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EXAMPLES (1)

Diophantine equation: system of polynomial equations tedieed in
Integers rational numbersor other number rings.

e Fermat’s Last Theorem (FLT): in Z, 2™ + y™ = 2™ with n > 3 implies
xyz = 0. This gave the impetus falgebraic number theolyy Kummey,
Dirichlet, .... Solved by these methods up to large values (#everal
million). ThenFaltings’sresult on rational points on higher genus curves
proved that foifixed n, only finite number of (coprime) solutions. But
finally completely solved usinglliptic curves modular formsandGalois
representationsy Ribet, Wiles, andTaylor—Wiles The method of solution
IS more important than FLT itself.



EXAMPLES (II)

e Catalan’s conjecture if m andn are at leas®2, nonzero solutions of

™ — y™ =1 come from3? — 23 = 1. Until recently, same status as FLT:
attacks using algebraic number theory solved many cases Hdakertype
methods were used Byjdemanto show that the total number of
(m,n,z,y) is finite. Finally completely solved blylihailescuin 2001,
usingonly the theory ofcyclotomic fields but rather deep result$ljaine’s
theoren), quite a surprise. Proof later simplified Bylu andLenstra



EXAMPLES (1I)

e The congruent number problem(Diophantus4th century A.D.). Find

all integersn equal to the area oflaythagorean triang)e.e. with all sides
rational (examplé3, 4,5) givesn = 6). Easy: equivalent to the existence of
rationalsolutions ofy? = 22 — n?z with y # 0. Again, three stages. Until
the 1970’s, several hundred values solved. Then using the
Birch—Swinnerton Dyer conjecture (BS[Jpossible to determine
conjecturallybut analyticallyif n congruent or not. Final (but not ultimate)
step: a theorem ofunnellin 1980 giving an immediate criterion for
congruent numbers, usimgodular forms of half-integral weighbut still
modulo a weak form of BSD.



TooLs (I)

Almost as many methods to solve Diophantine equations astiens.
Attempt at classification:

e Local methods: the use op-adic fields, in an elementary way
(congruences modulo powersgf or less elementarys{rassmann’sr

Welierstrass'sheoremp-adic power seried;lerbrand’sandSkolem’s
method).

e Factorization over Z. Not a very powerful method, but sometimes gives
spectacular result§\(endt’s criterionfor the first case of Fermat’s last
theoremCassels’'sesults onCatalan’s equatign



TooLs(l1)

e Factorization over number fields i.e., global methods. This was in fact
the motivationfor the introduction of number fields in order to attack
Fermat’s last theorem (FLTEven though very classical, still one of the
most powerful methods, with numerous applications andesses.

e Diophantine approximation methods. This can come in many different
guises, from the simplest such@snge’s methodo much more
sophisticated ones such &sker-type methods

e Modular methods, based on the work dRibet, Wiles, andTaylor—Wiles
whose first and foremost success is the complete solutiohgfifeit which
has had many applications to other problems.



TooLs (I)

In addition, if the set of solutions has a well-understetdcture in many
cases one caronstruct algorithmicallghis set of solutions, and in
particularonesolution. Examples are:

e The Pell-Fermat equationz? — Dy? = +1, and more generallgorm
equationsV g ,g(a) = m, where the magical algorithm is based on
continued fractionandShanks’s infrastructure

e Elliptic curves of rank 1 overQ, where the magical algorithm is based
on the construction dfleegner pointsand in particular of the theory of
complex multiplication



INTRODUCTION TOLOCAL METHODS(I)

Examples of naive use:

e The equationz? + y? = 3z2. Dividing by the square of the GCD, we
may assume andy coprime. Then:? andy? are congruent t6 or 1
modulo3, but not bothD, hencer? + y? = 1 (mod 3), a contradiction.

o FLT | for exponent 3. This is the equation? + 32 = 23 with 3 { zyz.
We workmodulo3?: since a cube is congruent@amr +1 modulo?9, if
3 1 2y we haver® +y° = —2, 0, or2 modulo9, which is impossible if} 1 z.



INTRODUCTION TOLOCAL METHODS (II)

In general need properties of the fi€ld of p-adic numberand ring of
integersZ,. Reminder:

e A homogeneouequation with integer coefficients has a nontrivial
solution modulg™ for all n > 0 if and only if it has a nontrivial solution in
Z, (or in Q, by homogeneity).

e There Is a canonical integer-valued valuatigron Q;: if = € Q then

v, () is the unique integer such thatp®»(*) can be written as a rational
number with denominator and numerator not divisiblepb¥t is
ultrametric v, (z + y) > min(v,(z), v,(y)).

e Elements ofQ, such that, (=) > 0 arep-adic integersthey form alocal
ring Z,, with maximal idealpZ,. Invertible elements df,,, calledp-adic
units, arex such that, (z) = 0. If x € Q, canonical decomposition

z = p¥»(*)y with y ap-adic unit.



INTRODUCTION TOLOCAL METHODS (1)

o If a € Qissuchthat,(a) > 0andifv,(x) > 1 then the power series
(1 + z)® converges. I, (a) < 0 the power series converges for

vp(x) > |vy(a)| + 1 whenp > 3, andv, () > |v,(a)| + 2 whenp = 2. It
converges to its “expected” value, for instanceifc Z \ {0} then

y = (14 2)Y/™ satisfiegy™ = 1 + z.

e Hensel's lemmdor Newton’s metho)l Special case: if (X) € Q,|X]
anda € Q, satisfies,(f(«)) > 1 andv,(f'(«)) = 0. There exists

a* € Q, such thatf(a*) = 0 andv,(a* — «) > 1, anda™ easily computed
by Newton’s iteration.

Testing forlocal solubilityis usuallyeasyandalgorithmic



LoCcAL METHODS. THE FERMAT QUARTICS (1)

These are the equations

2t ot = et

where without loss of generality we may assume thatZ is not divisible
by a fourth power. Denote by the projective curver* + y* = c.

Note that we will only give théocal solubilityresults, but that thglobal
studyinvolves many methodggctorizationin number fieldselliptic
curvey, but is far from complete, although it can sokvel 10000.



LocAL METHODS. THE FERMAT QUARTICS (1)

Proposition. The curvel. is everywhere locally soluble (i.e., has points in
R and in everyQ,) if and only ifc > 0 and the following conditions are
satisfied.

1. ¢ =1 or 2 modulol6.

2. plec,p+#2impliesp=1 (mod 8).
3. ¢ # 3 or 4 modulob.

4. ¢ = 7,8, or 11 modulo13.

5. c#4,5,6,9, 13, 22, or 28 modulo29.



LocAL METHODS, THE FERMAT QUARTICS (1I)

Ingredients in proof:

e A 2-adic unitz is a fourth power i), ifand only if x =1 (mod 16%Z-)
(power serieexpansion(1 + u)'/4).

o If pf2candp # 1 (mod 8) thenc is a sum of two fourth powers iQ,, if
and only ifc is a sum of two fourth powers if, (Hensel’'s lemmyg and any
suche is such asumip =3 (mod 4) (pigeonhole principle

e If p12candp > 37 thenc is a sum of two fourth powers (th&ell
bounds here easily provable usincobi sumyg



LOoCAL METHODS, FERMAT’S LAST THEOREM | (1)

Proposition. The following three conditions are equivalent.

1. There exists threg-adic unitsa, 3, and~ such thain? + P = ~P (in
other words FLT | is soluble-adically).

2. There exists three integeis, c in Z such thatp t abc with
al +bP = cP (mod p?).

3. There exista € Z such thatz is not congruent t® or —1 modulop
with (a + 1)? = a? + 1 (mod p?).

Proof: Congruences modujd and Hensel's lemma.



LOoCAL METHODS. FERMAT’S LAST THEOREM I (II)

Corollary . Ifforall a € Z suchthatl <a < (p—1)/2 we have
(a+1)P —a? —1# 0 (mod p?), the first case of FLT is true for.

Note that usindzisenstein reciprocitwhich is a more difficulglobal
statement), can prove that= 1 is sufficient in the above, i.eWieferich's
criteriort if 22~ £ 1 (mod p?) then FLT I is true forp (only known
exceptiong = 1093 andp = 3511).



LOCAL METHODS, STRASSMANN'S THEOREM (1)

More sophisticated use ptadic numbersp-adicanalysis

Theorem. If f(X)=>_ -, f.X" with f, — 0 p-adically, not identically
0, exist at mostV elements; € Z,, such thatf(x) = 0, whereN unique
integer such thatf,,| < |fn|forn < N,and|f,| < |fx|forn > N.

Same theorem iaxtension®f Q,. Easy proof by induction ofV using the
ultrametric inequality



LOCAL METHODS., STRASSMANN'S THEOREM (1)

Example: the equation:® + 6y3 = 1in Z. Setd = 6'/3, K = Q(6),
e = 302 — 60 + 1 fundamental uniof K of norm1. Dirichlet’s unit theorem
impliesz + y0 = ¥ for k € Z. If a = 0% — 20 thene = 1 + 3¢, and

(14 3a)® = exps(klogs(1 + 3a))

power series ik (not in «) which converges-adically. Notel, 6, 62
linearly independent oveds (X° + 6 irreducible inQ3[X]). Coefficient of
6% in % = = + y0 + 002 equal to0 gives equation irk to which can apply
Strassmansfind N = 1, hencet = 0 only solution, sqz,y) = (1,0).



FACTORIZATION OVER Z: WENDT'S CRITERION(I)

Can give spectacular results. Exampléendt’s criterionfor FLT | .
Proposition. Letp be an odd primek > 2 an even integer. Assume that
q = kp + 1is aprimesuch thaig t (k* — 1) R(X* — 1, (X +1)* — 1)
(R(P, Q) resultantof P and@). Then FLT lis true, i.eg? + y? 4+ 2P =0
impliesp | zyz.

Proof. May assume relatively prime. Write
—aP =P 2P = (y+2) (Y P TR T

Observe factorszlatively prime(otherwisey andz not relatively prime).
Thus exists: such thaty + z = a? andy?~! — yP= 2z + ... 4 2P~ 1 = P,
By symmetryz + x = b andx + y = cP.



FACTORIZATION OVER Z: WENDT'S CRITERION(II)

Forq = kp + 1, equation implies

If ¢ 1 zyz, implies thatu = (z/2)? mod ¢ satisfiesu* — 1 =0 (mod q)

and(u + 1) = 0 (mod ¢), contradictingy t R(X* — 1,(X + 1)* — 1).

Thusq | zyz, sayq | x, hence
0=2z=(z+y)+z+x)—(y+2)=+0+(—a)’

As abovey | abc, and sincey | x andz, y, andz pairwise coprime, cannot
haveq | WP = z+xo0rq | c? =x + vy, S0q | a.



FACTORIZATION OVER Z: WENDT'S CRITERION(III)

Thusy = —z (mod q), hences? = py?~! (mod ¢). On the other hand
y=(xr+y)—x=cP (mod q), SO

gla=1)/k _ op — pc((q—l)/k)(p—l) (mod q) ,

and since; { ¢, p = d9=V/* (mod ¢) with d = s/c?~! mod q. Sincea, s
coprime, we have t s, S0q { d, sop* = 1 (mod ¢), and since: even

1 = (_1)k = (kp — q)k = kFpk = kF (mod q) ,

contradicting the assumptionf k* — 1.



FACTORIZATION OVER Z: WENDT'S CRITERION(IV)

Wendt’s criterion (of course superseded by Wiles et al. ery wowerful
since heuristically there wikhlwaysexist a suitablé;, in fact quite small,
and computer searches confirm this.

Corollary due to Sophie Germain:
Corollary. If p > 2is prime an®2p + 1 is prime then FLT I is true.

Unknown whether there are infinitely many.



FACTORIZATION OVERZ: y? = 23 + ¢

By using similar naive methods, can prove the following:

e If @ andb are odd, if3 1 b, and ift = 84 — b? is squarefree, then
y? = 22 + t has naintegral solution.

The exampleg = 7 = 8 - 1° — 1% was a challenge posed Bgrmat

e If aisodd,3 t b, andt = a® — 4b* is squarefree and such thag 1
(mod 8). Theny? = 23 + t has naintegral solution.



CASSELS S RESULTS ONCATALAN (1)

Recall that Catalan’s equationi8® — y™ = 1, with min(m, n) > 2.
Contrary to FLT,» = 2 or n = 2 must be included. Proof for = 2 (no
nontrivial solution) due td&/.-A. Lebesguan 1850 (not the Lebesgue
integral), and involvegactoring overZ|i|, not difficult. Proof form = 2
considerably more subtle (not really difficult) becausedlexistthe
solutions(43)% — 23 = 1. Done byKo Chaoin the 1960's, and involves
structure of the unit group of a real quadraticier.

As for FLT, we are reduced te” — y? = 1 with p andgq distinct odd primes,
with symmetry magp, ¢, x,y) — (q,p, —y, —x). Basic results on this
found by Cassels.



CASSELS S RESULTS ONCATALAN (1)

Cassels’s proof: factoring ovér, clever reasoning, and analytic method
calledRunge’s methoda form of Diophantine approximation. As all such,
boils down tox € R, |z| < 1, andz € Z impliesx = 0.

Exercise use this to find all integral solutions to
y? = a* + 23 + 22 + = + 1 (hint in the notes).
Need arithmetic lemma and two analytic ones.

e Arithmetic lemma: Let ¢ prime, and setv(j) = j + v,(5!). Then
g (péq) IS aninteger coprime to ¢, andw(7j) is strictly increasing.

Proof:. easy, although there is a slight subtlety (see notes)



CASSELS S RESULTS ONCATALAN (111)

e Analytic lemmall: If ¢ > p > 0 (not necessarily integral) and> 1, then
(a?+ 1) < (a? + 1), and ifa > 1 then(a? — 1)? > (a? — 1)1,

Proof. easy undergraduate exercise.

e Analytic lemma Il : Assumep > ¢ integersg > 3, p > 5 as in Catalan.
SetF(t) = (1 +t)? —t?)9,m = |p/q| + 1, and letF,,(t) the sum of
the terms of degree at most equahtan the Taylor series expansion of
F(t) aroundt = 0. For allt € R such thatt| < 1/2 we have

Proof. not easy undergraduate exercise (see notes).



CASSELS S RESULTS ONCATALAN (1V)

Factorization ovefZ: 2P — y? = 1 givesy? = 2P — 1 = (x — 1)r,(z) with
rp(z) = (2P —1)/(x — 1). Factors not necessarily coprime but, expanding
rp(x) = ((z —14+1)? —1)/(z — 1) by the binomial theorem, easy to see
thatp | (x — 1) is equivalentte | r,(x), that ifd = ged(x — 1, 7r,(x)) then

d =1ord = p,andthatifd = p > 2 thenr,(z) = p (mod p?), so that

v, (rp(z)) = 1. Sincey? = (z — 1)r,(x), conditiond = p is equivalent to

p | y. Cassels’s main theorem says that thigligaystrue, i.e., we never
haved = 1.



CASSELS S RESULTS ONCATALAN (V)

Proof of Cassels’s result split info< ¢ andp > ¢. The first case is much
easier:

Proposition. If x andy are nonzero integers andandg odd primes such
thatz? — y? = 1, then wherp < ¢ we havep | v.

Proof: if not,x — 1 andr,(x) are coprime, so both argh powers since
product is. Writer — 1 = a4. Sincexy # 0, a # 0 anda # —1, and

(a?+ 1) —y?=1. Setf(z) = (a? 4+ 1)? — 27 — 1, decreasing function of
z. If a > 1thenf(a?) = (a? + 1)P — aP? — 1 > 0 (binomial theorem), and
fl@a?+1)=(a?+1)P — (a? + 1)? — 1 < 0 by first analytic lemma. Since
f strictly decreasing, thg such thatf (y) = 0 is not an integer, absurd.



CASSELS S RESULTS ONCATALAN (VI)

Similarly, if a < 0, we haven < —2, and seb = —a. Sincep andq are odd
fl@?)=(a?+1)P —aP?—1=—((b2 — 1)P — b7 + 1) > 0 (binomial
theorem), and
flaP+1)=(a?4+1)P—(a?+1)1—1=—((b1—-1)P—-(P—-1)94+1) <0
again by the first analytic lemma singe- 1. Again absurd.

Crucial corollary, due to Hyyr.
Corollary. Same assumptions, in particular< ¢. Then|y| > p?=! + p.

Proof: sincep | y andv,(r,(z)) = 1, can writex — 1 = p?~ta?,

(xP —1)/(z — 1) = pv?,y = pav. SetP(X) = XP — 1 —p(X —1).
Clearly(X —1)? | P(X),s0(x — 1) | (2? —1)/(z — 1) — p = p(v? — 1),
sov? =1 (mod p?=?). Sinceq > p, ¢p(p?~?%) = p?~3(p — 1) coprime tog,
hencev = 1 (mod p?—2). Itis easily seen that = 1 is impossible, so

v > p?? 4+ 1,80[y| = pav > pv > p?~" +p.



CASSELS S RESULTS ONCATALAN (VII)

Casep > ¢ more difficult.

Proposition. If x andy are nonzero integers angdandg odd primes such
thatz? — y? = 1, then wherp > ¢ we havep | v.

Proof: as in proof fop < ¢, assume by contradictignf y, soxz — 1 = af
hencey? = (a? + 1)P — 1, soy = aPF'(1/a?) with F' as in analytic lemma
Il. Recallm = [p/q| + 1, and set = a7 Py — a™9F,,(1/a%), SO that
z=a"4(F(1/a%) — F,,(1/a%)). By Taylor's theorem

" Fon(1/8) = Yg< i< (P9t 7, and by arithmetic lemma

D = ¢™tva(m) js g common denominator of all tf(ééq) for0 < j <m.
ThusDa™?F,,(1/a?) € Z, and sincenqg > p we havea4 Py € Z, SO
thatDz € Z.



CASSELS S RESULTS ONCATALAN (VIII)

We now show Dz| < 1. Applying analytic lemma Il ta = 1 /a4 (satisfies
it| < 1/2 sincea # +1):

a4 1 1

< < < .
2= e =1 STai =2 = [7[=3

By Hyyro's Corollary (with(p, g, x, y) replaced by(q, p, —y, —z)) we have
2] > ¢"~t +q>¢"" ! + 3,50

< qm+vq(m!)—(p—1) .

|1Dz| < <
x| — 3

Sincev,(m!) <m/(¢ — 1) form > 1andm < p/q + 1, we have
q

Mmoot vg(ml) = (p 1) <mo—7 ~ (p—1) = 2 <pq__2>1(q_2>

<0

sinceq > 3 andp > 5, proving|Dz| < 1.



CASSELS S RESULTS ONCATALAN (1X)

SinceDz € 7Z, we haveDz = (. But
Dz = Da™1 Py — Z D (p/q) qd(m=17) :
0<j<m J

and by the arithmetic lemma

() <5 (1) 0

for 0 <35 <m — 1, hence again by the arithmetic lemma

O:DZED(p/q);—éO (mod q) ,

m

absurd.



CASSELS S RESULTS ONCATALAN (1X)

Immediate but crucial corollary of Cassels’s theorem:

Corollary. If x andy are nonzero integers angdandg odd primes such
thatz? — y? = 1, there exist nonzero intege«sandb, and positive integers

u andv with ¢ 1 v andp 1 v such that

R
r=qbu, r —1=p?tal ’ = pv?,

x— 1

741
y=pav, y+ 1=, L —qur .

y+1

Proof: easy exercise from the main theorem.



INTRODUCTION TONUMBER FIELDS (I)

Apart from the methods studied above, this is the oldest arst osed
method in the subject, and as already mentioned the whobeytiod
number fields arose from the study of Diophantine equationsarticular
FLT. Reminder:

e A number field K is a finite extension of), equivalentlyK = Q(«),
wherea root of a nonzero polynomiad € Q[.X].

e An algebraic integeris a root of amonic polynomial with integer
coefficients. The element such that’ = Q(«) can always be chosen
such. The set of algebraic integersrofforms a ring, denoted .,
containingZ|«] with finite index, whem chosen integral. It is a free
Z-module of rankn = [K : ], and aZ-basis ofZx is called anintegral
basis



INTRODUCTION TONUMBER FIELDS (I1)

e The ringZk is aDedekind domain The essential conseqguence is that
any fractional ideal can be decomposed uniquely into a ppwaxiuct of
prime ideals. This is in fact the main motivation. Cruciaitfaf Z|«| # Z
then it isnever a Dedekind domain.

o If pisaprime, lepZyi = ngigg p:* be the prime power decomposition
of pZk. The ideals; are the prime ideals&bove” (in other words
containing)p, thee; are theramification indexesthe fieldZ x /p; is a finite
field containingF, = Z/pZ with degree denoted b, and we have the
important relation) ,, ., e;fi =n = [K : QJ.



INTRODUCTION TONUMBER FIELDS (l11)

e Class groupCl(K) defined as the quotient of fractional ideals by
principal idealsfinite group with cardinality denotebt( K).

e Unit group U(K), group of invertible elements &, or group of

algebraiantegersof norm-=1, is afinitely generatedabelian group of
rankr, + ro — 1 (1 and2r, number of real and complex embeddings).
Torsion subgroup finite equal to the groufpk’) of roots of unity ink.



INTRODUCTION TONUMBER FIELDS (1V)

e A quadratic field is Q(+/t), with ¢ squarefree integer different from Its
ring of integers is either equal #/t] = {a + b\/t, a,b € Z} whent = 2
or 3 modulo4, or (a + bv/t) /2, with ¢ andb integers of same parity
otherwise.

e A cyclotomic fieldis K = Q((), with ¢ primitive mth root of unity. Main
result: the ring of integers of a cyclotomic fieldZs(|, and no larger.



FERMAT'S LAST THEOREMI (FLT 1) (1)

Even though Wendot’s criterion is probably always appliealilis necessary
also to study thelgebraicmethod, because it also applies to FLT Il, i.e., the
casep | xyz.

Notation ¢ = ¢, primitive pth root of 1, K = Q(¢), Zx = Z[(], 7 =1,
p = mZx unique prime ideal above and such thagi? ! = pZg.

At first, people thought that ;- is always a unique factorization domain.
Unfortunately, completely false: on the contrary, only adWn) finite list
of p are such.



FERMAT’'S LAST THEOREMI (FLT 1) (11)

Anyway, let's assume first that, = Z[(] is a UFD. We prove:

Lemma. Assume that|(]is a UFD. IfzP 4 y? = 2P withp 1 zyz, there
exista € Z|¢] and a unitu of Z|(| such thatr + y{ = ua?.

Proof. may assume, v, z pairwise coprime. Our equation can faetored
overZ[(| as

(z+y) (@ +yC) - (x+ycP™h) =2
Claim: the factors are pairwise coprime. If soméividesz + y¢* and
x + y¢’ fori # j, it divides alsoy(¢* — ¢?) andz(¢? — ("), hence(® — ¢V
sincexr andy are coprime (irZ hence inZ[(]). Since(¢* — ¢7) | pin Z[(],
we havew | p, and on the other hand | (z + y(*) | z. Sincep andz are
coprimew | 1, in other words is a unit, proving the claim.



FERMAT’'S LAST THEOREMI (FLT 1) (I11)

Thus product of pairwise coprime element#iig] equal to gpth power, so
up to multiplication by a unit, each one is, sifgg| is a PID by
assumption, proving the lemma.

Unfortunately, as mentioned, not very useful since cooditoo strict. This

IS whereidealsplay their magic. Denote by, theclass numbeof the
cyclotomic fieldK' = Q((,). Then:



FERMAT'S LAST THEOREMI (FLT I) (1V)

The above lemma is still valid if we only assume { h,,.

To see why, note that the proof of the lemma is valid verbatiwwei replace
“elements” by “ideals”: there is unique factorization ireals, the
coprimeness of the factors remain, and we deduce that eaah id

a; = (v + y(")Zy is apth power of an ideal, say; = b?. Crucial
Ingredient: since the class number is finﬁ%ﬁ’ is aprincipal ideal Sinceb”
also is, ancpu + h,v = 1 for someu, v, it follows thatb; itself is principal.
If by = aZg thena; = (v + y()Zk = aPZi = by, sox + y{ = ua? for
some unitu, proving the lemma.



FERMAT’'S LAST THEOREMI (FLT 1) (V)

e The rest of the proof in cagef h,, is specific and easy (see notes). It uses
however an additional crucial ingredieit,onecker’s theoremif « Is an
algebraianteger such that all the conjugates afin C have norm equal to

1, then itis aroot of unity. In particular, ifu is a unit ofZ[(|, thenw /u is a
root of unity.

e A prime such thap 1 h,, is called aregular prime Known that there are
Infinitely manyirregular primes, conjectured infinitely many regular with
densitye=/2 = 0.607 . . ..



FERMAT'S LAST THEOREMI (FLT I) (VI)

e One of the crucial ingredients in the proof w&s principal for all ideals
b. We say that,, annihilateshe class groug'l(K'). However,K/Q is a
Galoisextension (eveabeliar) with Galois groupz ~ (Z/pZ)*. The
group ringZ|G] acts onC'l(K), and we can look for other elements&iG]
which annihilateC'l(K'). One such is given by thetickelberger element
and more generally elements of thackelberger ideal



FERMAT’'S LAST THEOREMI (FLT 1) (VII)

This is used in aimple wayby Mihailescu for Catalan: it? — y? = 1
with p, ¢ odd primes andy # 0, thendouble Wieferich condition

p?7™ =1 (mod¢®) and ¢ " '=1 (mod p?).
Note no class number condition. Only seven such pairs knbutrexpect
Infinitely many.

More sophisticated annihilator 6fi( K') given byThaine’s theorenused
In an essential way by Mdilescu for the complete proof of Catalan, but
also in different contexts such as thech and Swinnerton-Dyer conjecture



y? = x3 + t REVISITED

Have already seen in special cases. Can fact@ivit) or in Q(/t).
Problem withunits which are not roots of unity. Sometimes can take care
of that, but not alwaysQ(+/t) always has such units, so we do not use.
Q(+/t) also does it > 0, so we assume< 0. Thus write

(y — vt)(y +vt) = 22 in imaginary quadratic fieldk = Q(+/t). If
factors not coprime, much more messy. To have factors cepneed botl
squarefreeandt £ 1 (mod 8). The first condition is not really essential,
the second is. We then deduce that the idgal /t)Zx is the cube of an
ideal, and to conclude as in FLT | we absolutely need the ¢mmdi

3 1|Cl(K)|. Under all these restrictions, easy to give complete swiuisee
notes). Fowspecifict, must solvel hue equations



THE SUPER-FERMAT EQUATION 2P 4+ y? = 2" (I)

A whole course to itself! Most salient points:

e Mustadd the conditionz, y, z coprime because not homogeneous,
otherwise usually easy to construct infinitely many “sttigrebntrivial)
solutions. Example:

55268479930183339474944° 4+ 50779978334208° = 6530347008 .
Sety =1/p+ 1/q+ 1/r — 1. Different behavior according teign of :

e If x > 0 (elliptic cas¢ complete and disjoint parametrizationsof the
(infinite) set of solutionsieukers.

e If ¥ < 0, only afinite number of solutionsiarmon—Granvilleusing
Faltingg. Only a few cases solved (rational points on curves of genus
g > 1), and only ten cases known. Would nesftective form of Faltings.



THE SUPER-FERMAT EQUATION xP 4+ y4 = 2" (ll)

Elliptic case corresponds up to permutationigog, ) = (2, 2, r) (dihedral
case),p,q,r) = (2,3, 3) (tetrahedratase),p, q,r) = (2, 3,4) (octahedral
case), andp, q,r) = (2, 3,5) (icosahedratase), because they correspond
to the finite subgroups aP S L, (C).

Two totally different methods to treat the elliptic case. The first is again
factoring over suitable number fields (never very large)ke ploofs are
tedious and in the notes for some dihedral cases (very easythe
octahedral cas@, ¢, ) = (2,4, 3). In the latter we only usg&|i| by writing
22 +yt = 23 as(x + y?i)(x — y?i) = 23. One obtains exacthpur disjoint
homogeneou8-variable parametrizations of the coprime solutions.
Existence not surprising, their disjointness (i.e., argrocoe solution Is
represented by a single parametrization) more surprising.



THE SUPER-FERMAT EQUATION zP + y? = 2" (l11)

For completeness, they are the following:

(1 = 4ts(s? — 3t?)(s* + 6t%s% + 81t1)(3s* + 2t%s% + 3t4)
y = +(s% 4 3t2)(s* — 18252 4 9t%)

|z = (s* — 2% + 9t*)(s* + 30t2s% 4 9t*) |

/N

with s # ¢ (mod 2) and3 1 s.

/

r = £(4s* + 3t1)(165% — 408t1s* + 9t8)
y = 6ts(4s? — 3t1)
2z = 165° 4+ 168t*s* + 9t8 |

N\

\

with ¢ odd and3 1 s.



THE SUPER-FERMAT EQUATION 2P + ¢4 = 2" (IV)

/

T = F(s* 4+ 12t4)(s® — 408t*s* + 14418)
y = 6ts(s* — 12t%)

|z = s® 4 168t"s? + 144¢°

with s odd and3 1 s.

N\

(= +2(s + 253 + 6252 + 2635 + t4)(235° — 16ts7 — 172¢256 — 1124357
— 22ttst — 112t%s3 — 172952 — 16t7s + 23t%)
y=3(s—t)(s+t)(s* + 8ts + 6t%s% + 8t?s + t*)
z = 1358 4+ 16ts” + 28t2s% + 112t35° + 238t*s*
+ 112t°s3 + 28t9s% + 16t7s + 13t° |

_/\

\

with s ¢ (mod 2) ands # t (mod 3).



THE SUPER-FERMAT EQUATION 2P 4+ y? = 2" (V)

The factoring method works in all elliptic casesceptin the icosahedral
case(p,q,r) = (2,3,5). Here we must use a completely different tool
(applicable also in the other elliptic cases), inventedia tontext by

F. Klein, but reinterpreted in modern terms @GyothendieclandBelyi, the
theory ofdessins d’enfanisThis is a term coined by Grothendieck to
describecoveringsof P! (C) ramified in at mos8 points. Using this, obtain
In analgorithmic manner complex polynomials”, ), andR
(homogeneous in two variables) such that (for instadte) Q° = R°.
These polynomials can in fact be chosen with coefficientsnaraber
field, and by makingPS L, (C) act on them and introducing a suitable
reduction theorycan find all parametrizations. Program initiated by

F. Beukersand finished by his studedt Edward4€27 disjoint
parametrizations).



INTRODUCTION TOELLIPTIC CURVES (I)

A very important set of Diophantine equations is the seaochational
points(or sometimesntegral pointy on curves Curves are best classified
by theirgenus related to the degree. Examplen@nsingular plane curvef
degreed has genug = (d — 1)(d — 2)/2 (sog = 0 for lines and conics,

g = 1 for plane cubicsg = 3 for plane quartics). Awyperelliptic curve

y? = f(x) wheref has degred and no multiple roots has genus
g=1|(d—-1)/2] (sog=0ford=10r2,g=1ford=3o0r4,g=2for

d = 5 oro6.

An elliptic curve E over some fieldx is a curve ofgenusl, together with a
K -rational point.



INTRODUCTION TOELLIPTIC CURVES (II)

Study of elliptic curves important for many reasons: cumegenus zero
very well understood (everything algorithmic). curves ehgsg > 2 very
difficult to handle; in addition, elliptic curves havevary rich structure,
coming in particular from the fact that they have a natgraup law.
Reminder on elliptic curves:

e In practice, an elliptic curve can be given bguations The simplest is as
a simpleWeierstrass equatioy¥ = 2% + az® + bx + ¢, or a generalized
Weierstrass equatioft + a;zy + azy = z° + asx? + asx + ag (canonical
numbering), together with the condition that the curve besngular. More
generallynonsingular plane cubmith rational point,hyperelliptic quartic
with square leading coefficient = a?z* + ba? + cx? + dz + e,
Intersection of two quadrics, and so on. All these othernizabns can
algorithmically be transformed into Weierstrass form, sowill assume
from now on that this is the case.



INTRODUCTION TOELLIPTIC CURVES (III)

e Set of projective points of an elliptic curve (i = 23 + ax? + bz + ¢,
affine points plus the point at infinip = (0 : 1 : 0)) form anabelian
group under the secant and tangent method of Fermat (brief expdans#
P and() are distinct points on the curve, draw the line joinlB@ndQ; it
meets the curve in a third poiit, andP + () is the symmetrical point of?
with respect to the-axis. If P = (), do the same with the tangent).
Warning: if equation of elliptic curve is not a plane cubic, the gedmage
construction of the group law must be modified.

o If K =C, E(C) in canonical bijection with a quotierit/A, whereA is a
lattice of C, thanks to thé\Veierstrasg functionand its derivative.



INTRODUCTION TOELLIPTIC CURVES (V)

o If K =T,, importantHasse bound(IF,) — (¢ + 1)| < 2,/q. Essential
In particular in cryptography.

o If K =Q, (or afinite extension), we have a good understanding of
E(Q,) thanks in particular t&Kodairg Néron andTate

e And what if K = Q (or a number field)? Most interesting, and most
difficult case. Deserves a theorem to itself.



INTRODUCTION TOELLIPTIC CURVES (V)

This is the theorem dfiordell, generalized byVeil to number fields and to
Abelian varieties.

Theorem. If E is an elliptic curve over a number field, the groupFE(K)
Is afinitely generatedabelian group (the Mordell-Weil group @f over
K).

ThusE(K) ~ E(K)wrs® Z", with E( K )rs a finite group, ana is called
therankof F(K). E(K )wrsis easily and algorithmically computable, and
only a finite number of possibilities for it, known for ins@anfor K = Q by
a difficult theorem oMazur.

One of the major unsolved problems on elliptic curves is to cmpute
algorithmically the rank r, together with a system of generators



INTRODUCTION TOELLIPTIC CURVES (V1)

Goal of the rest of the course: explain methods to compiit@), either
rigorously, or heuristically. There is no general alganthout only partial
ones, which luckily work in “most” cases. Sample techniques

e 2-descent with or without a rationa®-torsion point

e 3-descentwith rational torsion subgroup (more general descentsilpless
but for the moment not very practical, work in progress oftafgeople,
some present here).



INTRODUCTION TOELLIPTIC CURVES (VII)

e Use of L-functions to compute the rank, but not the generators.

e TheHeegner point methqgane of the most beautiful and amazing aspects
of this subject, important both in theory and in practiceglagable torank

1 curves, which should form the vast majority of curves of remzank, the
only ones where we must work. This is also the subject of tesit

project.



2-DESCENT WITHOUT2-TORSION POINT(I)

The general idea afescentinitiated by Fermat, is to map a (possibly large)
point on a given curve (or more general variety) to smallenfsoon other
curves. Heresmallermeans that the number digitsis dividedby some

k > 1, so it is very efficient when applicable.

The simplest i2-descent on an elliptic curve when there exists a rational
2-torsion point (see text). We study the slightly more cowgiied case
where such a point does not exist. In other wordsytet =2 + ax + b,
where we assumeandb in Z andz® + az + b = 0 without rational roots,
hence irreducible ovep). Denote by a root, and sefl’ = Q(0).



2-DESCENT WITHOUT2-TORSION POINT(II)

Define the mapy from E(Q) to K*/K** by a(O) = 1 and

of(z,y)) = z — § modulo K**. Fundamental result, easy to prove using
definition of group law by secant and tangent:

Proposition. « is agroup homomorphisiwhose kernel is equal FE (Q).
In particular, it induces annjectivehomomorphism front' (Q) /2E(Q) to
K*/K*?, and the rank- of E(Q) is equal todimg, (Im(c)).

(Note that we assume ristorsion.)



2-DESCENT WITHOUT2-TORSION POINT(III)

Thus describém(«). For this need’-Selmer grouf a number field (not
of the elliptic curve).

e 7T finite set of prime ideals oK.

o Ur(K) group of -unitsu of K (v, (u) = 0forp ¢ T).

e Clp(K) T-class group, equal t0'1(K)/ < T > with evident notation.
o A T-virtual squarew € K* is such tha® | v,(u) forallp ¢ T

e TheT-Selmer groud(K) is the quotient of the group daf-virtual
squares by the groufi ** of nonzero squares.



2-DESCENT WITHOUT2-TORSION POINT(IV)

We haveSr(K) ~ (Ur(K)/Ur(K)?) x Clyr(K)[2], so easily computable
using a computer algebra system.

Basic result linkingm(a) with S (K') (not difficult):

Proposition. LetT be the set of prime idealssuch thaty | 30% + a and

q | [Zk : Z[0]], whereq prime number below. Thenim(«) is equal to the

group ofw € S (K) such that\ i /o (u) (for any lift u) is a square irQ
and such that therexistsa lift v of the formx — 6.

e SometimesZy : Z[0]] = 1 soT = () (but S (K) may still be nontrivial).

e The condition on the norm is algorithmic. Unfortunately éx@stence of a
lift « of the formx — 6 is not (but luckily feasible in many cases).



2-DESCENT WITHOUT2-TORSION POINT(V)

So letG the group ofu € S (K) whose lifts have square norm. To
determine ifz has a liftx — 0: write u = u26? + w60 + ug for any lift,
w; € Q. All lifts are of the formu~? for v = ¢560% + ¢,0 + ¢y, and

ury* = go(co, c1, c2)0% — q1(co, c1, c2)0 + qo(co, c1,¢2) |

with ¢; explicit quadratic formsCondition readg-(cg, ¢1, c2) = 0 and
q1(co, c1,c2) = 1. The first equation can be checked for solubility by
Hasse—Minkowsk(local-global principle for quadratic form), and then
parametrized by quadratic formstwo variables (as super-Fermat
equation). Replacing in second equation gigeartig and
dehomogenenizing givestgperelliptic quartic equatiop® = Q(x).



2-DESCENT WITHOUT2-TORSION POINT(VI)

If not everywhere locally soluble, can again excludétherwise search for
solutions. If foundz € Im(«), if not we are stuck.

The group ofu € Sy (K) for which the corresponding quatrtic is
everywhere locally soluble is called tBeSelmer group of thelliptic
curve, and is the smallest group containihgQ) /2 E(Q) which can be
determined algorithmically usingrdescent. It is denotesh (). The
quotient ofSs (E) by the (a priori unknown) subgroup(Q)/2E(Q) is the
obstruction to 2-descent, and is equal il ( £)[2], the part of the
Tate—Shafarevitch grougf E killed by 2.

2-descent quite powerful, basis 6Gfemona’amwr ank program. If fails,
can try asecond descenfsolve the quartics), or &descent or higher.

Exercise try your 2-descent skills fog? = 22 + 16 (both have rank).



EXAMPLE OF 3-DESCENT(I)

Not difficult but too long to explain, so we give an interegtiexample.

Goat given nonzero integers, b, andc, determine if there exists a
nontrivial solution toaz?® + by? + c2° = 0.

As usual, easy to give condition for everywhere local sdityhsee text).

To go further, for any: € Z~, let E,, be the elliptic curve)® = x° + n?.
The pointT’ = (0, n) is torsion of ordeB. We define &-descent map
from E(Q) to Q* /Q** by settinga(O) = 1, a(T) = 4n?, and otherwise
a((x,y)) = y — n, all modulo cubes. Easy direct check thas agroup
homomorphism, kernel easy to compute (not needed here).

Projective curve&® = C, 5, . with equationax® + by° + cz® = 0 closely
linked to curveE = F,,;. as follows.



EXAMPLE OF 3-DESCENT(II)
Proposition. Define¢(z,y, z) = (—4abcxyz, —4abe(by® — cz?), ax?).
1. The mapp send<C(Q) into E(Q) (in projective coordinates).

2. LetG = {(X,Y,2)} € E(Q) such thaic(Y — 4abcZ) = bZ \° for
some) € Q*. Thenim(¢) = ¢(C(Q)) is equal toGG together withO if
¢/be Q*, andT if b/a € Q*° (and immediate to give preimages).

3. The set(Q) is nonempty if and only tf/c modulo cubes belongs to
Im(a) € Q*/Q*°.
Proof: (1) and (2) are simple verifications. For B)Q) # 0 iff Im(¢) # 0,

hence iff either there existsX, Y, Z7) € E(Q) and\ € Q* with
c(Y —4dabeZ) = bZ N>, orif ¢/borb/a are cubes. Not@ = 2cz/x. This

easily implies thab/c € Im(a).



EXAMPLE OF 3-DESCENT(III)

Thus, to test solubility ofiz® + by® 4 c2® = 0, proceed as follows. First test
everywhere local solubility (easy). Then compute the Mb+iféeil group
FE(Q) using2-descentaind/or a software package like Cremona@ ank

(of course may be difficult), also torsion subgroup (easy)F})1<i<,

basis of free part, then classes moddila(Q) of Py = T and theP; form
anlFs-basis of £(Q)/3E(Q). Then check ib/c modulo cubes belongs to
the group generated by tlie(P;))o<i<, in Q*/Q*°, simple linear algebra
overF;. Completely algorithmicapart from the MW computations.



EXAMPLE OF 3-DESCENT(IV)

Examples

o 23 + 55y3 + 6623 = 0. Everywhere locally soluble, cannot solve
algebraically as far as | know. Use above method. Find torsubgroup of
order3 generated by, =T = (0, 14520). In a fraction of a second,

mw ank (or 2-descent) says rankand a generataP; = (504, 18408).
Then modulo cubes(P,) = 22 - 3% . 5% .11 anda(Py) = 2 - 32, while

b/c = 22 .3%.5. Linear algebra immediately showgc not in group
generated bw(Fy) anda(F;), SO no solution.



EXAMPLE OF 3-DESCENT (V)

e Descent not always negative? + 17y° + 412 = 0. Torsion subgroup of
order3 generated by, = T = (0, 2788). Rankl and generatoP; =
(355278000385 /2600388036, —426054577925356417/132604187507784).
Modulo cubesy(Py) = 17%.41%, o(P;) = 17%, andb/c = 17 - 412, so since
a group homomorphismy( Py + P;) = b/c modulo cubes. Find in
projective coordinate$, + P, = (X, Y, 7) =

(5942391203335522320, 251765584367435734052, 3314947244332625),
compute) such that:(Y — 4abcZ) = bZ N2, find A = 8363016/149105.
Since\ = 2c¢z/x, find (up to projective scaling) = 101988, x = 149105,
hencey = 140161.



THE USE OFL(FE, s) (I)

Extremely important method which at least determines wdradth not~
has nontorsion points, without giving them.

Definition of L(E, s). Assumeminimal Weierstrass equationoverQ. If
E hasgood reductioratp, definea, =p+1 — |E(F,)| andx(p) = 1.
Otherwise defing/(p) = 0, anda,, = 0 if triple point (additive reductio)

a, = 1 ora, = —1if double pointwith or without rational tangentsplit
or nonsplit multiplicative reduction In facta, = p+ 1 — |E(F,)| still true.
Then
1
L E, S) = ’
=1l app~® + x(p)p'—*°

p

converges fofi(s) > 3/2 because of Hasse bound,| < 2p'/2.



THE USE OFL(FE, s) (II)

Most important theorem, due Wiles, Taylor-Wiles et al.: L(F, s)
extends to a holomorphic function to the whole complex plaaéisfying a
functional equation

A(E,2 — ) = e(BE)A(E, s) |

with e(E) = +1 (theroot numbey, and
A(E,s) = N*/2(2r)~*I'(s)L(FE, s). HereN is theconductoy divisible by
all bad primes and easily computable Tgte’s algorithm

Because of BSD, are interested in the valyé’, 1). If e(F) = —1,
trivially L(FE, 1) = 0. Otherwiseautomatic consequencewe have the
exponentially convergent(soeasy to computé series

L(E,1) =2 Sre 2m/VN
n

n>1



THE USE OFL(E, s) (I1)

The Birch and Swinnerton-Dyer conjecture precise statement, but tells
us in particular that there exist nontorsion point€i(Q) (i.e., £(Q)
infinite) if and only if L(E, 1) = 0. Unfortunately, except in the rarikcase
(Heegner point methgaloes not help us much imding the points.

What is known Rubin, Kolyvagin, etc.):
o If L(E,1) # 0then no nontorsion points.

olf L(FE,1)=0butL/(F,1) # 0thenrank 1, in particular exists
nontorsion points, and can be found using Heegner points.

On the other hand, it.(F,1) = L'(F, 1) = 0, nothing known, although
BSD conjecture says rank at least



THE HEEGNER POINT METHOD(I)

This is a remarkable way to ud€ . s) to find a nontorsion rational point,
works only when the rank is equal taotherwise always gives a torsion
point, even in rank > 2).

Tools: complex multiplicatiorand themodular parametrizatiort-or the
algorithm, need to understand the theorems, but not thdgrtyofact,
conjecturesare sufficient since checking rational points is trivial.

Setup E elliptic curve overQ andL(E,s) = >, < ann™*.



THE HEEGNER POINT METHOD(II)

Modular parametrization : Wiles’s theorem is equivalent to

fe(T) =), <1 anq" (¢ = exp(2imT)) is amodular formof weight2 on
Lo(N). Equivalently still,2i7 f (7)d7 is aholomorphic differential ,
invariantunderl’o (V) up to theperiod latticeof fg, i.e.,

T) = 27 z)dz = 4n n

o) =20 | fal) >

does not depend on chosen path, and defines mapHfoii (V) to C/A,
easily extended to map from closukg (V) to C/A, whereA lattice
generated bQin leo fe(z)dz, with~y € Q acusp Usually (always
happens in practice, if not can easily be dealt with) hawe A g, with
E(C)=C/Ag, sogetamap fronX,(/N) to C/A g, and composing with
theWeierstrass function get mapp from X, (V) to £(C), themodular
parametrizationWiles: exists and unique up to sign.



THE HEEGNER POINT METHOD(I11)

Complex multiplication (CM) : sayr is aCM pointif 7 € H Is a root of
quadratic equatiod X2 + BX + C = 0 with A, B, C integral with

B? — 4AC < 0. Make this unique by requiringcd(A, B, C) = 1 and

A > 0,then setA(r) = B? — 4AC.

Basic result of CM (in our context): ifr is asuitable CM point, then

o(7) € E(H) and not onlyp(7) € E(C), whereH is theHilbert class field
of K = Q(+/D). This is themagic of CM: createalgebraic numbers using
analytic functions Kronecker’s dream of youttdo this for other number
fields).



THE HEEGNER POINT METHOD(IV)

Assume for simplicityD = A(7) discriminantof a quadratic field
(fundamental discriminat

Definition: Given N, 7 is aHeegner point of leveN If it satisfies the
equivalent conditions:

e A(NT) = A(7)
e N | Aandgcd(A/N,B,CN) =1

e N|AandD = B? (mod 4N).



THE HEEGNER POINT METHOD(V)

Basic properties

e Let 7 Heegner point of leveN. If v € T'o(N) then~y(7),
W(r) =—1/(N7), and more generallif/ (7) (Atkin—Lehner operato)s
are again Heegner points of levl.

e Recall natural correspondence betwédn, (Z) classes obinary
guadratic form@and theideal class groupf corresponding quadratic field.
This easily generalizes 1, (V)-equivalence as follows: natural
correspondence betweé&p(/V)-equivalence classes of Heegner points of
discriminantD and levelN and the set opairs (5, [a]), with [a] ideal class,
andg € Z/2NZ such that3* = D (mod 4N).



THE HEEGNER POINT METHOD(VI)

Main theorem of CM: Let 7 = (3, |a]) Heegner point of discriminand
(fundamental) and leveV, K = Q(v/D), H Hilbert class field off
(maximal unramified Abelian extension éf, Gal(H/K) ~ Cl(K)
through theArtin map Art). Recallp modular parametrization from
Xo(N) to E. Then:

e p(7) € E(H) (algebraicity
e If [b] € CI(K) then Shimura reciprocity.
(8, [a])) A0V = (3, [ab™1]))

Also formula forp (W ((5, [a]))) andp(Wo ((5, [a]))).

* o((=B,[a]71) = »((8,[a])).




THE HEEGNER POINT METHOD(VII)

ConsequenceCan compute the trace ¢f(7) on the elliptic curve by

P 3 AGEY= 3 AGETD= 3 e

oc€Gal(H/K) b]€CI(K) b]€CL(K)

the sum being computed with tigeoup law of £. By Galois theory we
will have P € FE(K), so we have considerably reduced the field of
definition of the algebraic point ofd. In addition, easy result:

If £(F) = —1 (which is our case since rari}, then in factP € E(Q),
which is what we want.



THE HEEGNER POINT METHOD(VII)

Thanks in particular tesross—ZagieandKolyvagin, know thatP is
nontorsion if and only if r = 1 (already knownand L(Ep, 1) # 0, where
Ep is thequadratic twisof E by D (equationDy? = x> + ax + b).

Point P oftenlarge multiple of generator, can reduce it considerably again
by using Gross—Zagier. Get very nice algorithm.

Example: congruent number problem far= 157, curve

y? = 23 — 157°z. Rankl. Already reasonably large example. In a couple
of minutes, findP = (x, y) with numerator and denominator othaving up
to 36 decimal digits.

For detalils on all of this, see student presentation.



COMPUTATION OF INTEGRAL POINTS(I)

Assume now that Mordell-Weil group(Q) computed, sayP;)<i<,
generators.

Goal computeE/(Z), i.e.,integral points. Immediate warningdepends on
the chosen modg€ontrary toE (Q).

If Pe E(Z) C E(Q),canwriteP =T+ ), .. x;P; with x; € Z andT
a torsion point. Easy result jg| > c¢;e2", with H = max; |z;| andcy, co
easily computable explicit constants.

Now useelliptic logarithmy (E(C) ~ C/A, andy mapsP € E(C) to
z € CmoduloA such thatp(z), ¢'(2)) = P).



COMPUTATION OF INTEGRAL POINTS(II)

Consequence of above: easy to show that|if> c3 explicit, then
Y (P)| < cse 27 /2 (if we choosey)(P) as small as possible.

On the other hand, thanks to a very important theoref. @avidon linear
forms in elliptic logarithmsgeneralizing Baker-type results to the elliptic
case, can prove that we have an inequality#0P) in the other direction,
which contradicts the above ford sufficiently large. Every constant
explicit. Thus getupper bound for H, and as usual in Baker-type
estimates, very large. Typically find < 10'%° (recall

P=T+) ..., viP;andH = max; |z;|).



COMPUTATION OF INTEGRAL POINTS(II)

In the above, essential that Baker boundekglicit, butnot essential that
they besharp (e.g.,10%° or 10'"? is just as good), because now we use the
magicof the LLL algorithm: find small vectors in lattices, and thisows

you either to find linear dependence relations between caxmpimbersor
to show that if an approximate relation exists then coeffilsi@rebounded

very effectively. Roughly obtain lngarithmic decreasein the size of the
upper bound.



COMPUTATION OF INTEGRAL POINTS(III)

Example: y? +y = 23 — 7Tz + 6, famous curve because elliptic curve with
smallest conductor of rarnk important in obtaining effective lower bounds
for the class number of imaginary quadratic fiel@s(dfeld,

Gross—Zagior Using David's bounds, find/ < 10°°. Using LLL once,
reduce this spectacularly @ < 51. Using LLL a second time, reduce this
to H < 11 (diminishing returns: another LLL gives), then no
Improvement). Now a direct search very easy (less fle@00 trials), and

find exactly36 integral points, a very large number.

Phenomenon not completely understood: elliptic curve ghmank with
respect to conductor haweany integral points.



