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EXAMPLES (I)

Diophantine equation: system of polynomial equations to besolved in

integers, rational numbers, or other number rings.

• Fermat’s Last Theorem (FLT): in Z, xn + yn = zn with n ≥ 3 implies

xyz = 0. This gave the impetus foralgebraic number theoryby Kummer,

Dirichlet, . . . . Solved by these methods up to large values ofn (several

million). ThenFaltings’sresult on rational points on higher genus curves

proved that forfixedn, only finite number of (coprime) solutions. But

finally completely solved usingelliptic curves, modular forms, andGalois

representationsby Ribet, Wiles, andTaylor–Wiles. The method of solution

is more important than FLT itself.



EXAMPLES (II)

• Catalan’s conjecture: if m andn are at least2, nonzero solutions of

xm − yn = 1 come from32 − 23 = 1. Until recently, same status as FLT:

attacks using algebraic number theory solved many cases. ThenBaker-type

methods were used byTijdemanto show that the total number of

(m,n, x, y) is finite. Finally completely solved byMihăilescuin 2001,

usingonly the theory ofcyclotomic fields, but rather deep results (Thaine’s

theorem), quite a surprise. Proof later simplified byBilu andLenstra.



EXAMPLES (III)

• The congruent number problem(Diophantus, 4th century A.D.). Find

all integersn equal to the area of aPythagorean triangle, i.e. with all sides

rational (example(3, 4, 5) givesn = 6). Easy: equivalent to the existence of

rationalsolutions ofy2 = x3 − n2x with y 6= 0. Again, three stages. Until

the 1970’s, several hundred values solved. Then using the

Birch–Swinnerton Dyer conjecture (BSD), possible to determine

conjecturallybutanalyticallyif n congruent or not. Final (but not ultimate)

step: a theorem ofTunnell in 1980 giving an immediate criterion for

congruent numbers, usingmodular forms of half-integral weight, but still

modulo a weak form of BSD.



TOOLS (I)

Almost as many methods to solve Diophantine equations as equations.

Attempt at classification:

• Local methods: the use ofp-adic fields, in an elementary way

(congruences modulo powers ofp), or less elementary (Strassmann’sor

Weierstrass’stheorem,p-adic power series,Herbrand’sandSkolem’s

method).

• Factorization over Z. Not a very powerful method, but sometimes gives

spectacular results (Wendt’s criterionfor the first case of Fermat’s last

theorem,Cassels’sresults onCatalan’s equation).



TOOLS (II)

• Factorization over number fields, i.e., global methods. This was in fact

themotivationfor the introduction of number fields in order to attack

Fermat’s last theorem (FLT). Even though very classical, still one of the

most powerful methods, with numerous applications and successes.

• Diophantine approximation methods.This can come in many different

guises, from the simplest such asRunge’s method, to much more

sophisticated ones such asBaker-type methods.

• Modular methods, based on the work ofRibet, Wiles, andTaylor–Wiles,

whose first and foremost success is the complete solution of FLT, but which

has had many applications to other problems.



TOOLS (III)

In addition, if the set of solutions has a well-understoodstructure, in many

cases one canconstruct algorithmicallythis set of solutions, and in

particularonesolution. Examples are:

• The Pell–Fermat equationx2 −Dy2 = ±1, and more generallynorm

equationsNK/Q(α) = m, where the magical algorithm is based on

continued fractionsandShanks’s infrastructure.

• Elliptic curves of rank 1 overQ, where the magical algorithm is based

on the construction ofHeegner points, and in particular of the theory of

complex multiplication.



INTRODUCTION TOLOCAL METHODS (I)

Examples of naive use:

• The equationx2 + y2 = 3z2. Dividing by the square of the GCD, we

may assumex andy coprime. Thenx2 andy2 are congruent to0 or 1

modulo3, but not both0, hencex2 + y2 ≡ 1 (mod 3), a contradiction.

• FLT I for exponent 3 . This is the equationx3 + y3 = z3 with 3 ∤ xyz.

We workmodulo32: since a cube is congruent to0 or ±1 modulo9, if

3 ∤ xy we havex3 + y3 ≡ −2, 0, or2 modulo9, which is impossible if3 ∤ z.



INTRODUCTION TOLOCAL METHODS (II)

In general need properties of the fieldQp of p-adic numbersand ring of

integersZp. Reminder:

• A homogeneousequation with integer coefficients has a nontrivial

solution modulopn for all n ≥ 0 if and only if it has a nontrivial solution in

Zp (or in Qp by homogeneity).

• There is a canonical integer-valued valuationvp onQ∗
p: if x ∈ Q then

vp(x) is the unique integer such thatx/pvp(x) can be written as a rational

number with denominator and numerator not divisible byp. It is

ultrametric: vp(x+ y) ≥ min(vp(x), vp(y)).

• Elements ofQp such thatvp(x) ≥ 0 arep-adic integers, they form alocal

ring Zp with maximal idealpZp. Invertible elements ofZp, calledp-adic

units, arex such thatvp(x) = 0. If x ∈ Q∗
p, canonical decomposition

x = pvp(x)y with y ap-adic unit.



INTRODUCTION TOLOCAL METHODS (III)

• If a ∈ Q is such thatvp(a) ≥ 0 and ifvp(x) ≥ 1 then the power series

(1 + x)a converges. Ifvp(a) < 0 the power series converges for

vp(x) ≥ |vp(a)| + 1 whenp ≥ 3, andvp(x) ≥ |vp(a)| + 2 whenp = 2. It

converges to its “expected” value, for instance ifm ∈ Z \ {0} then

y = (1 + x)1/m satisfiesym = 1 + x.

• Hensel’s lemma(or Newton’s method). Special case: iff(X) ∈ Qp[X ]

andα ∈ Qp satisfiesvp(f(α)) ≥ 1 andvp(f
′(α)) = 0. There exists

α∗ ∈ Qp such thatf(α∗) = 0 andvp(α
∗ − α) ≥ 1, andα∗ easily computed

by Newton’s iteration.

Testing forlocal solubilityis usuallyeasyandalgorithmic.



LOCAL METHODS: THE FERMAT QUARTICS (I)

These are the equations

x4 + y4 = cz4 ,

where without loss of generality we may assume thatc ∈ Z is not divisible

by a fourth power. Denote byC theprojective curvex4 + y4 = c.

Note that we will only give thelocal solubilityresults, but that theglobal

studyinvolves many methods (factorizationin number fields,elliptic

curves), but is far from complete, although it can solvec ≤ 10000.



LOCAL METHODS: THE FERMAT QUARTICS (II)

Proposition. The curveCc is everywhere locally soluble (i.e., has points in

R and in everyQp) if and only ifc > 0 and the following conditions are

satisfied.

1. c ≡ 1 or 2 modulo16.

2. p | c, p 6= 2 impliesp ≡ 1 (mod 8).

3. c 6≡ 3 or 4 modulo5.

4. c 6≡ 7, 8, or 11 modulo13.

5. c 6≡ 4, 5, 6, 9, 13, 22, or 28 modulo29.



LOCAL METHODS: THE FERMAT QUARTICS (III)

Ingredients in proof:

• A 2-adic unitx is a fourth power inQ2 if and only if x ≡ 1 (mod 16Z2)

(power seriesexpansion(1 + u)1/4).

• If p ∤ 2c andp 6≡ 1 (mod 8) thenc is a sum of two fourth powers inQp if

and only ifc is a sum of two fourth powers inFp (Hensel’s lemma), and any

suchc is such a sum ifp ≡ 3 (mod 4) (pigeonhole principle).

• If p ∤ 2c andp ≥ 37 thenc is a sum of two fourth powers (theWeil

bounds, here easily provable usingJacobi sums).



LOCAL METHODS: FERMAT’ S LAST THEOREM I (I)

Proposition. The following three conditions are equivalent.

1. There exists threep-adic unitsα, β, andγ such thatαp + βp = γp (in

other words FLT I is solublep-adically).

2. There exists three integersa, b, c in Z such thatp ∤ abc with

ap + bp ≡ cp (mod p2).

3. There existsa ∈ Z such thata is not congruent to0 or −1 modulop

with (a+ 1)p ≡ ap + 1 (mod p2).

Proof: Congruences modulop3 and Hensel’s lemma.



LOCAL METHODS: FERMAT’ S LAST THEOREM I (II)

Corollary . If for all a ∈ Z such that1 ≤ a ≤ (p− 1)/2 we have

(a+ 1)p − ap − 1 6≡ 0 (mod p2), the first case of FLT is true forp.

Note that usingEisenstein reciprocity(which is a more difficultglobal

statement), can prove thata = 1 is sufficient in the above, i.e.,Wieferich’s

criterion: if 2p−1 6≡ 1 (mod p2) then FLT I is true forp (only known

exceptionsp = 1093 andp = 3511).



LOCAL METHODS: STRASSMANN’ S THEOREM (I)

More sophisticated use ofp-adic numbers:p-adicanalysis.

Theorem. If f(X) =
∑

n≥0 fnX
n with fn → 0 p-adically, not identically

0, exist at mostN elementsx ∈ Zp such thatf(x) = 0, whereN unique

integer such that|fn| ≤ |fN | for n < N , and|fn| < |fN | for n > N .

Same theorem inextensionsof Qp. Easy proof by induction onN using the

ultrametric inequality.



LOCAL METHODS: STRASSMANN’ S THEOREM (II)

Example: the equationx3 + 6y3 = 1 in Z. Setθ = 61/3,K = Q(θ),

ε = 3θ2 − 6θ+ 1 fundamental unitof K of norm1. Dirichlet’s unit theorem

impliesx+ yθ = εk for k ∈ Z. If α = θ2 − 2θ thenε = 1 + 3α, and

(1 + 3α)k = exp3(k log3(1 + 3α))

power series ink (not inα) which converges3-adically. Note1, θ, θ2

linearly independent overQ3 (X3 + 6 irreducible inQ3[X ]). Coefficient of

θ2 in εk = x+ yθ + 0θ2 equal to0 gives equation ink to which can apply

Strassmann, findN = 1, hencek = 0 only solution, so(x, y) = (1, 0).



FACTORIZATION OVER Z: WENDT’ S CRITERION(I)

Can give spectacular results. Example:Wendt’s criterionfor FLT I .

Proposition. Letp be an odd prime,k ≥ 2 an even integer. Assume that

q = kp+ 1 is aprimesuch thatq ∤ (kk − 1)R(Xk − 1, (X + 1)k − 1)

(R(P,Q) resultantof P andQ). Then FLT I is true, i.e.,xp + yp + zp = 0

impliesp | xyz.

Proof: May assume relatively prime. Write

−xp = yp + zp = (y + z)(yp−1 − yp−2z + · · · + zp−1) .

Observe factorsrelatively prime(otherwisey andz not relatively prime).

Thus existsa such thaty + z = ap andyp−1 − yp−2z + · · · + zp−1 = sp.

By symmetryz + x = bp andx+ y = cp.



FACTORIZATION OVER Z: WENDT’ S CRITERION(II)

For q = kp+ 1, equation implies

x(q−1)/k + y(q−1)/k + z(q−1)/k ≡ 0 (mod q) .

If q ∤ xyz, implies thatu = (x/z)p mod q satisfiesuk − 1 ≡ 0 (mod q)

and(u+ 1)k ≡ 0 (mod q), contradictingq ∤ R(Xk − 1, (X + 1)k − 1).

Thusq | xyz, sayq | x, hence

0 ≡ 2x = (x+ y) + (z + x) − (y + z) = cp + bp + (−a)p

= c(q−1)/k + b(q−1)/k + (−a)(q−1)/k (mod q) .

As above,q | abc, and sinceq | x andx, y, andz pairwise coprime, cannot

haveq | bp = z + x or q | cp = x+ y, soq | a.



FACTORIZATION OVER Z: WENDT’ S CRITERION(III)

Thusy ≡ −z (mod q), hencesp ≡ pyp−1 (mod q). On the other hand

y = (x+ y) − x ≡ cp (mod q), so

s(q−1)/k = sp ≡ pc((q−1)/k)(p−1) (mod q) ,

and sinceq ∤ c, p ≡ d(q−1)/k (mod q) with d = s/cp−1 mod q. Sincea, s

coprime, we haveq ∤ s, soq ∤ d, sopk ≡ 1 (mod q), and sincek even

1 = (−1)k = (kp− q)k ≡ kkpk ≡ kk (mod q) ,

contradicting the assumptionq ∤ kk − 1.



FACTORIZATION OVER Z: WENDT’ S CRITERION(IV)

Wendt’s criterion (of course superseded by Wiles et al.) is very powerful

since heuristically there willalwaysexist a suitablek, in fact quite small,

and computer searches confirm this.

Corollary due to Sophie Germain:

Corollary . If p > 2 is prime and2p+ 1 is prime then FLT I is true.

Unknown whether there are infinitely many.



FACTORIZATION OVER Z: y2 = x3 + t

By using similar naive methods, can prove the following:

• If a andb are odd, if3 ∤ b, and ift = 8a3 − b2 is squarefree, then

y2 = x3 + t has nointegral solution.

The examplet = 7 = 8 · 13 − 12 was a challenge posed byFermat.

• If a is odd,3 ∤ b, andt = a3 − 4b2 is squarefree and such thatt 6≡ 1

(mod 8). Theny2 = x3 + t has nointegral solution.



CASSELS’ S RESULTS ONCATALAN (I)

Recall that Catalan’s equation isxm − yn = 1, with min(m,n) ≥ 2.

Contrary to FLT,m = 2 or n = 2 must be included. Proof forn = 2 (no

nontrivial solution) due toV.-A. Lebesguein 1850 (not the Lebesgue

integral), and involvesfactoring overZ[i], not difficult. Proof form = 2

considerably more subtle (not really difficult) because there exist the

solutions(±3)2 − 23 = 1. Done byKo Chaoin the 1960’s, and involves

structure of the unit group of a real quadraticorder.

As for FLT, we are reduced toxp − yq = 1 with p andq distinct odd primes,

with symmetry map(p, q, x, y) 7→ (q, p,−y,−x). Basic results on this

found by Cassels.



CASSELS’ S RESULTS ONCATALAN (II)

Cassels’s proof: factoring overZ, clever reasoning, and analytic method

calledRunge’s method, a form of Diophantine approximation. As all such,

boils down tox ∈ R, |x| < 1, andx ∈ Z impliesx = 0.

Exercise: use this to find all integral solutions to

y2 = x4 + x3 + x2 + x+ 1 (hint in the notes).

Need arithmetic lemma and two analytic ones.

• Arithmetic lemma : Let q prime, and setw(j) = j + vq(j!). Then

qw(j)
(

p/q
j

)

is aninteger coprime to q, andw(j) is strictly increasing.

Proof: easy, although there is a slight subtlety (see notes).



CASSELS’ S RESULTS ONCATALAN (III)

• Analytic lemma I : If q > p > 0 (not necessarily integral) anda ≥ 1, then

(aq + 1)p < (ap + 1)q, and ifa > 1 then(aq − 1)p > (ap − 1)q.

Proof: easy undergraduate exercise.

• Analytic lemma II : Assumep > q integers,q ≥ 3, p ≥ 5 as in Catalan.

SetF (t) = ((1 + t)p − tp)1/q,m = ⌊p/q⌋ + 1, and letFm(t) the sum of

the terms of degree at most equal tom in the Taylor series expansion of

F (t) aroundt = 0. For all t ∈ R such that|t| ≤ 1/2 we have

|F (t) − Fm(t)| ≤ |t|m+1

(1 − |t|)2 .

Proof: not easy undergraduate exercise (see notes).



CASSELS’ S RESULTS ONCATALAN (IV)

Factorization overZ: xp − yq = 1 givesyq = xp − 1 = (x− 1)rp(x) with

rp(x) = (xp − 1)/(x− 1). Factors not necessarily coprime but, expanding

rp(x) = ((x− 1 + 1)p − 1)/(x− 1) by the binomial theorem, easy to see

thatp | (x− 1) is equivalent top | rp(x), that if d = gcd(x− 1, rp(x)) then

d = 1 or d = p, and that ifd = p > 2 thenrp(x) ≡ p (mod p2), so that

vp(rp(x)) = 1. Sinceyq = (x− 1)rp(x), conditiond = p is equivalent to

p | y. Cassels’s main theorem says that this isalwaystrue, i.e., we never

haved = 1.



CASSELS’ S RESULTS ONCATALAN (V)

Proof of Cassels’s result split intop < q andp > q. The first case is much

easier:

Proposition. If x andy are nonzero integers andp andq odd primes such

thatxp − yq = 1, then whenp < q we havep | y.

Proof: if not,x− 1 andrp(x) are coprime, so both areqth powers since

product is. Writex− 1 = aq. Sincexy 6= 0, a 6= 0 anda 6= −1, and

(aq + 1)p − yq = 1. Setf(z) = (aq + 1)p − zq − 1, decreasing function of

z. If a ≥ 1 thenf(ap) = (aq + 1)p − apq − 1 > 0 (binomial theorem), and

f(ap + 1) = (aq + 1)p − (ap + 1)q − 1 < 0 by first analytic lemma. Since

f strictly decreasing, they such thatf(y) = 0 is not an integer, absurd.



CASSELS’ S RESULTS ONCATALAN (VI)

Similarly, if a < 0, we havea ≤ −2, and setb = −a. Sincep andq are odd

f(ap) = (aq + 1)p − apq − 1 = −((bq − 1)p − bpq + 1) > 0 (binomial

theorem), and

f(ap +1) = (aq +1)p − (ap +1)q − 1 = −((bq − 1)p − (bp − 1)q +1) < 0

again by the first analytic lemma sinceb > 1. Again absurd.

Crucial corollary, due to Hyyr̈o:

Corollary . Same assumptions, in particularp < q. Then|y| ≥ pq−1 + p.

Proof: sincep | y andvp(rp(x)) = 1, can writex− 1 = pq−1ap,

(xp − 1)/(x− 1) = pvq, y = pav. SetP (X) = Xp − 1 − p(X − 1).

Clearly(X − 1)2 | P (X), so(x− 1) | (xp − 1)/(x− 1) − p = p(vq − 1),

sovq ≡ 1 (mod pq−2). Sinceq > p, φ(pq−2) = pq−3(p− 1) coprime toq,

hencev ≡ 1 (mod pq−2). It is easily seen thatv = 1 is impossible, so

v ≥ pq−2 + 1, so|y| = pav ≥ pv ≥ pq−1 + p.



CASSELS’ S RESULTS ONCATALAN (VII)

Casep > q more difficult.

Proposition. If x andy are nonzero integers andp andq odd primes such

thatxp − yq = 1, then whenp > q we havep | y.

Proof: as in proof forp < q, assume by contradictionp ∤ y, sox− 1 = aq

henceyq = (aq + 1)p − 1, soy = apF (1/aq) with F as in analytic lemma

II. Recallm = ⌊p/q⌋ + 1, and setz = amq−py − amqFm(1/aq), so that

z = amq(F (1/aq) − Fm(1/aq)). By Taylor’s theorem

tmFm(1/t) =
∑

0≤j≤m

(

p/q
j

)

tm−j , and by arithmetic lemma

D = qm+vq(m!) is a common denominator of all the
(

p/q
j

)

for 0 ≤ j ≤ m.

ThusDamqFm(1/aq) ∈ Z, and sincemq ≥ p we haveamq−py ∈ Z, so

thatDz ∈ Z.



CASSELS’ S RESULTS ONCATALAN (VIII)

We now show|Dz| < 1. Applying analytic lemma II tot = 1/aq (satisfies

|t| ≤ 1/2 sincea 6= ±1):

|z| ≤ |a|q
(|a|q − 1)2

≤ 1

|a|q − 2
≤ 1

|x| − 3
.

By Hyyrö’s Corollary (with(p, q, x, y) replaced by(q, p,−y,−x)) we have

|x| ≥ qp−1 + q ≥ qp−1 + 3, so

|Dz| ≤ D

|x| − 3
≤ qm+vq(m!)−(p−1) .

Sincevq(m!) < m/(q − 1) for m ≥ 1 andm < p/q + 1, we have

m+ vq(m!) − (p− 1) < m
q

q − 1
− (p− 1) =

3 − (p− 2)(q − 2)

q − 1
≤ 0

sinceq ≥ 3 andp ≥ 5, proving|Dz| < 1.



CASSELS’ S RESULTS ONCATALAN (IX)

SinceDz ∈ Z, we haveDz = 0. But

Dz = Damq−py −
∑

0≤j≤m

D

(

p/q

j

)

aq(m−j) ,

and by the arithmetic lemma

vq

((

p/q

j

))

< vq

((

p/q

m

))

= vq(D)

for 0 ≤ j ≤ m− 1, hence again by the arithmetic lemma

0 = Dz ≡ D

(

p/q

m

)

6≡ 0 (mod q) ,

absurd.



CASSELS’ S RESULTS ONCATALAN (IX)

Immediate but crucial corollary of Cassels’s theorem:

Corollary . If x andy are nonzero integers andp andq odd primes such

thatxp − yq = 1, there exist nonzero integersa andb, and positive integers

u andv with q ∤ u andp ∤ v such that

x = qbu, x− 1 = pq−1aq,
xp − 1

x− 1
= pvq,

y = pav, y + 1 = qp−1bp,
yq + 1

y + 1
= qup .

Proof: easy exercise from the main theorem.



INTRODUCTION TONUMBER FIELDS (I)

Apart from the methods studied above, this is the oldest and most used

method in the subject, and as already mentioned the whole theory of

number fields arose from the study of Diophantine equations,in particular

FLT. Reminder:

• A number field K is a finite extension ofQ, equivalentlyK = Q(α),

whereα root of a nonzero polynomialA ∈ Q[X ].

• An algebraic integer is a root of amonic polynomial with integer

coefficients. The elementα such thatK = Q(α) can always be chosen

such. The set of algebraic integers ofK forms a ring, denotedZK ,

containingZ[α] with finite index, whenα chosen integral. It is a free

Z-module of rankn = [K : Q], and aZ-basis ofZK is called anintegral
basis.



INTRODUCTION TONUMBER FIELDS (II)

• The ringZK is aDedekind domain. The essential consequence is that

any fractional ideal can be decomposed uniquely into a powerproduct of

prime ideals. This is in fact the main motivation. Crucial fact: if Z[α] 6= ZK

then it isnever a Dedekind domain.

• If p is a prime, letpZK =
∏

1≤i≤g pei

i be the prime power decomposition

of pZK . The idealspi are the prime ideals“above” (in other words

containing)p, theei are theramification indexes, the fieldZK/pi is a finite

field containingFp = Z/pZ with degree denoted byfi, and we have the

important relation
∑

1≤i≤g eifi = n = [K : Q].



INTRODUCTION TONUMBER FIELDS (III)

• Class groupCl(K) defined as the quotient of fractional ideals by

principal ideals,finite group with cardinality denotedh(K).

• Unit group U(K), group of invertible elements ofZK , or group of

algebraicintegersof norm±1, is afinitely generatedabelian group of

rankr1 + r2 − 1 (r1 and2r2 number of real and complex embeddings).

Torsion subgroup finite equal to the groupµ(K) of roots of unity inK.



INTRODUCTION TONUMBER FIELDS (IV)

• A quadratic field is Q(
√
t), with t squarefree integer different from1. Its

ring of integers is either equal toZ[
√
t] = {a+ b

√
t, a, b ∈ Z} whent ≡ 2

or 3 modulo4, or (a+ b
√
t)/2, with a andb integers of same parity

otherwise.

• A cyclotomic field isK = Q(ζ), with ζ primitivemth root of unity. Main

result: the ring of integers of a cyclotomic field isZ[ζ], and no larger.



FERMAT’ S LAST THEOREM I (FLT I) (I)

Even though Wendt’s criterion is probably always applicable, it is necessary

also to study thealgebraicmethod, because it also applies to FLT II, i.e., the

casep | xyz.

Notation: ζ = ζp primitive pth root of1,K = Q(ζ), ZK = Z[ζ], π = 1− ζ,

p = πZK unique prime ideal abovep, and such thatpp−1 = pZK .

At first, people thought thatZK is always a unique factorization domain.

Unfortunately, completely false: on the contrary, only a (known) finite list

of p are such.



FERMAT’ S LAST THEOREMI (FLT I) (II)

Anyway, let’s assume first thatZK = Z[ζ] is a UFD. We prove:

Lemma. Assume thatZ[ζ] is a UFD. Ifxp + yp = zp with p ∤ xyz, there

existα ∈ Z[ζ] and a unitu of Z[ζ] such thatx+ yζ = uαp.

Proof: may assumex, y, z pairwise coprime. Our equation can befactored

overZ[ζ] as

(x+ y)(x+ yζ) · · · (x+ yζp−1) = zp .

Claim: the factors are pairwise coprime. If someω dividesx+ yζi and

x+ yζj for i 6= j, it divides alsoy(ζi − ζj) andx(ζj − ζi), henceζi − ζj

sincex andy are coprime (inZ hence inZ[ζ]). Since(ζi − ζj) | p in Z[ζ],

we haveω | p, and on the other handω | (x+ yζi) | z. Sincep andz are

coprime,ω | 1, in other words is a unit, proving the claim.



FERMAT’ S LAST THEOREM I (FLT I) (III)

Thus product of pairwise coprime elements inZ[ζ] equal to apth power, so

up to multiplication by a unit, each one is, sinceZ[ζ] is a PID by

assumption, proving the lemma.

Unfortunately, as mentioned, not very useful since condition too strict. This

is whereidealsplay their magic. Denote byhp theclass numberof the

cyclotomic fieldK = Q(ζp). Then:



FERMAT’ S LAST THEOREM I (FLT I) (IV)

The above lemma is still valid if we only assumep ∤ hp.

To see why, note that the proof of the lemma is valid verbatim if we replace

“elements” by “ideals”: there is unique factorization in ideals, the

coprimeness of the factors remain, and we deduce that each ideal

ai = (x+ yζi)ZK is apth power of an ideal, sayai = b
p
i . Crucial

ingredient: since the class number is finite,b
hp

i is aprincipal ideal. Sinceb
p
i

also is, andpu+ hpv = 1 for someu, v, it follows thatbi itself is principal.

If b1 = αZK thena1 = (x+ yζ)ZK = αpZK = b
p
1, sox+ yζ = uαp for

some unitu, proving the lemma.



FERMAT’ S LAST THEOREM I (FLT I) (V)

• The rest of the proof in casep ∤ hp is specific and easy (see notes). It uses

however an additional crucial ingredient,Kronecker’s theorem: if α is an

algebraicinteger such that all the conjugates ofα in C have norm equal to

1, then it is aroot of unity. In particular, ifu is a unit ofZ[ζ], thenu/u is a

root of unity.

• A prime such thatp ∤ hp is called aregular prime. Known that there are

infinitely manyirregular primes, conjectured infinitely many regular with

densitye−1/2 = 0.607 . . . .



FERMAT’ S LAST THEOREM I (FLT I) (VI)

• One of the crucial ingredients in the proof wasbhp principal for all ideals

b. We say thathp annihilatesthe class groupCl(K). However,K/Q is a

Galoisextension (evenabelian) with Galois groupG ≃ (Z/pZ)∗. The

group ringZ[G] acts onCl(K), and we can look for other elements ofZ[G]

which annihilateCl(K). One such is given by theStickelberger element,

and more generally elements of theStickelberger ideal.



FERMAT’ S LAST THEOREM I (FLT I) (VII)

This is used in asimple wayby Mihăilescu for Catalan: ifxp − yq = 1

with p, q odd primes andxy 6= 0, thendouble Wieferich condition:

pq−1 ≡ 1 (mod q2) and qp−1 ≡ 1 (mod p2) .

Note no class number condition. Only seven such pairs known,but expect

infinitely many.

More sophisticated annihilator ofCl(K) given byThaine’s theorem, used

in an essential way by Mih̆ailescu for the complete proof of Catalan, but

also in different contexts such as theBirch and Swinnerton-Dyer conjecture.



y2 = x3 + t REVISITED

Have already seen in special cases. Can factor inQ(
√
t) or in Q( 3

√
t).

Problem withunits which are not roots of unity. Sometimes can take care

of that, but not always.Q( 3
√
t) always has such units, so we do not use.

Q(
√
t) also does ift > 0, so we assumet < 0. Thus write

(y −
√
t)(y +

√
t) = x3 in imaginary quadratic fieldK = Q(

√
t). If

factors not coprime, much more messy. To have factors coprime need botht

squarefreeandt 6≡ 1 (mod 8). The first condition is not really essential,

the second is. We then deduce that the ideal(y −
√
t)ZK is the cube of an

ideal, and to conclude as in FLT I we absolutely need the condition

3 ∤ |Cl(K)|. Under all these restrictions, easy to give complete solution (see

notes). Forspecifict, must solveThue equations.



THE SUPER-FERMAT EQUATION xp + yq = zr (I)

A whole course to itself! Most salient points:

• Must add the conditionx, y, z coprime because not homogeneous,

otherwise usually easy to construct infinitely many “stupid” (nontrivial)

solutions. Example:

552684799301833394749443 + 507799783342085 = 65303470087 .

Setχ = 1/p+ 1/q + 1/r − 1. Different behavior according tosignof χ:

• If χ > 0 (elliptic case) complete and disjoint parametrizationsof the

(infinite) set of solutions (Beukers).

• If χ < 0, only afinite number of solutions (Darmon–Granville, using

Faltings). Only a few cases solved (rational points on curves of genus

g ≥ 1), and only ten cases known. Would needeffective form of Faltings.



THE SUPER-FERMAT EQUATION xp + yq = zr (II)

Elliptic case corresponds up to permutation to(p, q, r) = (2, 2, r) (dihedral

case),(p, q, r) = (2, 3, 3) (tetrahedralcase),(p, q, r) = (2, 3, 4) (octahedral

case), and(p, q, r) = (2, 3, 5) (icosahedralcase), because they correspond

to the finite subgroups ofPSL2(C).

Two totally different methods to treat the elliptic case. The first is again

factoring over suitable number fields (never very large). The proofs are

tedious and in the notes for some dihedral cases (very easy),and the

octahedral case(p, q, r) = (2, 4, 3). In the latter we only useZ[i] by writing

x2 + y4 = z3 as(x+ y2i)(x− y2i) = z3. One obtains exactlyfour disjoint

homogeneous2-variable parametrizations of the coprime solutions.

Existence not surprising, their disjointness (i.e., any coprime solution is

represented by a single parametrization) more surprising.



THE SUPER-FERMAT EQUATION xp + yq = zr (III)

For completeness, they are the following:














x = 4ts(s2 − 3t2)(s4 + 6t2s2 + 81t4)(3s4 + 2t2s2 + 3t4)

y = ±(s2 + 3t2)(s4 − 18t2s2 + 9t4)

z = (s4 − 2t2s2 + 9t4)(s4 + 30t2s2 + 9t4) ,

with s 6≡ t (mod 2) and3 ∤ s.














x = ±(4s4 + 3t4)(16s8 − 408t4s4 + 9t8)

y = 6ts(4s4 − 3t4)

z = 16s8 + 168t4s4 + 9t8 ,

with t odd and3 ∤ s.



THE SUPER-FERMAT EQUATION xp + yq = zr (IV)















x = ±(s4 + 12t4)(s8 − 408t4s4 + 144t8)

y = 6ts(s4 − 12t4)

z = s8 + 168t4s4 + 144t8 ,

with s odd and3 ∤ s.






































x = ±2(s4 + 2ts3 + 6t2s2 + 2t3s+ t4)(23s8 − 16ts7 − 172t2s6 − 112t3s5

− 22t4s4 − 112t5s3 − 172t6s2 − 16t7s+ 23t8)

y = 3(s− t)(s+ t)(s4 + 8ts3 + 6t2s2 + 8t3s+ t4)

z = 13s8 + 16ts7 + 28t2s6 + 112t3s5 + 238t4s4

+ 112t5s3 + 28t6s2 + 16t7s+ 13t8 ,

with s 6≡ t (mod 2) ands 6≡ t (mod 3).



THE SUPER-FERMAT EQUATION xp + yq = zr (V)

The factoring method works in all elliptic casesexceptin the icosahedral

case(p, q, r) = (2, 3, 5). Here we must use a completely different tool

(applicable also in the other elliptic cases), invented in this context by

F. Klein, but reinterpreted in modern terms byGrothendieckandBelyi, the

theory ofdessins d’enfants. This is a term coined by Grothendieck to

describecoveringsof P1(C) ramified in at most3 points. Using this, obtain

in analgorithmic manner complex polynomialsP ,Q, andR

(homogeneous in two variables) such that (for instance)P 2 +Q3 = R5.

These polynomials can in fact be chosen with coefficients in anumber
field, and by makingPSL2(C) act on them and introducing a suitable

reduction theory, can find all parametrizations. Program initiated by

F. Beukersand finished by his studentJ. Edwards(27 disjoint

parametrizations).



INTRODUCTION TOELLIPTIC CURVES (I)

A very important set of Diophantine equations is the search for rational

points(or sometimesintegral points) oncurves. Curves are best classified

by theirgenus, related to the degree. Example: anonsingular plane curveof

degreed has genusg = (d− 1)(d− 2)/2 (sog = 0 for lines and conics,

g = 1 for plane cubics,g = 3 for plane quartics). Ahyperelliptic curve

y2 = f(x) wheref has degreed and no multiple roots has genus

g = ⌊(d− 1)/2⌋ (sog = 0 for d = 1 or 2, g = 1 for d = 3 or 4, g = 2 for

d = 5 or 6.

An elliptic curveE over some fieldK is a curve ofgenus1, together with a

K-rational point.



INTRODUCTION TOELLIPTIC CURVES (II)

Study of elliptic curves important for many reasons: curvesof genus zero

very well understood (everything algorithmic). curves of genusg ≥ 2 very

difficult to handle; in addition, elliptic curves have avery rich structure ,

coming in particular from the fact that they have a naturalgroup law.

Reminder on elliptic curves:

• In practice, an elliptic curve can be given byequations. The simplest is as

a simpleWeierstrass equationy2 = x3 + ax2 + bx+ c, or a generalized

Weierstrass equationy2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (canonical

numbering), together with the condition that the curve be nonsingular. More

generallynonsingular plane cubicwith rational point,hyperelliptic quartic

with square leading coefficienty2 = a2x4 + bx3 + cx2 + dx+ e,

intersection of two quadrics, and so on. All these other realizations can

algorithmically be transformed into Weierstrass form, so we will assume

from now on that this is the case.



INTRODUCTION TOELLIPTIC CURVES (III)

• Set of projective points of an elliptic curve (ify2 = x3 + ax2 + bx+ c,

affine points plus the point at infinityO = (0 : 1 : 0)) form anabelian
group under the secant and tangent method of Fermat (brief explanation: if

P andQ are distinct points on the curve, draw the line joiningP andQ; it

meets the curve in a third pointR, andP +Q is the symmetrical point ofR

with respect to thex-axis. IfP = Q, do the same with the tangent).

Warning : if equation of elliptic curve is not a plane cubic, the geometric

construction of the group law must be modified.

• If K = C, E(C) in canonical bijection with a quotientC/Λ, whereΛ is a

lattice of C, thanks to theWeierstrass℘ functionand its derivative.



INTRODUCTION TOELLIPTIC CURVES (IV)

• If K = Fq, importantHasse bound|E(Fq) − (q + 1)| ≤ 2
√
q. Essential

in particular in cryptography.

• If K = Qp (or a finite extension), we have a good understanding of

E(Qp) thanks in particular toKodaira, Néron, andTate.

• And what ifK = Q (or a number field)? Most interesting, and most

difficult case. Deserves a theorem to itself.



INTRODUCTION TOELLIPTIC CURVES (V)

This is the theorem ofMordell, generalized byWeil to number fields and to

Abelian varieties.

Theorem. If E is an elliptic curve over a number fieldK, the groupE(K)

is afinitely generatedabelian group (the Mordell–Weil group ofE over

K).

ThusE(K) ≃ E(K)tors⊕ Zr, withE(K)tors a finite group, andr is called

therankof E(K). E(K)tors is easily and algorithmically computable, and

only a finite number of possibilities for it, known for instance forK = Q by

a difficult theorem ofMazur.

One of the major unsolved problems on elliptic curves is to compute
algorithmically the rank r, together with a system of generators.



INTRODUCTION TOELLIPTIC CURVES (VI)

Goal of the rest of the course: explain methods to computeE(Q), either

rigorously, or heuristically. There is no general algorithm, but only partial

ones, which luckily work in “most” cases. Sample techniques:

• 2-descent, with or without a rational2-torsion point

• 3-descentwith rational torsion subgroup (more general descents possible,

but for the moment not very practical, work in progress of a lot of people,

some present here).



INTRODUCTION TOELLIPTIC CURVES (VII)

• Use ofL-functions to compute the rank, but not the generators.

• TheHeegner point method, one of the most beautiful and amazing aspects

of this subject, important both in theory and in practice, applicable torank
1 curves, which should form the vast majority of curves of nonzero rank, the

only ones where we must work. This is also the subject of the student

project.



2-DESCENT WITHOUT2-TORSION POINT(I)

The general idea ofdescent, initiated by Fermat, is to map a (possibly large)

point on a given curve (or more general variety) to smaller points on other

curves. Heresmallermeans that the number ofdigits is dividedby some

k > 1, so it is very efficient when applicable.

The simplest is2-descent on an elliptic curve when there exists a rational

2-torsion point (see text). We study the slightly more complicated case

where such a point does not exist. In other words, lety2 = x3 + ax+ b,

where we assumea andb in Z andx3 + ax+ b = 0 without rational roots,

hence irreducible overQ. Denote byθ a root, and setK = Q(θ).



2-DESCENT WITHOUT2-TORSION POINT(II)

Define the mapα fromE(Q) toK∗/K∗2 by α(O) = 1 and

α((x, y)) = x− θ moduloK∗2. Fundamental result, easy to prove using

definition of group law by secant and tangent:

Proposition. α is agroup homomorphismwhose kernel is equal to2E(Q).

In particular, it induces aninjectivehomomorphism fromE(Q)/2E(Q) to

K∗/K∗2, and the rankr ofE(Q) is equal todimF2
(Im(α)).

(Note that we assume no2-torsion.)



2-DESCENT WITHOUT2-TORSION POINT(III)

Thus describeIm(α). For this needT -Selmer groupof a number field (not

of the elliptic curve).

• T finite set of prime ideals ofK.

• UT (K) group ofT -unitsu of K (vp(u) = 0 for p /∈ T ).

• ClT (K) T -class group, equal toCl(K)/ < T > with evident notation.

• A T -virtual squareu ∈ K∗ is such that2 | vp(u) for all p /∈ T .

• TheT -Selmer groupST (K) is the quotient of the group ofT -virtual

squares by the groupK∗2 of nonzero squares.



2-DESCENT WITHOUT2-TORSION POINT(IV)

We haveST (K) ≃ (UT (K)/UT (K)2) × ClT (K)[2], so easily computable

using a computer algebra system.

Basic result linkingIm(α) with ST (K) (not difficult):

Proposition. LetT be the set of prime idealsq such thatq | 3θ2 + a and

q | [ZK : Z[θ]], whereq prime number belowq. ThenIm(α) is equal to the

group ofu ∈ ST (K) such thatNK/Q(u) (for any lift u) is a square inQ

and such that thereexistsa lift u of the formx− θ.

• Sometimes[ZK : Z[θ]] = 1 soT = ∅ (butST (K) may still be nontrivial).

• The condition on the norm is algorithmic. Unfortunately theexistence of a

lift u of the formx− θ is not (but luckily feasible in many cases).



2-DESCENT WITHOUT2-TORSION POINT(V)

So letG the group ofu ∈ ST (K) whose lifts have square norm. To

determine ifu has a liftx− θ: write u = u2θ
2 + u1θ + u0 for any lift,

ui ∈ Q. All lifts are of the formuγ2 for γ = c2θ
2 + c1θ + c0, and

uγ2 = q2(c0, c1, c2)θ
2 − q1(c0, c1, c2)θ + q0(c0, c1, c2) ,

with qi explicit quadratic forms. Condition readsq2(c0, c1, c2) = 0 and

q1(c0, c1, c2) = 1. The first equation can be checked for solubility by

Hasse–Minkowski(local-global principle for quadratic form), and then

parametrized by quadratic formsin two variables (as super-Fermat

equation). Replacing in second equation givesquartic, and

dehomogenenizing gives ahyperelliptic quartic equationy2 = Q(x).



2-DESCENT WITHOUT2-TORSION POINT(VI)

If not everywhere locally soluble, can again excludeu. Otherwise search for

solutions. If found,u ∈ Im(α), if not we are stuck.

The group ofu ∈ ST (K) for which the corresponding quartic is

everywhere locally soluble is called the2-Selmer group of theelliptic
curve, and is the smallest group containingE(Q)/2E(Q) which can be

determined algorithmically using2-descent. It is denotedS2(E). The

quotient ofS2(E) by the (a priori unknown) subgroupE(Q)/2E(Q) is the

obstruction to 2-descent, and is equal toX(E)[2], the part of the

Tate–Shafarevitch groupof E killed by 2.

2-descent quite powerful, basis ofCremona’smwrank program. If fails,

can try asecond descent(solve the quartics), or a3-descent or higher.

Exercise: try your2-descent skills fory2 = x3 ± 16 (both have rank0).



EXAMPLE OF 3-DESCENT(I)

Not difficult but too long to explain, so we give an interesting example.

Goal: given nonzero integersa, b, andc, determine if there exists a

nontrivial solution toax3 + by3 + cz3 = 0.

As usual, easy to give condition for everywhere local solubility (see text).

To go further, for anyn ∈ Z≥1 letEn be the elliptic curvey2 = x3 + n2.

The pointT = (0, n) is torsion of order3. We define a3-descent mapα

fromE(Q) to Q∗/Q∗3 by settingα(O) = 1, α(T ) = 4n2, and otherwise

α((x, y)) = y − n, all modulo cubes. Easy direct check thatα is agroup
homomorphism, kernel easy to compute (not needed here).

Projective curveC = Ca,b,c with equationax3 + by3 + cz3 = 0 closely

linked to curveE = E4abc as follows.



EXAMPLE OF 3-DESCENT(II)

Proposition. Defineφ(x, y, z) = (−4abcxyz, −4abc(by3 − cz3), ax3).

1. The mapφ sendsC(Q) intoE(Q) (in projective coordinates).

2. LetG = {(X,Y, Z)} ∈ E(Q) such thatc(Y − 4abcZ) = bZλ3 for

someλ ∈ Q∗. ThenIm(φ) = φ(C(Q)) is equal toG together withO if

c/b ∈ Q∗3, andT if b/a ∈ Q∗3 (and immediate to give preimages).

3. The setC(Q) is nonempty if and only ifb/c modulo cubes belongs to

Im(α) ⊂ Q∗/Q∗3.

Proof: (1) and (2) are simple verifications. For (3),C(Q) 6= ∅ iff Im(φ) 6= ∅,

hence iff either there exists(X,Y, Z) ∈ E(Q) andλ ∈ Q∗ with

c(Y − 4abcZ) = bZλ3, or if c/b or b/a are cubes. Noteλ = 2cz/x. This

easily implies thatb/c ∈ Im(α).



EXAMPLE OF 3-DESCENT(III)

Thus, to test solubility ofax3 + by3 + cz3 = 0, proceed as follows. First test

everywhere local solubility (easy). Then compute the Mordell–Weil group

E(Q) using2-descentand/or a software package like Cremona’smwrank

(of course may be difficult), also torsion subgroup (easy). If (Pi)1≤i≤r

basis of free part, then classes modulo3E(Q) of P0 = T and thePi form

anF3-basis ofE(Q)/3E(Q). Then check ifb/c modulo cubes belongs to

the group generated by the(α(Pi))0≤i≤r in Q∗/Q∗3, simple linear algebra

overF3. Completely algorithmic,apart from the MW computations.



EXAMPLE OF 3-DESCENT(IV)

Examples:

• x3 + 55y3 + 66z3 = 0. Everywhere locally soluble, cannot solve

algebraically as far as I know. Use above method. Find torsion subgroup of

order3 generated byP0 = T = (0, 14520). In a fraction of a second,

mwrank (or 2-descent) says rank1 and a generatorP1 = (504, 18408).

Then modulo cubesα(P0) = 22 · 32 · 52 · 11 andα(P1) = 2 · 32, while

b/c = 22 · 32 · 5. Linear algebra immediately showsb/c not in group

generated byα(P0) andα(P1), so no solution.



EXAMPLE OF 3-DESCENT(V)

• Descent not always negative:x3 + 17y3 + 41z3 = 0. Torsion subgroup of

order3 generated byP0 = T = (0, 2788). Rank1 and generatorP1 =

(355278000385/2600388036,−426054577925356417/132604187507784).

Modulo cubesα(P0) = 172.412, α(P1) = 172, andb/c = 17 · 412, so since

α group homomorphism,α(P0 + P1) = b/c modulo cubes. Find in

projective coordinatesP0 + P1 = (X,Y, Z) =

(5942391203335522320, 251765584367435734052, 3314947244332625),

computeλ such thatc(Y − 4abcZ) = bZλ3, findλ = 8363016/149105.

Sinceλ = 2cz/x, find (up to projective scaling)z = 101988, x = 149105,

hencey = 140161.



THE USE OFL(E, s) (I)

Extremely important method which at least determines whether or notE

has nontorsion points, without giving them.

Definition ofL(E, s). Assumeminimal Weierstrass equationoverQ. If

E hasgood reductionatp, defineap = p+ 1 − |E(Fp)| andχ(p) = 1.

Otherwise defineχ(p) = 0, andap = 0 if triple point (additive reduction),

ap = 1 or ap = −1 if double point with or without rational tangents (split

or nonsplit multiplicative reduction). In factap = p+ 1− |E(Fp)| still true.

Then

L(E, s) =
∏

p

1

1 − app−s + χ(p)p1−2s
,

converges forℜ(s) > 3/2 because of Hasse bound|ap| ≤ 2p1/2.



THE USE OFL(E, s) (II)

Most important theorem, due toWiles, Taylor–Wiles, et al.:L(E, s)

extends to a holomorphic function to the whole complex plane, satisfying a

functional equation

Λ(E, 2 − s) = ε(E)Λ(E, s) ,

with ε(E) = ±1 (theroot number), and

Λ(E, s) = Ns/2(2π)−sΓ(s)L(E, s). HereN is theconductor, divisible by

all bad primes and easily computable byTate’s algorithm.

Because of BSD, are interested in the valueL(E, 1). If ε(E) = −1,

trivially L(E, 1) = 0. Otherwise,automatic consequence, we have the

exponentially convergent(soeasy to compute) series

L(E, 1) = 2
∑

n≥1

an

n
e−2πn/

√
N .



THE USE OFL(E, s) (III)

The Birch and Swinnerton-Dyer conjecture: precise statement, but tells

us in particular that there exist nontorsion points inE(Q) (i.e.,E(Q)

infinite) if and only ifL(E, 1) = 0. Unfortunately, except in the rank1 case

(Heegner point method) does not help us much infinding the points.

What is known (Rubin, Kolyvagin, etc...):

• If L(E, 1) 6= 0 then no nontorsion points.

• If L(E, 1) = 0 butL′(E, 1) 6= 0 thenrank 1, in particular exists

nontorsion points, and can be found using Heegner points.

On the other hand, ifL(E, 1) = L′(E, 1) = 0, nothing known, although

BSD conjecture says rank at least2.



THE HEEGNER POINT METHOD(I)

This is a remarkable way to useL(E, s) to find a nontorsion rational point,

works only when the rank is equal to1 (otherwise always gives a torsion

point, even in rankr ≥ 2).

Tools: complex multiplicationand themodular parametrization. For the

algorithm, need to understand the theorems, but not the proofs. In fact,

conjecturesare sufficient since checking rational points is trivial.

Setup: E elliptic curve overQ andL(E, s) =
∑

n≥1 ann
−s.



THE HEEGNER POINT METHOD(II)

Modular parametrization : Wiles’s theorem is equivalent to

fE(τ) =
∑

n≥1 anq
n (q = exp(2iπτ)) is amodular formof weight2 on

Γ0(N). Equivalently still,2iπfE(τ)dτ is aholomorphic differential ,
invariantunderΓ0(N) up to theperiod latticeof fE , i.e.,

φ(τ) = 2iπ

∫ τ

i∞
fE(z) dz =

∑

n≥1

an

n
qn

does not depend on chosen path, and defines map fromH/Γ0(N) to C/Λ,

easily extended to map from closureX0(N) to C/Λ, whereΛ lattice

generated by2iπ
∫ γ

i∞ fE(z) dz, with γ ∈ Q a cusp. Usually (always

happens in practice, if not can easily be dealt with) haveΛ ⊂ ΛE , with

E(C) = C/ΛE , so get a map fromX0(N) to C/ΛE , and composing with

theWeierstrass℘ function, get mapϕ fromX0(N) toE(C), themodular

parametrization. Wiles: exists and unique up to sign.



THE HEEGNER POINT METHOD(III)

Complex multiplication (CM) : sayτ is aCM point if τ ∈ H is a root of

quadratic equationAX2 +BX + C = 0 with A,B, C integral with

B2 − 4AC < 0. Make this unique by requiringgcd(A,B,C) = 1 and

A > 0, then set∆(τ) = B2 − 4AC.

Basic result of CM (in our context): ifτ is asuitableCM point, then

ϕ(τ) ∈ E(H) and not onlyϕ(τ) ∈ E(C), whereH is theHilbert class field

of K = Q(
√
D). This is themagic of CM: createalgebraic numbers using

analytic functions (Kronecker’s dream of youth: do this for other number

fields).



THE HEEGNER POINT METHOD(IV)

Assume for simplicityD = ∆(τ) discriminantof a quadratic field

(fundamental discriminant).

Definition: GivenN , τ is aHeegner point of levelN if it satisfies the

equivalent conditions:

• ∆(Nτ) = ∆(τ)

• N | A andgcd(A/N,B,CN) = 1

• N | A andD ≡ B2 (mod 4N).



THE HEEGNER POINT METHOD(V)

Basic properties:

• Let τ Heegner point of levelN . If γ ∈ Γ0(N) thenγ(τ),

W (τ) = −1/(Nτ), and more generallyWQ(τ) (Atkin–Lehner operators)

are again Heegner points of levelN .

• Recall natural correspondence betweenSL2(Z) classes ofbinary

quadratic formsand theideal class groupof corresponding quadratic field.

This easily generalizes toΓ0(N)-equivalence as follows: natural

correspondence betweenΓ0(N)-equivalence classes of Heegner points of

discriminantD and levelN and the set ofpairs (β, [a]), with [a] ideal class,

andβ ∈ Z/2NZ such thatβ2 ≡ D (mod 4N).



THE HEEGNER POINT METHOD(VI)

Main theorem of CM : Let τ = (β, [α]) Heegner point of discriminantD

(fundamental) and levelN ,K = Q(
√
D),H Hilbert class field ofK

(maximal unramified Abelian extension ofK, Gal(H/K) ≃ Cl(K)

through theArtin mapArt). Recallϕ modular parametrization from

X0(N) toE. Then:

• ϕ(τ) ∈ E(H) (algebraicity)

• If [b] ∈ Cl(K) then (Shimura reciprocity):

ϕ((β, [a]))Art([b]) = ϕ((β, [ab−1]))

Also formula forϕ(W ((β, [a]))) andϕ(WQ((β, [a]))).

• ϕ((−β, [a]−1)) = ϕ((β, [a])).



THE HEEGNER POINT METHOD(VII)

Consequence: Can compute the trace ofϕ(τ) on the elliptic curve by

P =
∑

σ∈Gal(H/K)

ϕ((β, [a]))σ =
∑

[b]∈Cl(K)

ϕ((β, [ab−1])) =
∑

[b]∈Cl(K)

ϕ((β, [b])) ,

the sum being computed with thegroup law of E. By Galois theory we

will haveP ∈ E(K), so we have considerably reduced the field of

definition of the algebraic point onE. In addition, easy result:

If ε(E) = −1 (which is our case since rank1), then in factP ∈ E(Q),

which is what we want.



THE HEEGNER POINT METHOD(VII)

Thanks in particular toGross–ZagierandKolyvagin, know thatP is

nontorsion if and only if r = 1 (already known)andL(ED, 1) 6= 0, where

ED is thequadratic twistof E byD (equationDy2 = x3 + ax+ b).

PointP often large multiple of generator, can reduce it considerably again

by using Gross–Zagier. Get very nice algorithm.

Example: congruent number problem forn = 157, curve

y2 = x3 − 1572x. Rank1. Already reasonably large example. In a couple

of minutes, findP = (x, y) with numerator and denominator ofx having up

to 36 decimal digits.

For details on all of this, see student presentation.



COMPUTATION OF INTEGRAL POINTS(I)

Assume now that Mordell–Weil groupE(Q) computed, say(Pi)1≤i≤r

generators.

Goal: computeE(Z), i.e., integral points. Immediate warning:depends on

the chosen model, contrary toE(Q).

If P ∈ E(Z) ⊂ E(Q), can writeP = T +
∑

1≤i≤r xiPi with xi ∈ Z andT

a torsion point. Easy result is|x| ≥ c1e
c2H2

, withH = maxi |xi| andc1, c2
easily computable explicit constants.

Now useelliptic logarithmψ (E(C) ≃ C/Λ, andψ mapsP ∈ E(C) to

z ∈ C moduloΛ such that(℘(z), ℘′(z)) = P ).



COMPUTATION OF INTEGRAL POINTS(II)

Consequence of above: easy to show that if|x| ≥ c3 explicit, then

|ψ(P )| ≤ c5e
−c2H2/2 (if we chooseψ(P ) as small as possible.

On the other hand, thanks to a very important theorem ofS. Davidon linear

forms in elliptic logarithms, generalizing Baker-type results to the elliptic

case, can prove that we have an inequality forψ(P ) in the other direction,

which contradicts the above forH sufficiently large. Every constant

explicit. Thus getupper bound for H, and as usual in Baker-type

estimates, very large. Typically findH ≤ 10100 (recall

P = T +
∑

1≤i≤r xiPi andH = maxi |xi|).



COMPUTATION OF INTEGRAL POINTS(II)

In the above, essential that Baker bounds beexplicit, butnot essential that

they besharp (e.g.,1080 or 10100 is just as good), because now we use the

magicof the LLL algorithm: find small vectors in lattices, and thisallows

you either to find linear dependence relations between complex numbers,or
to show that if an approximate relation exists then coefficients arebounded
very effectively. Roughly obtain alogarithmic decreasein the size of the

upper bound.



COMPUTATION OF INTEGRAL POINTS(III)

Example: y2 + y = x3 − 7x+ 6, famous curve because elliptic curve with

smallest conductor of rank3, important in obtaining effective lower bounds

for the class number of imaginary quadratic fields (Goldfeld,

Gross–Zagier). Using David’s bounds, findH ≤ 1060. Using LLL once,

reduce this spectacularly toH ≤ 51. Using LLL a second time, reduce this

toH ≤ 11 (diminishing returns: another LLL gives10, then no

improvement). Now a direct search very easy (less than10000 trials), and

find exactly36 integral points, a very large number.

Phenomenon not completely understood: elliptic curve of high rank with

respect to conductor havemany integral points.


