Differential algebraic geometry and abc

Alexandru Buium

Lecture 1. Motivation: abc on affine varieties.

We start by explaining a generalization of **abc** that makes sense for any affine variety over a global field. The usual **abc** is simply the case of $\mathbf{P}^1 \setminus \{0, 1, \infty\}$. We then state our main result that says that this generalized **abc** holds, under certain trace conditions, for affine open sets of abelian varieties over function fields.

Let K be a field equipped with a family of absolute values $| \cdot |_v : K \to [0, \infty)$, $v \in M$, all of which, except finitely many, are non-archimedian. Set $v(x) = -log|x|_v$ for $x \in K^{\times}$. Assume (m_v) is a collection of positive integers such that the "product formula"

$$\sum_{v} m_v v(x) = 0, \quad x \in K^{\times}$$

holds. Set

$$\gamma_v := \inf\{v(K^\times) \cap (0, \infty)\}\$$

Also, for any $\eta = (\eta_1, ..., \eta_N) \in K^N$ and $v \in M$ set

$$v(\eta) = \min_{j} v(\eta_j)$$

Define the (affine, logarithmic) height

$$height_{\mathbf{A}^N}: \mathbf{A}^N(K) = K^N \to [0, \infty)$$

by the formula

$$height_{\mathbf{A}^N}(\eta) = -\sum_{v(\eta) \le 0} m_v v(\eta) = \sum_v m_v \max_j \log^+ |\eta_j|_v$$

where $\log^+ x := \max\{\log x, 0\}, x \in [0, \infty)$. Note that

$$height_{\mathbf{A}^N}(\eta) = height_{\mathbf{P}^N}(1:\eta_1:...:\eta_N)$$

where

$$height_{\mathbf{P}^N}(x_0: ...: x_N) = \sum_v m_v \max_j \log |x_j|_v$$

is the usual height in projective space. On the other hand define the (logarithmic) conductor

$$cond_{\mathbf{A}^N}: \mathbf{A}^N(K) = K^N \to [0, \infty)$$

by the formula

$$cond_{\mathbf{A}^N}(\eta) = \sum_{v(\eta) \le 0} m_v \gamma_v$$

Clearly, by the very definition of γ_v we have

$$cond_{\mathbf{A}^N}(\eta) < height_{\mathbf{A}^N}(\eta), \quad \eta \in K^N$$

We need the following piece of notation. Let $f, g: S \to [0, \infty)$ be two real functions on a set S; we write

$$f \leq g + O(1)$$

if there exists a positive real constant C such that

$$f(P) \le g(P) + C, P \in S$$

and we write f = g + O(1) if $f \leq g + O(1)$ and $g \leq f + O(1)$. We write

$$f << g + O(1)$$

if there exist two real positive constants C_1, C_2 such that

$$f(P) \le C_1 g(P) + C_2, \quad P \in S$$

and we write $f \equiv g + O(1)$ if $f \ll g + O(1)$ and $g \ll f + O(1)$. Coming back to *height* and *cond* one easily checks that if $P : \mathbf{A}^N(K) \to \mathbf{A}^n(K)$ a map given by an n-tuple of polynomials in N variables with K-coefficients then we have

$$height_{\mathbf{A}^n} \circ P << height_{\mathbf{A}^N} + O(1)$$

$$cond_{\mathbf{A}^n} \circ P \leq cond_{\mathbf{A}^N} + O(1)$$

This permits to define the **height** and the **conductor** for any affine variety as follows. Let U be an affine variety over K. Let $i: U \to \mathbf{A}^N$ be a closed immersion and define

$$height_U: U(K) \to [0, \infty)$$

$$cond_U: U(K) \to [0, \infty)$$

by the formulae

$$height_U(P) := height_{\mathbf{A}^N}(i(P)), P \in U(K)$$

$$cond_U(P) := cond_{\mathbf{A}^N}(i(P)), P \in U(K)$$

By the above discussion, if $height_U$ and $cond_U$ are defined by a closed immersion i and $height'_U$ and $cond'_U$ are defined by a closed immersion i' then

$$height_U \equiv height_U' + O(1)$$

$$cond_U = cond'_U + O(1)$$

In particular we have

$$cond_U \ll height_U + O(1)$$

Here is our basic definition.

Definition. We say that the abc estimate holds on U if

$$height_U << cond_U + O(1)$$

In this lecture we would like to understand what are, conjecturally, the affine varieties U on which the **abc** estimate holds. To tackle this question, and establish the link with the "usual" **abc** we need to be more specific about our field K. Assume, in what follows, that we are in one of the following situations:

1) Number field case. K is a number field equipped with its standard family of absolute values ($| |_v$) (normalized in such a way that they extend the standard absolute values of \mathbf{Q} ; in particular, if v divides a rational prime

p, then $|p|_v = p^{-1}$.) We take $m_v = [K_v : \mathbf{Q}_v]$. So, for any non-archimedian v, dividing an unramified rational prime p, we have $\gamma_v = v(p) = \log p$ so $m_v \gamma_v = \log \mathbf{N}v$ where $\mathbf{N}v$ is the norm of v (cardinality of the residue field of v). Since there are only finitely many ramified primes, we have

$$cond_{\mathbf{A}^N}(\eta) = \sum_{v(\eta) < 0} \log \mathbf{N}v, \quad \eta \in K^N$$

2) Function field case. K is a function field of one variable over an algebraically closed field k of characteristic zero. We equip K with the absolute values $| \cdot |_v$ arrising from the k-rational points v of the smooth projective model V of K/k; we normalise them via the condition $\gamma_v = 1$ for all v, and we take $m_v = 1$ for all v. So in this case $cond_{\mathbf{A}^N}(\eta)$, for $\eta \in K^N$, is simply the number of points $v \in V$ which are poles for at least one of the rational functions η_i .

It is a trivial exercise to show that if, say, $K = \mathbf{Q}$ or K = k(t), and if there exists a non-constant morphism of K-varieties

$$\mathbf{P}^1\backslash\{0,\infty\}\to U$$

into an affine K-variety U then the **abc** estimate fails on U. On the other hand the optimist would be tempted to believe that the presence of such morphisms is the only obstruction to the **abc** estimate; we make, optimistically, the following:

Conjecture. Assume U is a smooth affine variety over K and assume that any morphisms of K-varieties $\mathbf{P}^1 \setminus \{0, \infty\} \to U$ is constant. Then the **abc** estimate holds on U.

Our Conjecture should be viewed as an afine analogue of "Lang's conjecture" saying that if X is a smooth **projective** variety over K and if any morphism from an algebraic group G to X is constant then the points of X(K) have bounded height; hence, in the number field case X(K) is finite. (In Lang's conjecture one allows morphisms $G \to X$ defined over the algebraic closure \bar{K} of K; it might be reasonable to allow this in our Conjecture as well.)

In case $K = \mathbf{Q}$ and $U = \mathbf{P}^1 \setminus \{0, 1, \infty\}$, the Conjecture above simply says that the **abc** estimate holds on this particular U; note that this is equivalent to the following:

Variant of abc conjecture. For any relatively prime integers a, b, c with a + b = c there exist real numbers C > 1 and $\mu > 1$ such that

$$\max\{|a|, |b|, |c|\} \le C \cdot rad(abc)^{\mu}$$

(As usual rad(n), where n is an integer, is defined as the product of all primes dividing n; this Variant is weaker than the **abc** of Masser and Oesterlé which predicts that μ can be made as close to 1 as we want. However this Variant still implies, say, the assymptotic Fermat.)

To see the equivalence between the Conjecture and the Variant of **abc** for $K = \mathbf{Q}$ and $U = \mathbf{P}^1 \setminus \{0, 1, \infty\}$, embed U into \mathbf{A}^2 via the map

$$(1:x) \mapsto \left(x, \frac{1}{x(x-1)}\right)$$

Then, for coprime integers a, b, c with a + b = c, we have that $height_U(1 : \frac{c}{a})$ equals

$$height_{\mathbf{P}^2}(1:\frac{c}{a}:\frac{a^2}{cb}) = \log\max(|abc|,|b^2c|,|a^3|) \equiv \log\max(|a|,|b|,|c|) + O(1)$$

On the other hand

$$cond_U(1:\frac{c}{a}) = cond_{\mathbf{A}^2}(\frac{c}{a},\frac{a^2}{cb}) = \log rad(abc)$$

Note that, by a result due (independently) to Mason and Silverman, the **abc** estimate holds for the projective line minus 3 points. On the other hand results of Voloch [V], Brownawell-Masser [BM], and Wang [W] can suitably be interpreted as **abc** estimates "outside some exceptional loci" for projective spaces minus unions of hyperplanes.

Theorem. (abc for abelian varieties with trace zero [B94']) In the function field case the abc estimate holds for any affine open set of an abelian variety with trace zero.

Theorem. (abc for isotrivial abelian varieties [B98]) Let K be a function field over k, let A_k be an abelian variety over k and D_k a divisor in A which does not contain any translate of a non-zero abelian subvariety (in particular D_k is ample so $U_k := A_k \setminus D_k$ is affine). Let $U := U_k \otimes_k K$. Then the abc estimate holds on U.

The above Theorems are immediate consequences of the following stronger results:

Theorem. (Bounded Multiplicity Theorem, trace zero case [B94']) Assume A/K is an abelian variety with trace zero and let $f \in K(A)$ be a rational function. Then there exists a constant C depending only on K, A, f with the following property. For any point $P \in A(K)$ where f is defined and does not vanish, all zeroes and poles of $f(P) \in K^{\times}$ have multiplicity at most C.

Theorem. (Bounded Multiplicity Theorem, isotrivial case [B98]) Let X be a smooth projective curve over k, A an abelian variety over k, and D an effective divisor on A. Assume that D contains no translate of a non zero abelian subvariety. Then there exists a real constant C > 0, depending only on X, A, and D with the property that for any morphism $f: X \to A$, with $f(X) \not\subset D$, all points of the divisor f^*D have multiplicity at most C.

The proofs of the results above are based on "differential algebraic geometry". A characteristic p version of these results was proved by Scanlon [Sc].

Lecture 2. Differential algebraic geometry.

Let \mathcal{F} be a field of characteristic zero equipped with a derivation δ . We let \mathcal{C} be the constant field. (If K is a function field we will always assume we have fixed a non-zero k-derivation on it and (K, d) is embedded into (\mathcal{F}, δ) .)

Following the classical work of Ritt and Kolchin one defines the δ -polynomial ring $\mathcal{F}\{T\}$, where T is an n-tuple of variables, as the (usual) polynomial ring over \mathcal{F} in the variables $T^{(i)}$, $i \geq 0$. The order of $A \in \mathcal{F}\{T\}$ is the highest i such that a variable $T_j^{(i)}$ is present in A. \mathcal{F} is called δ -closed if for any $A, B \in \mathcal{F}\{T\}$, T a variable, such that $ord\ B < ord\ A$, there exists $a \in \mathcal{F}$ such that A(a) = 0 and $B(a) \neq 0$.

We need more definitions. A D-scheme is simply an \mathcal{F} -scheme V with a given derivation on \mathcal{O}_V that lifts δ . D-schemes form a category (morphisms are required to commute with the derivations). A D-group scheme is a D-scheme which is also an \mathcal{F} -group scheme such that the multiplication, inverse, and unit are morphisms of D-schemes. A D-variety is a D-scheme which is also a variety over \mathcal{F} . An algebraic D-group is a D-group scheme which is also an algebraic group over \mathcal{F} .

One has a forgetful functor

$$\{D-schemes\} \rightarrow \{\mathcal{F}-schemes\}, V \mapsto V'$$

It has a right adjoint

$$\{\mathcal{F} - schemes\} \to \{D - schemes\}, X \mapsto X^{\infty}$$

$$Hom_{\mathcal{F}}(V^!, X) = Hom_{D}(V, X^{\infty})$$

defined as follows. If $X = Spec \mathcal{F}[T]/I$ set $X^{\infty} := Spec \mathcal{F}\{T\}/[I]$, $[I] := (I, \delta I, \delta^2 I, ...)$. In the non-affine case one glues the affine pieces. (Note that X^{∞} is the inverse limit of a system X^n of varieties obtained by truncating everything to order n. One has a natural map $\nabla : X(\mathcal{F}) \to X^{\infty}(\mathcal{F})$ which in coordinates sends $a \in \mathcal{F}$ into $(a, \delta a, \delta^2 a, ...)$. Pull backs via this map of Zariski closed sets are called δ -closed sets. (Kolchin Topology). If \mathcal{F} is δ -closed there is a bijection between delta closed sets and reduced closed D-subschemes of X^{∞} . If $\Sigma \subset X(\mathcal{F})$ is δ -closed, corresponding to a D-subscheme $H \subset X^{\infty}$ then one defines the absolute dimension $a(\Sigma)$ as the maximum of the transcendence degrees over \mathcal{F} of the function fields of the irreducible components of H. Example: $a(X(\mathcal{F})) = \infty$ if dim X > 0. If X descends to \mathcal{C} (i.e. comes from a variety $X_{\mathcal{C}}$ over \mathcal{C}) then $a(X_{\mathcal{C}}(\mathcal{C})) = dim X$. For G an algebraic group over \mathcal{F} , the above bijection induces a bijection between the δ -closed subgroups of finite absolute dimension of $G(\mathcal{F})$ and algebraic D-subgroups of G^{∞} .

By a δ -function on $X(\mathcal{F})$, where X is a variety, we mean a map $X(\mathcal{F}) \to \mathcal{F}$ obtained by composing ∇ with a regular map on X^{∞} . A δ -character on an algebraic group will mean a δ -function which is also an additive homomorphism.

Theorem. (δ -density Theorem [B93]) If X is a smooth projective unirational \mathcal{F} -variety then any δ -function on $X(\mathcal{F})$ is constant. Moreover, if X defined over an intermediate field L between \mathcal{C} and \mathcal{F} , $L \neq \mathcal{C}$, then X(L) is δ -dense in $X(\mathcal{F})$.

Theorem. (Finiteness of absolute dimension [B92]) Let A be an abelian \mathcal{F} -variety of dimension g. Then the intersection A^{\sharp} of the kernels of all δ -characters of A has finite absolute dimension $g \leq a(A^{\sharp}) \leq 2g$. Consequently, the δ -closure of any finite rank subgroup of $A(\mathcal{F})$ has finite absolute dimension $\leq 2g + r$, where r is the rank. In particular, in the trace zero case, the δ -closure of the group of division points of A(K) has finite absolute dimension.

The δ -characters are the incarnation, in differential algebraic geometry, of the "Manin homomorphisms"; but our finiteness result $(a(A^{\sharp}) < \infty)$ is quite different in nature from the Manin-Chai "Theorem of the kernel". What the latter says, in the trace zero case, in our terminology is the following:

Theorem of the Kernel. [Manin-Chai] Let A be an abelian \mathcal{F} -variety with \mathcal{F}/\mathcal{C} -trace zero. Then for any intermediate δ -field $\mathcal{C} \subset L \subset \mathcal{F}$ of definition for A which is finitely generated over \mathcal{C} we have $A^{\sharp} \cap A(L) = A(L)_{tors}$.

Theorem. (δ -maps on curves [B94]) Let X be a smooth projective curve over \mathcal{F} of genus $g \geq 2$, that does not descend to \mathcal{C} . Then there exists an injective δ -map $\phi: X \to \mathbf{A}^n$.

In a certain precise sense one can actually prove more namely that projective curves of genus at least 2 are affine in this geometry.

Half way towards our **abc** for abelian varieties we have the following differential algebraic generalisation of the geometric Lang conjecture on subvarieties of abelian varieties:

Theorem. (Differential Algebraic Lang [B92]) Let A be an abelian variety over \mathcal{F} with trace zero over \mathcal{C} . Let $\Sigma \subset A(\mathcal{F})$ be a δ -closed subgroup of finite absolute dimension and $X \subset A$ a closed subvariety. Then there exist in X finitely many translates of abelian subvarieties whose union contains $X(\mathcal{F}) \cap \Sigma$.

The above Theorem is indeed a generalisation of the geometric Lang conjecture because, together with the Theorem on finite absolute dimension, it formally implies the

Theorem. (Geometric Lang Conjecture [B92].) Let A be an abelian variety over K with trace zero over k. Let $\Gamma \subset A(\bar{K})$ be a subgroup of finite rank and $X \subset A$ a closed subvariety. Then there exist in $X(\bar{K})$ finitely many translates of abelian subvarieties whose union contains $X(\bar{K}) \cap \Gamma$.

Lecture 3. Description of proofs.

a. Descent results.

An \mathcal{F} -variety (resp. an algebraic group over \mathcal{F}) is said to descend to constants if it comes, via base change, from a variety (resp. an algebraic group) over \mathcal{C} .

The next four theorems are proved via complex analytic arguments; for the first theorem Gillet showed me an argument based on formal schemes which should be also considered in some sense analytic; this kind of argument, in formal geometry, does not seem to apply to the other results.

Theorem. (Descent of projective varieties [B87]) Any projective D-variety descends to constants.

Theorem. (Descent of linear algebraic groups [B92]) Any linear algebraic D-group descends to constants.

Remark: the above fails for non-linear groups. A VERY interesting question: Let G be an algebraic D-group and H be its maximum connected linear algebraic subgroup; does H descend to constants?

We won't need the previous two Theorems for our diophantine purposes. For the **abc** Theorem for abelian varieties with trace zero we will need:

Theorem. (Descent via D-groups [B92]) Let G be an algebraic D-group, $V \subset G$ a closed D-subvariety, and $V \to W$ a dominant morphism to a projective variety W of general type. Then the Albanese variety Alb(W) descends to constants.

For the **abc** Theorem for isotrivial abelian varieties we need:

Theorem. (Descent via D-groups, split case [B98]) Let W be a projective variety of general type over K. Assume W is a closed subvariety of A_K , where A is an abelian k-variety. Let G be any algebraic D-group, $V \subset G$ a D-subvariety and $u: V \to W$ be a dominant morphism. Then, after replacing K by a finite extension of it, one may find a closed k-subvariety $Z \subset A$ and a point $Q \in A(K)$ such that $W = Z_K + Q$ in A_K . Moreover, if we view W as a D-scheme by trivially lifting δ from K to $W \simeq Z_K = Z \otimes_k K$, then $u: V \to W$ is necessarily a morphism of D-schemes.

Let us sketch the proof of the Theorem on "descent via D-groups". We may assume \mathcal{C} is the field of complex numbers. We may further reduce ourselves to the case when $(V, W, G, Spec \mathcal{F}, \delta)$ comes, via base change, from a "situation in complex algebraic geometry" $(\mathbf{V}, \mathbf{W}, \mathbf{G}, \mathbf{S}, \delta_{\mathbf{S}})$ where

S is an affine complex curve with a non-vanishing vector field $\delta_{\mathbf{S}}$

W is projective over S with integral geometric fibres of general type

G is a group scheme of finite type over **S** equiped with a vector field $\delta_{\mathbf{G}}$, lifting $\delta_{\mathbf{S}}$, such that the inverse and the multiplication on **G** are $\delta_{\mathbf{G}}$ —equivariant (call such a $\delta_{\mathbf{G}}$ "group compatible")

 \mathbf{V} is a closed subvariety of \mathbf{G} , horizontal with respect to $\delta_{\mathbf{G}}$, with a dominant map to \mathbf{W} .

A lemma of Hamm says that an "analytic 1-parameter family of complex Lie groups" whose total space is equipped with a "group-compatible" analytic vector field lifting a non-vanishing vector field on the base, is locally analytically trivial. So locally analytically $\mathbf{G} = \mathbf{G}_0 \times \mathbf{S}$, $\delta_{\mathbf{G}} = (0, \delta_{\mathbf{S}})$, where \mathbf{G}_0 is some Lie group. (So we have an analytic splitting; note that there is no algebraic splitting in general!) It follows that $\mathbf{V} \to \mathbf{S}$ is locally analytically trivial. Fix $s_0 \in \mathbf{S}$. For any $s \in \mathbf{S}$ consider the analytic map

$$\phi_s: \mathbf{V}_{s_0} \simeq \mathbf{V}_s \to \mathbf{W}_s$$

Its image contains a Zariski open set. The Big Picard Theorem [Kobayashi-Ochiai 75] says that any analytic map from an algebraic variety to a projective variety of general type, whose image contains a complex open set, is in fact algebraic. So our maps ϕ_s are algebraic. So they induce maps from the Albanese variety of (a smooth projective model of) \mathbf{V}_{s_0} into $Alb(\mathbf{W}_s)$. So all $Alb(\mathbf{W}_s)$ are isomorphic to each other and we are done.

b. Sketch of proof of the Finite Absolute Dimension Theorem .

Set $C = Spec \mathcal{O}(A^{\infty})$. One easily checks that $U := Ker(A^{\infty} \to A)$ is unipotent. Then one proves that whenever one has an extension

$$0 \to U \to G \to A$$

with A an abelian variety and U unipotent (infinite dimensional) then one also has an exact sequence

$$0 \to \tilde{A} \to G \to \tilde{U} \to 0$$

with \tilde{A} finite dimensional and \tilde{U} unipotent (infinite dimensional). (This is an exercise in the theory of proalgebraic groups.) The one is done by noting that \tilde{A} can be chosen to be a D-subgroup and that A^{\sharp} is the δ -closed subset correspoding to \tilde{A} .

c. Proof of Differential Algebraic Lang.

Assume we are in the hypothesis of Differential Algebraic Lang. Then Σ corresponds to an algebraic D-subgroup G of A^{∞} . Let V be an irreducible component of $X^{\infty} \cap G$ and let $Y \subset X$ be the Zariski closure of the image of V in X. We claim Y is a translate of an abelian subvariety, and we shall be done. Assume it's not. By a result of Ueno there is an abelian subvariety $A_1 \subset A$ such that the image W of Y in A/A_1 is positive dimensional, of general type. By the Theorem on "descent via D-groups" it follows that Alb(W) descends to constants. But A was assumed to have trace zero, a contradiction.

d. Proof of abc for abelian varieties.

Preparation. Let A be an abelian variety over K, with K/k-trace zero and let U be an affine open set. The closed set $A \setminus U$ is the support of a very ample effective divisor D on A. Note that D is neither irreducible nor reduced apriori. Embed A into \mathbf{P}_K^N such that D is given by $x_0 = 0$, where $x_0, ..., x_N$ are a basis of $H^0(\mathbf{P}_K^N, \mathcal{O}(1))$. Let $U_j \subset A$ be the open sets defined by $x_j \neq 0$. So $U_0 = U$. We need to show that there is a constant C such that for any point $\eta = (\eta_1, ..., \eta_N) \in U(K)$ and for any place v we have $v(\eta) \geq C$. This actually easily implies the stronger Bounded Multiplicity Theorem as well.

For simplicity we shall assume A is simple.

Constructing the finite set Y. Let A^{∞} , D^{∞} be attached to A and D respectively (the whole construction being made over K, rather than over \mathcal{F}). Then D^{∞} appears as a closed subscheme of A^{∞} . Exactly as in the proof of Differential Algebraic Lang, there exists an algebraic D-subgroup $G \subset A^{\infty}$ such that for all $P \in A(K)$ we have $\nabla(P) \in G(K)$. Set $V := D^{\infty} \cap G$ (scheme theoretic intersection) and let $Y \subset A$ be the Zariski closure of the image of V via the map $A^{\infty} \to A$; we view Y with its structure of reduced subscheme of A. As in the proof of Differential Algebraic Lang Y is isomorphic, over the algebraic closure of K, with a finite union of translates of abelian subvarieties. Since A was assumed simple, Y is finite.

For simplicity we shall assume the finitely many points of Y are rational over K.

"Uniform discreteness": ϕ_{ij} and γ . It is an easy consequence of the Manin-Chai Theorem of the Kernel that one can find, for each j, a finite

family $(\phi_{ij})_{i\in I_j}$, $\phi_{ij} \in \mathcal{J}(Y \cap U_j)$ and there exists a real number $\gamma \geq 0$ such that for any v and any $P \in U_j(K) \backslash Y$, there exists an index $i \in I_j$ such that $v(\phi_{ij}(P)) \leq \gamma$. (Here \mathcal{J} of a subscheme denotes the ideal defining that subscheme.) Identify $\phi_{ij} \in \mathcal{O}(U_j)$ with their pull-backs in $\mathcal{O}(U_j^{\infty})$. Then, for a suitable q, we have

$$\phi_{ij}^q \in \mathcal{J}(V \cap U_j^{\infty}) = \mathcal{J}(D^{\infty} \cap U_j^{\infty}) + \mathcal{J}(G \cap U_j^{\infty})$$

Clearly

$$\mathcal{J}(D \cap U_j) = \frac{x_0}{x_j} \cdot \mathcal{O}(U_j)$$

So we get

$$\mathcal{O}(D^{\infty} \cap U_j^{\infty}) = (\frac{x_0}{x_j}, \delta(\frac{x_0}{x_j}), \delta^2(\frac{x_0}{x_j})...)\mathcal{O}(U_j^n)$$

We may write, for all j and $i \in I_j$:

$$(1) \quad \phi_{ij}^q = \sum_{t=0}^n F_{ijt} \left(\frac{x_0}{x_j}, ..., \frac{x_N}{x_j} \right) \delta^t \left(\frac{x_0}{x_j} \right) + g_{ij}$$

with $g_{ij} \in \mathcal{J}(G \cap U_j^{\infty}) \subset \mathcal{O}(U_j^{\infty})$ and F_{ijt} differential polynomials with K-coefficients.

Defining β . Clearly we may find a real number $\beta \geq 0$ such that for any $\eta \in K^N$ and any v with $v(\eta) \geq 0$ we have $v(F_{ijt}(\eta)) \geq -\beta$ for all i, j, t.

Fixing P and v. Now we fix a point $P \in U(K) = A(K) \setminus D$ with coordinates $\xi \in K^{N+1}$ and fix a place v. Estimate equation (1) at $\nabla(P) \in A^{\infty}(K)$. Since $\nabla(P) \in G(K)$ we have $g_{ij}(\nabla(P)) = 0$. So by further taking v we get, for each j, and each $i \in I_j$,:

$$(2) \quad q \cdot v(\phi_{ij}(P)) \ge \min_{t} \left\{ v\left(F_{ijt}\left(\frac{\xi_0}{\xi_j}, ..., \frac{\xi_N}{\xi_j}\right)\right) \right\} + \min_{t} \left\{ v\left(\delta^t\left(\frac{\xi_0}{\xi_j}\right)\right) \right\}$$

Choosing j. Now for our fixed P and v there exists j such that $\xi_j \neq 0$ (hence $P \in U_j(K)$) and $v(\xi_i/\xi_j) \geq 0$ for all i, i.e. $v(\xi_j) = v(\xi)$. Fix such a j.

Choosing *i*. For our fixed P, v, j there exists, by "uniform discreteness", an index $i \in I_j$ such that

$$(3) \quad v(\phi_{ij}(P)) \le \gamma$$

Fix such an index i.

Conclusion. Now, by the choice of β , we have, for all t,

$$(4) \quad v(F_{ijt}\left(\frac{\xi_0}{\xi_j}, ..., \frac{\xi_N}{\xi_j}\right)) \ge -\beta$$

It is trivial to see that there exists a real number $\theta \geq 0$ such that for all $x \in K$ and all v we have $v(\delta x) \geq v(x) - \theta$. Then putting together (2), (3), and (4), we get

$$q \cdot \gamma \ge q \cdot v(\phi_{ij}(P)) \ge -\beta + (v(\xi_0) - v(\xi_j) - n \cdot \theta)$$

If $\eta = (\xi_1/\xi_0, ..., \xi_N/\xi_0)$ then we get

$$v(\eta) = v(\xi) - v(\xi_0) \ge C := -(\beta + q \cdot \gamma + n \cdot \theta)$$

and we are done.

References

[BM] D.Brownawell, D.Masser, Vanishing sums in function fields, Math. Proc. Cambridge Philos. Soc. 100 (1986), 427-434.

[B87] A. Buium, Fields of definition of algebraic varieties in characteristic zero, Compositio Math. 61(1987),339-352.

[B92] A. Buium, Intersections in jet spaces and a conjecture of S.Lang, Annals of Math. 136 (1992), 583-593.

[B93] A. Buium, Geometry of differential polynomial functions I: algebraic groups, Amer J. Math. 115, 6 (1993), 1385-1444.

[B94] A. Buium, Geometry of differential polynomial functions II: algebraic curves, Amer. J. Math., 116, 4, (1994), 785-819.

[B95] A. Buium, Geometry of differential polynomial functions III: moduli spaces, Amer. J. Math., 117 (1995), 1-73.

[B94'] A. Buium, The **abc** theorem for abelian varieties, Intern. Math. Research Notices 5 (1994), 219-233.

[B98] A. Buium, Intersection multiplicities on abelian varieties, Math. Ann. (1998).

[K] E. Kolchin, Differential Algebra and Algebraic Groups, Academic Press , New York, 1973.

[L] S.Lang, Number Theory III, Springer Verlag.

[Mas] R.C.Mason, Diophantine equations over function fields, London Math. Soc. Lecture Notes Series 96, Cambridge Univ. Press 1984.

[Man] Yu.I.Manin, Rational points on an algebraic curve over function fields, Transl. AMS II, Ser. 50 (1966), 189-234 and Letter to the Editor, Izv.Akad.Nauk USSR, 34 (1990), 465-466.

[Si] J.H.Silverman, The S-unit equation over function fields, Math. Proc. Camb. Phil. Soc. 95, 3, (1984), 3-4.

[Sc] T. Scanlon, The abc theorem for commutative algebraic groups in characteristic p, IMRN, 18 (1997), 881-898.

[V] F.Voloch, Diagonal equations over function fields, Bol. Soc. Brasil. Mat. 16(1985), 29-39.

[W] J.T.Y.Wang, S-integral points of projective space omitting hyperplanes over function fields of positive characteristic, preprint.

Dept. Math. and Stat. University of New Mexico, Albuquerque