Differential algebraic geometry and abc

Alexandru Buium

Lecture 1. Motivation: abc on affine varieties.

We start by explaining a generalization of abc that makes sense for
any affine variety over a global field. The usual abc is simply the case
of P1\{0,1,00}. We then state our main result that says that this general-
ized abc holds, under certain trace conditions, for affine open sets of abelian
varieties over function fields.

Let K be a field equipped with a family of absolute values | |, : K —
[0,00), v € M, all of which, except finitely many, are non-archimedian. Set
v(z) = —log|z|, for z € K*. Assume (m,) is a collection of positive integers
such that the “product formula”

> m(z) =0, x€K*

holds. Set
Yo := inf{v(K*) N (0,00)}

Also, for any n = (n1,...,nn) € KV and v € M set

v(n) = minv(7y)
Define the (affine, logarithmic) height
heightan : AN(K) = KN — [0, 00)
by the formula

heightAN (77) = — Z mvv(77> = va max IOng ‘773"11
v(n)<0 v ’

where log* x := max{logz,0}, z € [0,00). Note that

height an (n) = heightpn (1 :my @ ... i)



where
heightpn (g : ... : xn) = Y m, maxlog|z;l,
” j

is the usual height in projective space. On the other hand define the (loga-
rithmic) conductor

condan : AN(K) = KV — [0,00)
by the formula

condan(n) = Z MyYo
v(n)<0

Clearly, by the very definition of v, we have
condan(n) < heightan(n), ne€ KV

We need the following piece of notation. Let f,g : S — [0,00) be two
real functions on a set S; we write

f<g+0()

if there exists a positive real constant C' such that
f(P)<g(P)+C, PeS

and we write f =g+ O(1) if f < g+ O(1) and g < f 4+ O(1). We write

f<<g+0Q1)
if there exist two real positive constants C', Cy such that

f(P)<Cig(P)+Cy PeS

and we write f = g+ O(1) if f << g+ O(1) and g << f + O(1). Coming
back to height and cond one easily checks that if P : AN(K) — A"(K) a
map given by an n—tuple of polynomials in N variables with K —coefficients

then we have
heightan o P << heightan + O(1)

condan o P < condan + O(1)



This permits to define the height and the conductor for any affine
variety as follows. Let U be an affine variety over K. Let i : U — A" be a
closed immersion and define

heighty : U(K) — [0, 00)
condy : U(K) — [0,00)
by the formulae
heighty (P) := heightan(i(P)), P € U(K)
condy (P) := condan (i(P)), P € U(K)

By the above discussion, if heighty and condy are defined by a closed im-
mersion ¢ and height}; and condy; are defined by a closed immersion ¢’ then

heighty = height; + O(1)
condy = condy + O(1)
In particular we have

condy << heighty + O(1)

Here is our basic definition.

Definition. We say that the abc estimate holds on U if

heighty << condy + O(1)

In this lecture we would like to understand what are, conjecturally, the
affine varieties U on which the abc estimate holds. To tackle this question,
and establish the link with the “usual” abc we need to be more specific about
our field K. Assume, in what follows, that we are in one of the following
situations:

1) Number field case. K is a number field equipped with its standard
family of absolute values (| |,) (normalized in such a way that they extend
the standard absolute values of Q; in particular, if v divides a rational prime
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p, then |p|, = p~'.) We take m, = [K, : Q,]. So, for any non-archimedian
v, dividing an unramified rational prime p, we have 7, = v(p) = logp so
myY, = log Nv where Nw is the norm of v (cardinality of the residue field of
v). Since there are only finitely many ramified primes, we have

condax(n) = Y logNv, ne K"

v(n)<0

2) Function field case. K is a function field of one variable over an
algebraically closed field k of characteristic zero. We equip K with the abso-
lute values | |, arrising from the k—rational points v of the smooth projective
model V' of K/k; we normalise them via the condition ~, = 1 for all v, and
we take m, = 1 for all v. So in this case condan~(n), for n € KV, is simply
the number of points v € V' which are poles for at least one of the rational
functions n;.

It is a trivial exercise to show that if, say, K = Q or K = k(t), and if
there exists a non-constant morphism of K —varieties

P"\{0,00} = U

into an affine K —variety U then the abc estimate fails on U. On the other
hand the optimist would be tempted to believe that the presence of such mor-
phisms is the only obstruction to the abc estimate; we make, optimistically,
the following:

Conjecture. Assume U is a smooth affine variety over K and assume that
any morphisms of K —varieties P\{0,00} — U is constant. Then the abc
estimate holds on U.

Our Conjecture should be viewed as an afine analogue of “Lang’s con-
jecture” saying that if X is a smooth projective variety over K and if any
morphism from an algebraic group G to X is constant then the points of
X (K) have bounded height; hence, in the number field case X (K) is finite.
(In Lang’s conjecture one allows morphisms G — X defined over the alge-
braic closure K of K it might be reasonable to allow this in our Conjecture
as well.)



In case K = Q and U = P'\{0, 1, 0o}, the Conjecture above simply says
that the abc estimate holds on this particular U; note that this is equivalent
to the following:

Variant of abc conjecture. For any relatively prime integers a, b, c with
a + b = c there exist real numbers C' > 1 and p > 1 such that

max{|al, ||, |c|} < C - rad(abc)”

(As usual rad(n), where n is an integer, is defined as the product of all
primes dividing n; this Variant is weaker than the abc of Masser and Oesterlé
which predicts that g can be made as close to 1 as we want. However this
Variant still implies, say, the assymptotic Fermat.)

To see the equivalence between the Conjecture and the Variant of abc
for K = Q and U = P'\{0,1, 00}, embed U into A? via the map

1
(1:x)— <x’:v(:v—1)>

Then, for coprime integers a, b, c with a +b = ¢, we have that heighty (1 : £)
equals

a2

heightps (1 : 2 : =) = log max(Jabel, [1°c], |a*]) = log max(jal, |8 c]) + O(1)

On the other hand

do(1: <) = condpo(S, 2 = log rad(abe)
condy(1: —) = condaz(~, =) = log rad(abc

Note that, by a result due (independently) to Mason and Silverman, the
abc estimate holds for the projective line minus 3 points. On the other hand
results of Voloch [V], Brownawell-Masser [BM], and Wang [W] can suitably
be interpreted as abc estimates “outside some exceptional loci” for projective
spaces minus unions of hyperplanes.



Theorem. (abc for abelian varieties with trace zero [B94’]) In the function
field case the abc estimate holds for any affine open set of an abelian variety
with trace zero.

Theorem. (abc for isotrivial abelian varieties [B98]) Let K be a function
field over k, let Aj, be an abelian variety over k and Dy a divisor in A which
does not contain any translate of a non-zero abelian subvariety (in particular
Dy, is ample so Uy := Ag\Dy is affine). Let U := Uy ®; K. Then the abc
estimate holds on U.

The above Theorems are immediate consequences of the following stronger
results:

Theorem. (Bounded Multiplicity Theorem, trace zero case [B94’]) Assume
A/K is an abelian variety with trace zero and let f € K(A) be a rational
function. Then there exists a constant C' depending only on K, A, f with the
following property. For any point P € A(K) where f is defined and does not
vanish, all zeroes and poles of f(P) € K* have multiplicity at most C.

Theorem. (Bounded Multiplicity Theorem, isotrivial case [B98]) Let X be
a smooth projective curve over k, A an abelian variety over k, and D an
effective divisor on A. Assume that D contains no translate of a non zero
abelian subvariety. Then there exists a real constant C' > 0, depending only
on X, A, and D with the property that for any morphism f : X — A, with
f(X) & D, all points of the divisor f*D have multiplicity at most C.

The proofs of the results above are based on “differential algebraic ge-
ometry”. A characteristic p version of these results was proved by Scanlon

[Sc].
Lecture 2. Differential algebraic geometry.

Let F be a field of characteristic zero equipped with a derivation . We
let C be the constant field. (If K is a function field we will always assume we
have fixed a non-zero k—derivation on it and (K, d) is embedded into (F,).)
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Following the classical work of Ritt and Kolchin one defines the §—polynomial

ring F{T'}, where T is an n—tuple of variables, as the (usual) polynomial
ring over F in the variables T, i > 0. The order of A € F{T} is the highest
1 such that a variable Tj(i) is present in A. F is called d—closed if for any
A,B € F{T'}, T a variable, such that ord B < ord A, there exists a € F
such that A(a) =0 and B(a) # 0.

We need more definitions. A D—scheme is simply an F—scheme V with a
given derivation on Oy that lifts §. D—schemes form a category (morphisms
are required to commute with the derivations). A D-—group scheme is a
D—scheme which is also an F—group scheme such that the multiplication,
inverse, and unit are morphisms of D—schemes. A D—variety is a D—scheme
which is also a variety over F. An algebraic D—group is a D—group scheme
which is also an algebraic group over F.

One has a forgetful functor

{D — schemes} — {F — schemes},V s V'
It has a right adjoint
{F — schemes} — {D — schemes}, X — X

Homz(V', X) = Homp(V, X*)

defined as follows. If X = Spec F[T]/I set X := Spec F{T}/|1], [I] :=
(I,01,6%I,...). In the non-affine case one glues the affine pieces. (Note that
X is the inverse limit of a system X™ of varieties obtained by truncat-
ing everything to order n. One has a natural map V : X(F) — X>(F)
which in coordinates sends a € F into (a,da,d?a,...). Pull backs via this
map of Zariski closed sets are called d—closed sets. (Kolchin Topology). If
F is d—closed there is a bijection between delta closed sets and reduced
closed D—subschemes of X*. If ¥ C X (F) is d—closed, corresponding to a
D—subscheme H C X then one defines the absolute dimension a(X) as the
maximum of the transcendence degrees over F of the function fields of the
irreducible components of H. Example: a(X(F)) = oo if dim X > 0. If X
descends to C (i.e. comes from a variety X¢ over C) then a(X¢(C)) = dim X.
For G an algebraic group over F, the above bijection induces a bijection
between the d—closed subgroups of finite absolute dimension of G(F) and
algebraic D-subgroups of G*.



By a d—function on X (F), where X is a variety, we mean a map X (F) —
F obtained by composing V with a regular map on X*>°. A d—character on
an algebraic group will mean a d—function which is also an additive homo-
morphism.

Theorem. (0—density Theorem [B93]) If X is a smooth projective unira-
tional F—variety then any §—function on X (F) is constant. Moreover, if X
defined over an intermediate field L between C and F, L # C, then X (L) is
d—dense in X (F).

Theorem. (Finiteness of absolute dimension [B92]) Let A be an abelian
F—variety of dimension g. Then the intersection A* of the kernels of all
d—characters of A has finite absolute dimension g < a(A*) < 2g. Conse-
quently, the d—closure of any finite rank subgroup of A(JF) has finite abso-
lute dimension < 2g + r, where r is the rank. In particular, in the trace
zero case, the 0—closure of the group of division points of A(K) has finite
absolute dimension.

The d—characters are the incarnation, in differential algebraic geometry,
of the “Manin homomorphisms”; but our finiteness result (a(A*) < oo) is
quite different in nature from the Manin-Chai “Theorem of the kernel”. What
the latter says, in the trace zero case, in our terminology is the following:

Theorem of the Kernel. [Manin-Chai] Let A be an abelian F—variety
with F/C—trace zero. Then for any intermediate —field C C L C F of
definition for A which is finitely generated over C we have A* N A(L) =
A(L)tors-

Theorem. (0—maps on curves [B94]) Let X be a smooth projective curve
over F of genus g > 2, that does not descend to C. Then there exists an
injective 0—map ¢ : X — A"

In a certain precise sense one can actually prove more namely that pro-
jective curves of genus at least 2 are affine in this geometry.



Half way towards our abc for abelian varieties we have the following
differential algebraic generalisation of the geometric Lang conjecture on sub-
varieties of abelian varieties:

Theorem. (Differential Algebraic Lang [B92]) Let A be an abelian variety
over F with trace zero over C. Let ¥ C A(F) be a é—closed subgroup of
finite absolute dimension and X C A a closed subvariety. Then there exist
in X finitely many translates of abelian subvarieties whose union contains

X(F)nx.

The above Theorem is indeed a generalisation of the geometric Lang
conjecture because, together with the Theorem on finite absolute dimension,
it formally implies the

Theorem. (Geometric Lang Conjecture [B92].) Let A be an abelian variety
over K with trace zero over k. Let I' C A(K) be a subgroup of finite rank
and X C A a closed subvariety. Then there exist in X (K) finitely many

translates of abelian subvarieties whose union contains X (K)NT.

Lecture 3. Description of proofs.
a. Descent results.

An F—variety (resp. an algebraic group over F) is said to descend to
constants if it comes, via base change, from a variety (resp. an algebraic
group) over C.

The next four theorems are proved via complex analytic arguments; for
the first theorem Gillet showed me an argument based on formal schemes
which should be also considered in some sense analytic; this kind of argument,
in formal geometry, does not seem to apply to the other results.

Theorem. (Descent of projective varieties [B87]) Any projective D—variety
descends to constants.



Theorem. (Descent of linear algebraic groups [B92]) Any linear algebraic
D-group descends to constants.

Remark: the above fails for non-linear groups. A VERY interesting ques-
tion: Let G be an algebraic D-group and H be its maximum connected linear
algebraic subgroup; does H descend to constants ?

We won’t need the previous two Theorems for our diophantine purposes.
For the abc Theorem for abelian varieties with trace zero we will need:

Theorem. (Descent via D-groups [B92]) Let G be an algebraic D-group,
V C G a closed D—subvariety, and V. — W a dominant morphism to a
projective variety W of general type. Then the Albanese variety Alb(W)
descends to constants.

For the abc Theorem for isotrivial abelian varieties we need:

Theorem. (Descent via D-groups, split case [B98]) Let W be a projective
variety of general type over K. Assume W is a closed subvariety of Ay,
where A is an abelian k—variety. Let G be any algebraic D—group, V C G
a D—subvariety and v : V — W be a dominant morphism. Then, after
replacing K by a finite extension of it, one may find a closed k—subvariety
Z C A and a point ) € A(K) such that W = Zx+Q in Ag. Moreover, if we
view W as a D—scheme by trivially lifting 6 from K toW ~ Zx = 7 ®; K,
then u : V — W is necessarily a morphism of D—schemes.

Let us sketch the proof of the Theorem on “descent via D-groups”. We
may assume C is the field of complex numbers. We may further reduce
ourselves to the case when (V, W, G, Spec F,d) comes, via base change, from
a “situation in complex algebraic geometry” (V, W, G, S, ds) where

S is an affine complex curve with a non-vanishing vector field dg
W is projective over S with integral geometric fibres of general type

G is a group scheme of finite type over S equiped with a vector field d¢g,
lifting dg, such that the inverse and the multiplication on G are g —equivariant
(call such a dg “group compatible”)
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V is a closed subvariety of G, horizontal with respect to dg, with a
dominant map to W.

A lemma of Hamm says that an “analytic 1-parameter family of complex Lie
groups” whose total space is equipped with a “group-compatible” analytic
vector field lifting a non-vanishing vector field on the base, is locally analyt-
ically trivial. So locally analitically G = Gy x S, dg = (0,0s), where Gy
is some Lie group. (So we have an analytic splitting; note that there is no
algebraic splitting in general!) It follows that V. — S is locally analytically
trivial. Fix sqg € S. For any s € S consider the analytic map

s: Vg, 2V, > W,
0

Its image contains a Zariski open set. The Big Picard Theorem [Kobayashi-
Ochiai 75| says that any analytic map from an algebraic variety to a projective
variety of general type, whose image contains a complex open set, is in fact
algebraic. So our maps ¢, are algebraic. So they induce maps from the
Albanese variety of (a smooth projective model of) Vy, into Alb(W5). So all
Alb(W) are isomorphic to each other and we are done.

b. Sketch of proof of the Finite Absolute Dimension Theorem .

Set C' = Spec O(A>). One easily checks that U := Ker(A* — A) is

unipotent. Then one proves that whenever one has an extension
0-U—-G—A

with A an abelian variety and U unipotent (infinite dimensional) then one
also has an exact sequence

0—-A—-G—U—0

with A finite dimensional and U unipotent (infinite dimensional). (This is
an exercise in the theory of proalgebraic groups.) The one is done by noting
that A can be chosen to be a D—subgroup and that A is the —closed subset
correspoding to A.

c. Proof of Differential Algebraic Lang.
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Assume we are in the hypothesis of Differential Algebraic Lang. Then ¥
corresponds to an algebraic D—subgroup G of A*. Let V be an irreducible
component of X*° NG and let Y C X be the Zariski closure of the image
of Vin X. We claim Y is a translate of an abelian subvariety, and we shall
be done. Assume it’s not. By a result of Ueno there is an abelian subvariety
A; C A such that the image W of Y in A/A; is positive dimensional, of
general type. By the Theorem on “descent via D-groups” it follows that
Alb(W) descends to constants. But A was assumed to have trace zero, a
contradiction.

d. Proof of abc for abelian varieties.

Preparation. Let A be an abelian variety over K, with K /k—trace zero
and let U be an affine open set. The closed set A\U is the support of a
very ample effective divisor D on A. Note that D is neither irreducible nor
reduced apriori. Embed A into P¥ such that D is given by zg = 0, where
To, ...,y are a basis of HO(PY,O(1)). Let U; C A be the open sets defined
by z; # 0. So Uy = U. We need to show that there is a constant C' such that
for any point n = (n,...,nny) € U(K) and for any place v we have v(n) > C.
This actually easily implies the stronger Bounded Multiplicity Theorem as
well.

For simplicity we shall assume A is simple.

Constructing the finite set Y. Let A*, D> be attached to A and D
respectively (the whole construction being made over K, rather than over F).
Then D* appears as a closed subscheme of A*. Exactly as in the proof of
Differential Algebraic Lang, there exists an algebraic D—subgroup G C A*
such that for all P € A(K) we have V(P) € G(K). Set V := D*NG (scheme
theoretic intersection) and let Y C A be the Zariski closure of the image of
V via the map A® — A; we view Y with its structure of reduced subscheme
of A. Asin the proof of Differential Algebraic Lang Y is isomorphic, over the
algebraic closure of K, with a finite union of translates of abelian subvarieties.
Since A was assumed simple, Y is finite.

For simplicity we shall assume the finitely many points of Y are rational
over K.

“Uniform discreteness”: ¢;; and . It is an easy consequence of the
Manin-Chai Theorem of the Kernel that one can find, for each j, a finite

12



family (¢i;)ier,, ¢i; € J(Y NU;) and there exists a real number v > 0 such
that for any v and any P € U;(K)\Y, there exists an index ¢ € I; such
that v(¢;;(P)) <. (Here J of a subscheme denotes the ideal defining that
subscheme.) Identify ¢;; € O(U;) with their pull-backs in O(Us°). Then, for
a suitable ¢, we have

LegvnUr)=JD>nU) +J(GNUT)

Clearly
T
J(DNU;) == 0(U;)

So we get
O(D>NUR) = (22,6(2),6%(™2)..)0(U})

i T L
We may write, for all j and 7 € I;:

TN Zo
E — g
B ) (5 v

with g;; € J(G NUF) C OU*) and Fyj; differential polynomials with
K —coefficients.

Defining 3. Clearly we may find a real number 8 > 0 such that for any
n € KV and any v with v(n) > 0 we have v(Fj;;(n)) > —0 for all , j, t.

Fixing P and v. Now we fix a point P € U(K) = A(K)\D with
coordinates £ € K¥*! and fix a place v. Estimate equation (1) at V(P) €
A>(K). Since V(P) € G(K) we have ¢;;(V(P)) = 0. So by further taking v
we get, for each j, and each ¢ € [}

o iz (8o £))

Choosing j. Now for our fixed P and v there exists j such that §; # 0
(hence P € U;(K)) and v(&;/&;) > 0 for all 4, i.e. v(&;) = v(£). Fix such a j.

Choosing i. For our fixed P, v, j there exists, by “uniform discreteness”,
an index ¢ € [; such that

(3)  w(giy(P)) <~
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Fix such an index <.

Conclusion. Now, by the choice of 3, we have, for all t,

£o £N>
4 v(E | =, ..., = |) > -0
@ ol (2 )
It is trivial to see that there exists a real number 8 > 0 such that for all
x € K and all v we have v(dz) > v(z) — 6. Then putting together (2), (3),
and (4), we get

q-v=>q v(9i(P) = =B+ (v() —v() —n-0)
If n = (&/%, - En /&) then we get
v(n) =v(€) —v(&) >C:=—(B+q-v+n-0)

and we are done.
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