(Ys) transport the m-

level structures ϕXs,m to m-level structures ϕYs,m which are compatible with the
specialization morphisms sps : π1(Y 0)→ π1(Y 0,s).

Now let us suppose that there exist some exponents ns and κ(s)-isomorphisms
φs : X i

s(ns)→ Y i
s which define the Gκ-isomorphisms Φs : πt

1(Xs)→ πt
1(Ys). Then

φs prolongs to an κ(s)-isomorphism φ0,s : X0,s(ns) → Y0,s. Next remark that
X0,s and its relative Frobenius twists endowed with the same m-level structure
ϕXs,m = ϕXs(ns),m factor through the same closed point ofMg[m]. Thus we have:
The classifying morphisms ψXS

: S →Mg[n] for X0,S and ψYS
: S →Mg[n] for

Y0,S defined above coincide (topologically) on the closed points s ∈ S.

In order to conclude, Stix proves the following:

Proposition (Stix [St1]).
Let S and M be irreducible Z-varieties. Let f, g : S →M be two morphisms

which coincide topologically on the closed points of S. Suppose that f 6= g. Then
S is defined over Fp for some p, and f and g differ by a power of Frobenius,
which is unique if f is not constant.

Thus applying the Proposition above we conclude that the classifying mor-
phisms φX and φY differ by a power Frobn of Frobenius. In particular, fiber wise
the same is the case. From this one finally deduces that Φ : πt

1(X) → πt
1(Y ) is

defined by some k-isomorphisms φ : X i(n)→ Y i for some integer n.

This completes the proof of the case when X is an affine hyperbolic curve.

Case 2) X → k is a complete hyperbolic curve.

Let us try to mimic Mochizuki’s strategy from the case of complete hy-
perbolic curves over finitely generated fields of characteristic zero. Then we run
immediately into the following difficulty: If k has positive characteristic p > 0,
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there is no obvious reason that some finite properly chosen étale (Galois) covers
X ′ → X have bad reduction at points s ∈ S where X has good reduction. Note
that the “trick” used by Mochizuki in [Mzk2] in the case char(k) = 0 does
definitely not work in positive characteristic. (This follows from Grothendieck’s
Specialization Theorem: Let XRs → Rs be a complete smooth curve, and let
X ′ → X be an étale Galois cover whose geometric part has degree prime to p.
Then X ′ has potentially good reduction.)

In order to avoid this difficulty, one can nevertheless use the Raynaud, Pop–
Saidi, Tamagawa Theorem, see Part III) of these notes. A consequence of that
result is the following: Let a closed point s ∈ S be given. Then there exists a
finite étale cover X(s) → X whose geometric part is a cyclic étale cover of X of
degree prime to p having the property: Any finite étale cover X ′ → X(s) whose
geometric part factors through the maximal p-elementary étale cover of X(s) does
not have potentially good reduction. With this input, Stix uses the theory of log-
étale fundamental groups in order to conclude the proof in the same style as
Mochizuki [Mzk1], but using the methods developed to treat the case of affine
hyperbolic curves.

PART III: Beyond Grothendieck’s anabelian Geometry

It is/was a widespread believe that the reason for the existence of anabelian
schemes is strong interaction between the arithmetic and a rich algebraic funda-
mental group, and that this interaction makes étale fundamental groups so rigid,
that the only way isomorphisms, respectively open homomorphisms, can occur
is the geometrical one. (To say so, morphisms between étale fundamental groups
which do not have a reason to exist, do not exist indeed...)

On the other hand, some developments from the 1990’s showed evidence for
very strong anabelian phenomena for curves and higher dimensional varieties over
algebraically closed fields, thus in a total absence of a Galois action of the base
field. We mention here the following:

a) Bogomolov’s Program (see [Bo])
Let ` be a fixed rational prime number. For algebraically closed base fields

k of characteristic 6= `, we consider integral k-varieties X → k, with function
field k(X)|k. It turns out that there is a major difference between the cases
dim(X) = 1 and dim(X) > 1. Indeed, if dim(X) = 1, then the absolute Galois
group Gk(X) is profinite free on |k| generators. This is the so called Geometric case
of a Conjecture of Shafarevich, proved by Harbater [Ha2], and Pop [Po]. On
the other hand, if d = dim(X) > 1, then Gk(X) is very complicated (in particular,
having cd`Gk(X) = d, etc.).

The guess of Bogomolov is that in the latter case, i.e., if dim(X) > 1, the
Galois group Gk(X) should encode the birational class of X up to pure inseparable
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covers and Frobenius twists. More precisely, Bogomolov proposes and gives
strong evidence for the following: In the context above, let GK(`) be the maximal
pro-` quotient of GK , i.e., GK(`) is the Galois group of the maximal Galois pro-
` sub-extension K(`) of Ks|K. Further let G(n)

K denote the nth factor in the
central series of GK(`), and by K(n) the corresponding fixed fields inside K(`). In
particular, K(1) = K`,ab is the maximal pro-` Abelian extension of K, and K(2) is
the maximal central extension of K`,ab inside K(`). Now Bogomolov claims and
gives evidence for the fact that the isomorphy type of the function field k(X)i|k is
encoded in the second factor group PGalcK := GK(`)/G(2)

K . The starting point in
this development was Bogomolov’s observation that if a subgroup Γ ∼= Z` ×Z`

of G`,ab
K which can be lifted to a commutative subgroup of PGalcK must contain

inertia elements for some non-trivial valuation v on K.

b) Tamagawa’s Theorem concerning P1
k0
\{0, 1,∞, x1, . . . , xn}

In the mid 1990’s Tamagawa gave evidence for the fact that some curves
over the algebraic closure k0 = Fp are weakly anabelian, i.e., their isomorphy
type as a scheme can be recovered from π1 or even πt

1. The first precursor of this
fact is Tamagawa’s result that given a smooth curve X → k, the type (g, r) of
the curve is encoded in the algebraic fundamental group π1(X); and moreover,
the canonical projections π1(X)→ πt

1(X)→ π1(X0) are encoded in the algebraic
fundamental group of X. This answered a question raised by Harbater. And
finally, Tamagawa [T2] showed the following:

Let U = P1
k0
\{0, 1,∞, x1, . . . , xn} be an affine open. Then the isomorphy type

of U as a scheme can be recovered from πt
1(U). Moreover, if X is any other

curve over some algebraically closed field k, and π1(X) ∼= π1(U), then k = k0,
and X ∼= U as schemes.

The kind of results above show that one can expect anabelian phenomena over
algebraically closed base fields, thus in a complete absence of arithmetical Galois
action. This kind of anabelian phenomena go beyond Grothendieck’s anabelian
Geometry. Here is a short list of the kind of such anabelian results.

A) Small Galois groups and valuations

Let ` be a fixed prime number. We consider fields K of characteristic 6= `,
such that µ` ⊂ K. We denote by K(`) the maximal Galois pro-` extension of K
in some fixed algebraic closure Ka of K, and denote by GK(`) the Galois group
of K(`)|K. In order to avoid complications arising from orderings in case ` = 2,
we will also suppose that µ4 ⊂ K if ` = 2.

In the above context, let v be a non-trivial valuation of K(`) such that value
group vK is not `-divisible and the residue field Kv has characteristic 6= `. Let
Vv ⊆ Tv ⊆ Zv be respectively the ramification, the inertia, and the decomposition
groups of v in GK(`). Then by the Hilbert decomposition theory for valuations
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one has, see e.g., [BOU]: Vv = {1}, as char(Kv) 6= `. Thus Tv = Tv/Vv is an
Abelian pro-` group. Further, K(`)v = (Kv)(`), and one has the canonical exact
sequence:

1→ Tv → Zv → GKv(`)→ 1

Finally, vK(`) is the `-divisible hull of vK. And denoting by v̂K the `-adic com-
pletion of vK, there is an isomorphism of GKv-modules Tv

∼= Hom(v̂K,T`) where
T` = lim←−

m
µ`m is the Tate module of Kv. This reduces the problem of describing

Zv to that of describing Kv(`). But the essential observation here is that Tv is a
non-trivial Abelian normal subgroup of Zv.

The following result is based on work by Ware [W] if ` = 2, and Koenigs-

mann [Ko1] if ` 6= 2, see also Efrat [Ef1], [Ef2]. It is the best possible converse
to the above description of Zv:

Theorem (Engler–Koenigsmann [E–K]).
In the above notations let Z ⊂ GK(`) be a closed non-procyclic subgroup

having a non-trivial Abelian normal subgroup T . Then there exists a valuation w
of K(`) with the following properties:

(i) Z ⊂ Zw and T ⊂ Tw.

(ii) The residue field Kw has char(Kw) 6= `.

The proof of the Theorem above is based an a fine analysis of the multiplica-
tive structure of fields with very small pro-` Galois group. We will say namely
that K has a very small pro-` Galois group, if K(`) is non pro-cyclic, but fits
into an exact sequence of the form 0→ Z` → K(`)→ Z` → 0. In such a case one
simply can write down the valuation ring of a valuation w on K satisfying the
properties (i), (ii) above, see loc.cit.. The rest is just valuation theory techniques.

The above assertion concerning fields with very small pro-` Galois group has
a parallel assertion by Bogomolov which was suggested in [Bo], and finally
proved by Bogomolov–Tschinkel. The assertion is as follows:

Theorem (Bogomolov–Tschinkel [B–T1]).
Suppose that K contains an algebraic closure k of its prime field. Suppose that

Γ ⊆ G`,ab
K is a non-procyclic closed subgroup which can be lifted to an Abelian

subgroup of PGalc(K). Then there exists a valuation w of K and a non-trivial
subgroup T ⊂ Γ such that denoting by Tw the inertia group of w in G`,ab

K the
following hold:

(i) T ⊆ Tw

(ii) The residue field Kw has char(Kw) 6= `.

The proof relies on a very ingenious idea of Bogomolov to compare maps
between affine geometries and projective geometries. The two kind of geometries
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arise as follows: First, by Kummer Theory one has an canonical map

K×
−→Homcont(G

`,ab
K ,Z`)

which is trivial on k×, as k is algebraically. This allows us to interpret  as a map
from the projectivization K×/k× of the k-vector space (K,+) to the “affine”
space on the right, which is Homcont(G

`,ab
K ,Z`), or even Homcont(G

`,ab
K ,Fp). And

in particular, if G`,ab
K is very small, then on the right we do really have an affine

geometry. Finally, since such maps between projective and affine geometries are of
very special shape, Bogomolov–Tschinkel show that a liftable non pro-cyclic
subgroup Γ of G`,ab

K must contain an element σ which —by duality— defines a
flag function on K×. Strictly speaking, this means that σ is an inertia element
to a valuation w with the claimed properties.

It is interesting to remark that as a by-product of the theory of very small
pro-` Galois groups, one obtains a p-adic analog of the Artin–Schreier Theorem
for the Galois characterization of the real closed fields. The result is:

Theorem (See Pop [P0], Koenigsmann [Ko1], Efrat [Ef1]).
Let K be a field having GK isomorphic to some open subgroup of GQp. Then

K is p-adically closed, i.e., K is Henselian with respect to a valuation v having
divisible value group, and residue field Kv contained and relatively algebraically
closed in some finite extension k|Qp of Qp.

An interesting consequence of the Theorem above is a positive result of the
birational Section Conjecture over the p-adics as follows:

Theorem (See Pop [P0], Koenigsmann [Ko3]).
Let k|Qp be a finite extension, and K|k an arbitrary regular field extension.

Then for every section s : Gk → GK of the canonical projection prK : GK → Gk

one has: The fixed field K(s) of s(Gk) in Ka is p-adically closed. Moreover, if vs

is the valuation of K(s) defining it as a p-adically closed field, then Kvs = k.

In particular, if k = k(X) is the function field of a complete k-variety, then
every section s : Gk → Gk(X) is defined by a k-rational point xs ∈ X(k). The
point xs is exactly the center of vs on the complete k-variety X.

This is so far the best un-conditional result concerning the (birational) Section
Conjecture we have. But it is not at all clear how to “globalize” such p-adic results
in order to get the birational Section Conjecture over number fields.

B) The Raynaud / Pop–Saidi / Tamagawa Theorem

As we have seen at the beginning of Part III, one might/should expect strong
anabelian phenomena for curves (maybe even more general varieties) over al-
gebraically closed fields of positive characteristic. Maybe a good hint in that
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direction is the fact that we do not have a description of the algebraic funda-
mental group of any potentially hyperbolic curve. Indeed, if from the fundamental
group of a curve X we can recover X in a functorial way, then the fundamental
group of X must encode the “moduli” for X, thus an information of a completely
different nature than crude profinite group theory. See Tamagawa [T3], [T4] for
more about this conjectural world.

Now let me explain the content of the announced Theorem. Recall that for a
complete smooth connected curve X of genus g ≥ 2 over a field of characteristic
0 one has π1(X) ∼= Π̂g, thus π1(X) depends only on g. As mentioned above, in
positive characteristic π1(X) is unknown, and it depends on the isomorphy type of
X. By Grothendieck’s Specialization Theorem, π1(X) is a quotient of Γ̂g, thus it
is topologically finitely generated. In particular, π1(X) is completely determined
by its set of their finite quotients. (Terminology: π1(X) is a Pfaffian group.)

LetMg → Fp be the coarse moduli space of proper and smooth curves of genus
g in characteristic p. One knows thatMg is a quasi-projective and geometrically
irreducible variety. And if k is an algebraically closed field of characteristic p,
then Mg(k) is the set of isomorphism classes of curves of genus g over k. For
x ∈ Mg(k) let Cx → k be a curve classified by x, and let x ∈ Mg such that
x : k →Mg factors through x. We set

π1(x) := π1(Cx),

and remark that the structure of π1(x) as a profinite group depends on x only, and
not on the concrete geometric point x ∈ Mg(k) used to define it. In particular,
the fundamental group functor gives rise to a map as follows:

π1 :Mg → G, x→ π1(x).

To finish our preparation we remark that for points x, y ∈ Mg such that x is
a specialization of y, by Grothendieck’s Specialization Theorem there exists a
surjective continuous homomorphism sp : π1(y) → π1(x). In particular, if η is
the generic point of Mg, then Cη is the generic curve of genus g; and every
point x of Mg is a specialization of η. For every x ∈ Mg, there is a surjective
homomorphism spx : π1(η)→ π1(x) which is determined up to Galois-conjugacy
by the choice of the local ring of x in the algebraic closure of κ(η). For every
x ∈ Mg we fix such a map once for all; in particular, if x is a specialization of
y, there exists a specialization homomorphism spy,x : π1(y) → π1(x) such that
spy,x ◦ spy = spx.

Theorem (Raynaud [R2], Pop–Saidi [P–S], Tamagawa [T5]).
For all points s 6= x in Mg with s closed and specialization of x, the special-

ization homomorphism spx,s : π1(x)→ π1(s) is not an isomorphism.
More precisely, there exist cyclic étale covers of Xx of order prime to p, which

do not have good reduction under the specialization x 7→ s.
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As an application one the following answer to a question raised by Harbater:

Corollary. There is no non-empty open subset U ⊂ Mg such that the iso-
morphy type of the geometric fundamental group π1(x) is constant on U .

Concerning the proof of the above Theorem: In the case g = 2 the above
Theorem was proved by Raynaud, by introducing a new kind of theta divisor
(called by now the Raynaud theta divisor). Using this tool, he showed that given a
projective curve X → k0 of genus 2, there exist only finitely many curves X ′ → k0

with π1(X) ∼= π1(X ′), see Raynaud [R2]. Around the same time Pop–Saidi

proposed a way of generalizing Raynaud’s result to all genera, by combining
the theory of Raynaud’s theta divisor with the results by Hrushovski [Hr] on
the geometric case of the Manin-Mumford Conjecture as follows: First suppose
that g = 2. Then for points x0 6= x1 in Mg such that x0 is a specialization of
x1, it turns out that Raynaud’s Result follows from: If x0 is a closed point, then
spx1,x0

is not an isomorphism. Pop–Saidi showed in [P–S] that this is the case
for arbitrary genera g > 1, provide x0 has some special properties, see loc.cit.
Finally, Tamagawa [T5] elaborating on the method proposed in [P–S] showed
that spx1,x0

is not an isomorphism, provided x 6= x0 and x0 is a closed point.

C) Geometric pro-` birational anabelian Geometry

Here I want to mention the new results concerning some progress on Bogo-
molov’s Program mentioned at the beginning of Part III. Recall that for a fixed
prime number `, we denote by GK(`) the Galois group of a maximal pro-` Galois
extension of K. The short spelling out of the story is the following:

Theorem (See Pop [P5]).
Let ` be a fixed prime number. Consider all the function fields K|k with k

algebraic closures of finite fields, char(K) 6= ` and td(K|k) > 1. Then there
exists a group theoretic recipe by which one can recover any K|k from GK(`) in
a functorial way.

Moreover, given a further function field L|l with l an algebraically closed field,
every isomorphism Φ : GK(`) → GL(`) is defined by some field isomorphism
φ : Li → K i, and φ is unique up to Frobenius twists.

I mention right away that Bogomolov–Tschinkel [B–T2] announced a
similar result in the case K = k(X) is the function field of a surface X which has
trivial (Abelian?) fundamental group. Also, their assertion is somewhat different
from the one of the Theorem above, as they deal with the case PGalcK in stead
of GK(`).

The Theorem above is a far reaching extension of Grothendieck’s birational
conjecture in positive characteristic, as it implies the latter one if dim(K) > 1.
Second it implies an “arithmetic by pro-`” form of Grothendieck’s birational
anabelian Conjecture.
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A general strategy/approach in order to prove birational pro-` anabelian type
results was described in Part II of Pop [P4], where the arithmetic by pro-` case
in positive characteristic was considered. Among other things, loc.cit. contains
an “abstract Galois theory” (similar to the abstract class field theory), which
under certain hypothesis is shown to originate from geometry. Such an approach
(in the context of finitely generated fields) was suggested to me by Deligne

(private communication). The new tools needed/developed in the [P5] is a local
theory similar to the one in [P1], by using the results by Koenigsmann [Ko1],
Efrat [Ef2], Ware [Wa], etc., mentioned above. (Naturally, this could be done
using Bogomolov–Tschinkel [B–T1] too.) And a quite surprising new but very
basic fact which is the following: The set of all the inertia elements in GK(`)
is topologically closed in GK(`). And further, the divisorial inertia elements are
dense in the set of all the inertia elements. This is in contrast to the behavior of
the set of all the Frobenius elements of finitely generated fields, which is dense in
the absolute Galois group of such fields.

Some major open Questions/Problems:

Q1: Let k be an algebraically closed field of positive characteristic. Can one
recover td(k) from π1(A1

k)?

Q2: For k as above, give a non tautological description of of π1(A1
k).

Q3: For k as above, give a non tautological description of π1(X) and/or πt
1(X)

for some hyperbolic curve X → k.

Q4: Give an algebraic proof of the fact that π1(P1
C\{0, 1,∞}) is generated by

inertia elements c0, c1, c∞ over 0, 1,∞ with a single relation c0c1c∞ = 1.

Q5: Give a proof of the Hom-form of Grothendieck’s birational anabelian
Conjecture in positive characteristic.

Q6: Prove the Isom-form and/or the Hom-form of the anabelian Conjecture
for curves over finite fields.

Q7: Let x1 6= x0 in Mg → Fp be such that x0 is a specialization of x1. Show
that spx1x0

: π1(x1)→ π1(x0) is not an isomorphism.

Q8: Prove the Section Conjecture, say over number fields and/or p-adic fields...
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