
THREE LECTURES ABOUT THE ARITHMETIC OF ELLIPTIC CURVES.

(– These are very rough, unedited, and preliminary notes – B. M.)

Lecture I. Introduction to ABC Problems.

I.1 What is Number Theory? And why does it turn out to be so directly tied to
geometry? to the representation theory of groups? or, nowadays, to physics? How difficult
it is, to gauge the importance, the centrality, of a question posed about numbers! Which
are the questions that will turn out to be frivolous dotings on mere surface phenomena?
And which questions lead to an understanding of deeper structure? Or perhaps you might
want to phrase these wonderings with the opposite tonality: Which are the questions that
will merely lead the question-asker to remoter structures, further and further from the basic
object? And which of the questions will keep faithful focus on the texture of numbers and
their interrelations?

The subject has a bounty of famous ancient problems: direct queries, which can
be asked in not too technical, almost pre-mathematical, language: questions about the
placement of prime numbers among all numbers ( the Goldbach conjecture, the twin prime
conjecture, the“Schinzel hypothesis” predicting when there are an infinite number of prime
number values of a given polynomial, etc.), and also questions about the behavior of the
sets of “perfect powers” under simple arithmetic operations.

It is this second type of question that I want to talk about this hour. A perfect
power is the n-th power of an integer where n is some natural number > 1. These have
attracted attention from the earliest times, beginning with perfect squares, which arise
in reflections concerning the relationship given in the Pythagorean Theorem, applied to
right-angle triangles all three of whose sides are integral multiples of a given unit. Of
course, perfect squares arise in other ways as well; consider Fibonacci’s reflection in his
treatise“Liber Quadratorum” in 1225 on perfect squares:

“I thought about the origin of all square numbers and discovered that they arise out
of the increasing sequence of odd numbers; for the unity is a square. namely 1; to this
unity is added 3. making the second square, namely 4, with root 2; if the sum is added to
the third odd number, namely, 5,...”

There is no end of famous problems regarding the most simple-seeming questions of
placement of perfect powers, and sums of them, on the number line, (Fermat: for n > 2
the sum of two n-th powers is never an n-th power; Catalan (1844): the numbers 8 and 9
are the only consecutive perfect powers; Waring etc. Also, there is the problem (at first
glance, it is somewhat curious to single this problem out!) of finding for any fixed integer
k, all integral solutions to the “Mordell Equation”

Y 2 −X3 = k.

As for Fermat’s Last Theorem, we now have a proof, thanks to the celebrated efforts
of Wiles and Taylor (1995).
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In the direction of the Catalan Problem, we know, thanks to Tijdeman (1976) –who
used Baker’s theory of lower bounds for nonvanishing linear forms in logarithms– that
there are only a finite set of (pairs of) consecutive perfect powers. An upper bound (for a
perfect power whose successor is also a perfect power) can be computed from Tijdeman’s
proof (work of Langevin) to be

eeee730

.

As for the Mordell Equation, a general theorem of Siegel (1929) guarantees that for a
given nonzero integer k it has only a finite number of integral solutions (as does any affine
curve of genus > 0 over the ring of integers). Moreover, much explicit work has been done
(both unconditionally and dependent upon standard conjectures) to finding concretely the
solutions for given values of k < 100, 000 (cf [ ]).

If one views each of the problems above as ”Diophantine”, i.e., as the problem of
finding integral solutions to specific algebraic equations, one is struck by how specific,
indeed, these equations are. To nudge oneself towards a more flexible type of problem which
still carries much of the flavor of the problems we have reviewed, let us generalize somewhat
the idea of a “perfect power”– and deal, instead, with numbers possessing comparatively
large perfect power divisors. My main reason for considering this kind of generalization
is that it is a liesurely way of getting some intuition for, and appreciation of, the recent
ABC-conjecture due to Masser and Oesterlé. A second reason is to produce a source
of problems which can be stated in relatively nontechnical language, which might ever-
so-slightly remind one of the constellation of “Manin Conjectures” (these being much
more precise predictions concerning the asymptotics of rational points of bounded height
in varieties with ample anti-canonical bundle ) currently being framed and studied by
Batyrev, Peyre, Tschinkel, and Manin.

To prepare for all this, recall that the radical of a non-zero number N , denoted rad(N),
is the product of all the prime divisors of N ; so rad(−1) = 1, rad(24) = 6, etc.

Definition. If N 6= 0,±1 is an integer, by the power of N , denoted P (N), we mean the
real number

P (N) =
log |N |

log rad(N)
.

It is reasonable to simply convene P (±1) := ∞ so that the power function is defined
for all non-zero integers. We have that P (N) ≥ 1 and (for N > 1) P (N) = 1 if and only
if N is “square-free”, i.e., if and only if N is not divisible by any perfect square (> 1). If
N is a perfect n-th power, we have that P (N) ≥ n.

For a > 1 a real number, by an a-powered number let us mean a non-zero number
N with P (N) ≥ a.We will be wanting to study the properties of the set of a-powered
numbers– the “placement” of these sets among all integers, the behavior of these sets
under simple arithmetic operations.

As a way of introduction, let us first answer the question of how “many” numbers
N are there with P (N) = 1? More exactly, for a positive real number X let Sq .free(X)
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denote the number of square-free numbers N in the interval 1 < N < X; how fast does
Sq .free(X) tend to ∞ with X?

The answer, which involves a small piece of “sieve theory” ( legacy of Eratosthenes),
has been known for quite a while and I will review the basic idea behind it. The first step
in setting up our “sieve” is to array “in a line” all the integers N in the range 1 < N < X.
There are roughly X of them. Next, so as not to get confused by too many numbers
appearing in our calculation, let us rename the prime numbers as p1, p2, · · · in increasing
order, so that, in fact, p1 is the prime number 2;p2 is, in fact, the prime number 3 , etc.).
Now, cross off all integers N divisible by the square of the first prime number, i.e., divisible
by p2

1 (= 4) for surely none of these N ’s are squarefree. After having crossed these off,
we are left with roughly (1 − 1

p2
1
) · X remaining numbers in our line. We now want to

cross off all integers N divisible by the square of the second prime number, i.e., divisible
by p2

2 (= 9) for, again, surely none of these N ’s are squarefree. But we must be careful to
make the count of what remains. Thinking about this, you find that at this stage, after
numbers divisible by p2

1 and p2
2 are crossed off, is roughly (1− 1

p2
1
− 1

p2
2
+ 1

(p1p2)2
) ·X numbers

N . The point here is that if we had not included the third term + 1
(p1p2)2

, one would have
(erroneously) counted twice “as removed” all the numbers N which are divisible by (p1p2)2,
the first time because N is divisible by p2

1 and a second time because N is divisible by p2
2.

Since
(1− 1

p2
1

− 1
p2
2

+
1

(p1p2)2
) ·X = (1− 1

p2
1

)(1− 1
p2
2

) ·X,

I hope you see the pattern that is emerging. Indeed, with some work, one can (control the
error terms, cf. [***] and) show the asymptotics to be:

Sq .free(X) =
∏

p=2,3,···
(1− 1

p2
) ·X + o(X),

as X tends to ∞. Since ∏
p=2,3,···

(1− 1
p2

) =
1

ζ(2)
,

where ζ(s) is Riemann’s ζ-function, and since

ζ(2) =
∞∑

n=1

1/n2 =
π2

6
,

we get:

Sq .free(X) =
6
π2
·X + o(X),

or, speaking loosely, the probability that a given number is squarefree is a bit under two-
thirds.

Question for computer scientists: The analogous “power function” P define on the
ring of polynomials in one variable over a field is very rapidly calculated by applying the
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Euclidean algorithm to find the g.c.d’s of the polynomial and its derivatives. Is there an
algorithm for computing P (N) which is significant faster than factorizing N?

For real numbers a ≥ 1 and X, let S(a; X) denote the number of integers 1 ≥ N < X
such that P (N) ≥ a, i.e., the number of a-powered numbers less than X. Aa Andrew
Granville explained to me, an easy argument gives that for fixed a ≥ 1, and for any ε > 0
we have:

X1/a−ε < S(a; X) < X1/a+ε

as X tends to ∞. We will abbreviate this type of estimate as S(a; X) = X1/a+o(1)

emphasizing that S(a; X) grows very roughly like X1/a. This is a good thing for us insofar
as X1/a is also the rate of growth of “perfect a-th powers” ; i.e., by generalizing from
“perfect a-th powers” to “a-powered numbers” we haven’t, at least, changed the rough
asymptotics.

We are now ready to raise a question which has at least a remote connection to each of
the problems in our illustrative list. Fix real numbers a, b, c ≥ 1, and another real number
X. Consider the set S(a, b, c; X) of triples (A,B, C) of nonzero integers which sum to zero,
which are relatively prime, each of which is in absolute value < X, and such that

P (A) ≥ a; P (B) ≥ b; P (C) ≥ c,

i.e., A is a-powered, B is b-powered, and C is c-powered,

Question. How fast can we expect the cardinality of the set S(a, b, c; X) to grow,if at
all, for fixed a, b, c ≥ 1 and X tending to ∞?

Here is the typical “secret calculation” that is popular to make, to come up with an
“expected rate of growth” in this circumstance, but as you will see, it is unlikely that
one could come up with a proof that these asymptotics are correct just by pursuing the
argument that we will give!

Ignoring for the moment the requirement that A,B, C be relatively prime and that
they sum to 0, and remembering that the A’s are chosen from a set of (roughly) X1/a

elements, the B’s from a set of (roughly) X1/b elements, and similarly for the C’s , we
have (roughly) X1/a+1/b+1/c triples (A,B, C) with the requisite lower bounds on their
“power functions”. The requirement that A,B,C be relatively prime shouldn’t change
the asymptotics, but the requirement that they sum to 0 should. The absolute value of
the sum |A + B + C| is bounded by a constant (3, in fact) times X and so the “chances”
that the sum be zero (provided that no other mitigating large effect has been ignored– an
important proviso) is inversely proportional to X; call it X−1. Feeding all this into our
calculation, our line of reasoning might then lead us to “expect” that the cardinality of
S(a, b, c; X) is comparable to X1/a+1/b+1/c−1.

But how to interpret this “expectation”?
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Let us refer to d := 1/a + 1/b + 1/c− 1 as the basic exponent of our problem.

(sub-)Question If the “basic exponent” d is positive, i.e., if

1/a + 1/b + 1/c > 1,

does the cardinality of S(a, b, c; X) tend to ∞ as X grows, and with the asymptotics

card S(a, b, c;X) = Xd+o(1)?

Remark 1. I asked Trevor Wooley about this question, and he sketched an argument
using the circle method that proves these asymptotics when a, b, c are bounded above by
6/5. As he pointed out, the circle method does extraordinarily well in handling ternary
additive problem involving square-free numbers (“because” wrote Wooley, “one has unex-
pectedly strong control over the relevant exponential sums on minor arcs– one does a lot
better than square-root cancellation”).

The basic idea, here, is to note that an a-powered integer N , with,say, a < 6/5 can
be written as xy with x square-free and y “square-full” and y is small compared to x.
Also, when we are estimating a-powered integers, the bulk of our count will consist in
integers which are essentially a-powered and not much more highly poered, for the more
higly powered numbers are relatively sparse. Now write A = xy, B = uv, and C = zw,
with x, u, z square-free and y, v, w “square-full” and x, u, z the dominating variables; that
is we re studying the equation

xy + uv + zw = 0

with with x, u, z square-free and y, v, w “square-full”. The circle method then gives an
asymptotic formula for the number of solutions x, u, z for fixed y, v, w with uniform error
term. Summing over the possible triples y, v, w, noting that there aren’t too many of them,
gives a more precise asympototic statement than is formulated in the above “sub-question”
in the range a, b, c ≤ κ with κ = 6/5. Specifically, in this range,

card S(a, b, c;X) ∼ γ ·Xd

for an appropriate constant γ = γ(a, b, c), and he suggests that with more work, the upper
bound κ = 6/5 might be improved to 10/7. It is clear, however, that one cannot expect
to improve this too much further. We cannot have the same shape of asymptotic formula
for the region given by a, b, c ≤ κ = 2 for example; for Pythagorean triples alone will give
rise to a contribution to card S(2, 2, 2;X) on the order of X1/2 · log(X).

Remark 2. There is the following natural extension of this problem to m integers where
m ≥ 3. Consider the following “region” D in m-space (a kind of “sconce”)

D = {(a1, a2, . . . , am) ∈ Rm | aj ≥ 1, j = 1, . . . ,m and d =
j=m∑

j+1

1
aj
− 1 > 0}.
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Let S(a1, a2, . . . , am; X) denote the number of m-tuples of integers A1, A2, . . . , Am which
are pair-wise relatively prime, which sum to zero, are of absolute value < X, and such that
Aj is an aj-power number for j = 1, . . . , m. Might one expect, using the analogous rough
calculation as above, that for (a1, a2, . . . , am) ∈ D (or at least in some large sub-region in
D), we have

S(a1, a2, . . . , am; X) = Xd+o(1)?

As Wooley pointed out, the circle method should work all the better the larger m is.
For example, can one get a “respectably large” explicitly described sub-region C ⊂ D (the
letter C is for “circle method”) such that for (a1, a2, . . . , am) ∈ C ,the sharper statement
that S(a1, a2, . . . , am;X) is asymptotic to Xd is true (and is provable by the circle method)?

Returning to our original question, if the “basic exponent” d is negative, i.e., if

1/a + 1/b + 1/c < 1,

the rough calculation above might suggest the following:

Conjecture 1. If 1/a + 1/b + 1/c < 1, then there are, in total, only a finite number of
triples A,B, C none zero, which sum to zero, which are relatively prime, and such that

P (A) ≥ a; P (B) ≥ b; P (C) ≥ c.

If we are at the boundary, i.e. if d = 1/a + 1/b + 1/c − 1 is zero, well, our rough
calculation would certainly suggest that for any positive ε, we might hope for an upper
bound card S(a, b, c; X) ≤≤ Xε, but on the basis of that calculation we wouldn’t have any
grounds for entertaining a prejudice regarding whether or not card S(a, b, c;X) tends to
∞ as X grows.

As in the remark above, the “heuristic” we have outlined (to get “expected asymp-
totics”) can be altered to fit a number of other related problems ( but of course this
“heuristic” never provides any logical justification for the answers it comes up with!).

For example, here is a mild variant of our original problem, which is related to the
Catalan problem. Fix real numbers a, b, and a non-zero integer k. For X a real number,
consider the set Sk(a, b;X) of b-powered numbers N < X which are translates by k of an
a-powered number. That is, N < X is a b-powered number, and N − k is an a-powered
number. The “basic exponent” for this problem is d = 1/a + 1/b − 1, as you can easily
calculate in analogy with the calculation we made above.

In analogy with Conjecture 1 above, then, an optimist might make the following
conjecture concerning this problem in the case of negative “basic exponent”:

Conjecture 2. If k is a nonzero integer, and a, b > 1 real numbers such that 1/a+1/b < 1,
then there are, in total, only a finite number of pairs A, B such that B −A = k and

P (A) ≥ a; P (B) ≥ b.
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Aside: Both Conjectures 1 and 2 have the current status (a happy or unhappy status,
depending upon your attitude!) of having been verified in NO case. E.G., consider the
special case of Conjecture 2 where we fix k = 1 and a = 3, b = 2. The set of pairs (A,B)
satisfying the hypotheses in this instance of Conjecture 2 consists of pairs of consecutive
numbers (B = A + 1) with A “3-powered” and B “2-powered (which, for example, would
include the pair 8 and 9 encountered in our discussion of the Catalan problem). We do
not, at present, seem to have the techniques to prove that this set is finite.

The two conjectures we have just displayed are along the lines of Masser-Oesterlé’s
ABC-Conjecture and will, I believe, provide some motivation for the eventual formulation
of the ABC-Conjecture in this lecture. Nevertheless Conjectures 1 and 2, strong as they
are, are a good deal weaker than ABC. To see, though, that Conjectures 1 and 2 are
already quite strong, you can perform the (easy!) exercise of showing that Conjecture 1
(for any fixed choice of a, b, c with negative basic exponent) implies Fermat’s Last Theorem
for large enough degree, and also implies that there are only a finite number of solutions
to the Catalan problem.

I.2 The ABC-conjecture. By an ABC-solution let us mean a triple of nonzero
integers (A,B, C) which are relatively prime, and which sum to zero. Define the power
P (A,B, C) of an ABC-solution (A,B, C) to be

P (A,B, C) :=
log max(|A|, |B|.|C|)

log rad(ABC)
.

Conjecture (Masser-Oesterlé’s ABC): Given any real number a > 1 there are only a
finite number of ABC-solutions of “power” ≥ a.

You can do the exercise of seeing that the ABC-conjecture implies Conjectures 1 and
2.

Numerical Examples. Elkies and Kanapka have tabulated all ABC-solutions with
log max(|A|, |B|.|C|) < 232 and with power > 1.2; see the display. The four “top” ABC-
solutions (in this range) are:

2 + 310 · 109 + (−235) = 0

(discovered by Reyssat; its power is 1.629912 . . .)

112 + 325673 + (−22123 = 0

(discovered by de Weger; its power is 1.625991 . . .)

283 + 511132 + (−2838173 = 0

(discovered by Browkin-Brzezinski; its power is 1.580756 . . .)
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1 + 237 + (−547) = 0

(discovered by de Weger; its power is 1.567887 . . .)

Lecture II. The equivalence between ABC and general conjectures in the arith-
metic of curves; relations between ABC and the arithmetic of elliptic curves.
(sketch)
II. 1 (Introductory Remarks about (Effective) “ABC” implying (Effective) “Mordell”
(Elkies); Elkies’ “near-misses” coming from rational points of elliptic curves; as a lead in
to:) Elliptic curves and their “classifying invariants”.

I will assume some familiarity with the very basic definitions, and some properties,
of the theory of elliptic curves over Q. To give such, you can do it in “Weierstrass form”
just by giving two rational numbers (which I will denote c4 and c6) and writing the cubic
equation

E : y2 = x3+

with the understanding that E is the projective plane curve defined by that equation, with
the single point at infinity included:– the point at infinity being taken to be the origin
of the celebrated group law in E. or you can be more particular about E and choose a
“Tate-Weierstrass” model for E over the ring of integers Z by giving an equation for it in
form,

E : y2+ = x3+

for a1, ..., a6 ∈ Z. You can reproduce an explicit “Weierstrass equation” for E over Q from
the above “Tate-Weierstrass” model by putting

c4 =; c6 = .

By the discriminant ∆ = ∆E (of the equation defining E) we mean the integer given by
One says that the Tate-Weierstrass model for E has “good reduction” modulo a prime

number p if the above equation, interpreted over Fp, defines a smooth projective curve
(and hence an elliptic curve) over Fp. This happens if and only if the prime number p
does not divide ∆E .

I will be interested, this hour, only in semistable elliptic curves over Q; that is, I want
E to be given over Z in such a way that its reduction over Fp is “good” or else is a curve
of genus zero with a nodal singularity over Fp. It is equivalent to ask, simply, that c4 and
∆ be relatively prime. If E is a semi-stable elliptic curve over Q, we may (cheaply) define
the conductor NE of E by the formula:

NE :=
∏

p|∆
p.
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By Wiles-Taylor, any semi-stable elliptic curve E over Q is modular in the sense that there
is a nonconstant mapping defined over Q, a modular parametrization

φ : X0(N) → E,

where X0(N) is the modular curve whose associated Riemann surfce is the compactification
of the quotient of the upper half-plane by the action of the group Γ0(N) ⊂ PSL2(Z) which
are represented by matrices (

a b

c, d

)
∈ SL2(Z)

with c ≡ 0 mod N .

I want to focus the discussion, this hour and the next, on the following list of classifying
invariants of semi-stable E’s:

• the discriminant (of a Tate-Weierstrass equation for E ) = ∆E ,
• the conductor NE := rad(∆E),
• the modular degree δE : = the minimal degree of all modular parametrizations

φ : X0(NE) → E,

• the (Faltings) height = hE (to be defined in the next section of today’s lecture),
• the order |ShaE | of the Shafarevich-Tate group of E (to be defined in

tomorrow’s lecture).

For the rest of this lecture I propose that we discuss, and muse about the curious fact
that the ABC-conjecture is equivalent to knowledge of specific upper bounds for the rate
of growth (relative to the conductor NE) of any one of the disparate invariants |∆E |, δE ,
HE := exp(hE); and also |ShaE | (this last being conditional on the Birch-Swinnerton-Dyer
Conjecture). As an aside, it seems to me that it might pay to think about what general
profile this phenomenon might have. Are there, for example, other classes of modular or
automorphic forms attached to whcih there is a list of similar disparate invariants, where
the upper bound asymptotics for any one of these invariants is “deep”, but knowledge of
the upper bound asymptotics for one, is provably equivalent to knowledge for all?

But to return to the study of our list of invariants, let us say that a real-valued invariant
Φ(E) of isomorphism classes of a given class of elliptic curves over Q has minimal upper
bound exponent α if for any E in that class,

Φ(E) << Nα+ε
E

for any positive ε, and α is the smallest possible exponent for which this is true (equiv-
alently, the stated inequality holds, and for any ε > 0 there are elliptic curves E in the
given class, of arbitrary high conductor, such that Φ(E) > Nα−ε

E ). We also use the phrase
maximal lower bound exponent, defined analogously.
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The following theorem collects a number of known results (due to *** ):

Theorem. These are equivalent (subject, in the last instance, to BST= the Birch-
Swinnerton-Dyer conjecture ):

• The ABC-conjecture,
• |∆E | << N6+ε

E for |∆| ranging over semi-stable elliptic curves,
• δE << N2+ε

E for |δ| ranging over semi-stable elliptic curves,

• HE := exp(hE) << N
1/2+ε
E for h ranging over semi-stable elliptic curves,

• [the following is equivalent to the above, subject to BST]

|ShaE | << N
1/2+ε
E for |ShaE | ranging over all elliptic curves.

Note. In the first three instances above, the exponents given, 6, 2 and 1/2 are the
minimal lower bound exponents.The corresponding maximal upper bound exponents are
1, 7/6 and 1/6 respectively (for these invariant ranging over the class of semi-stable elliptic
curve over Q. If the Birch-Swinnerton-Dyer conjecture and the Riemann hypothesis for
certain Rankin-Selberg zeta functions are both true, then 1/2 is the minimal upper bound
exponent for |Sha| (ranging over quadratic twists of semi-stable elliptic curves). I would
guess that there are semi-stable elliptic curves over Q of arbitrary large conductor, with
trivial Shafarevich-Tate group (and if that were true, 0 would then be the corresponding
maximal lower bound exponent for |Sha|).

But now we must go more slowly, and define height.

II.2. The (Faltings) height of an elliptic curve over Q.

Consider semi-stable elliptic curves E over Q and as above let c4(E), c6(E) and ∆(E)
stand for the correspondingly named invariants of a minimal Tate-Weierstrass equation
for E over Z, with NNE = rad ∆. Let ωE denote a Néron differential for E, i.e., ωE is a
regular differential that reduces to a regular differential modulo p for all prime numbers p.
This property determines ωE up to sign, and ωE can be read off from the Tate-Weierstrass
equation, as follows:

The (“Faltings”) height of E/Q is given by:

h(E/Q) := −1/2 log max
∫

E(C)

ωE ∧ ω̄E .

To shorten the statement of some inequalities, let us adopt the following convention.
Given two functions A(E) and B(E) defined on a class of elliptic curves E, say that

A(E) ³ B(E)
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if
(1− ε) ·A(E)−Oε(1) < B(E) < (1 + ε) ·A(E) + Oε(1)

for all ε > 0.

We have (cf. Silverman)

Proposition 1
h(E/Q) ³ 1/12 log max {|c4|3, |c6|2}.

Corollary. For all ε > 0,

h(E/Q) ≥ (1/12− ε) log N −Oε(1).

Proof. Since
c3
4 − c2

6 = 1728 ·∆,

we have
log N ≤ log ∆ ≤ log max {|c4|3, |c6|2}.

Aside: The height of elliptic curves of prime conductor.

It is expected, but not known, that there is an infinite number of (non-isomorphic)
elliptic curves over Q of prime discriminant (and hence also prime conductor). This is
equivalent to the Schinzel-type conjecture that the rational polynomial (X3 − Y 2)/1728
takes on an infinite number of integer values of the form ±p where p is a prime number
as X and Y run through integer values of the form specific (Hardy-Littlewood) conjecture
that there are an infinite number of prime numbers p of the form u2 + 64 for u ∈ Z: for
each prime number p of this form there is a pair of elliptic curves of conductor p (called
“Neumann-Setzer” curves) given over Z[1/2] by the formulas:

E1 : y2 = x3 − 2ux2 + px

E2 : y2 = x3 + ux2 − 16x,

where the sign of u is taken so that u ≡ 1 mod 4.

The elliptic curves E1 and E2 are 2-isogenous, one to another, and have minimal
discriminants −p2 and p respectively. This family of (Neumann-Setzer) curves contains all
elliptic curves of prime conductor which possess a Q-rational point of order 2, with the
exception of a pair of elliptic curves of conductor 17. The curves E1 of the Neumann-Setzer
family are the only elliptic curves E of conductor a prime number p, and such that the
minimal discriminant of E is distinct from ±p, with the exception of five elliptic curves,
of conductors 11, 17, 17, 19, and 37.
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A straight calculation gives that if c4 and c6 are the conventionally named invariants
of the minimal Weierstrass equation for E1, we have

max{|c4|3, |c6|2} = (p− 26)(p + 29)2

if p 6= 73, while if if c4 and c6 are the invariants for E2 we have

max{|c4|3, |c6|2} = (p− 16)3

Corollary 2. Let E “ run through” all (optimal) Neumann-Setzer elliptic curves (as-
suming that there are an infinity of these!). Then

h(E/Q) ³ 1/4 log N.

Remarks. 1. One can get infinite sequences of semi-stable elliptic curves (with
nonprime conductors) such that h(E/Q) ≥ 1/2 log N , as we shall see in section 3 below.

2. Although this remark is neither about elliptic curves of prime conductor, nor
even about semi-stable elliptic curves, let me translate into the language of ”heights of
elliptic curves” Zagier’s comment [Z] that if one fixes a given elliptic curve E1 over Q
and lets E run through all quadratic twists Ed of E1 (where Ed means the “twist” of E
by the quadratic character of discriminant d) then one also has the asymptotic estimate
h(E/Q) ³ 1/4 log N.

——————-

To be removed from the final draft. By Taylor-Wiles, the Neumann-Setzer curves
are modular. If p is the conductor of a Neumann-Setzer curve, then clearly p ≡ 1 mod 8.
If p 6≡ 1 mod 16 then (compare [M] Ch III Prop. 7.5) E1 is equal to the “2”-Eisenstein
factor of J0(p). In particular, E1 is an optimal factor of J0(p). Is E1 an optimal factor
even when p ≡ 1 mod 16?

——————-

II.3. Frey (-Hellegouarch) curves.

Recall from our first lecture that by an ABC-solution (A,B, C) we mean a triple
of nonzero integers A,B, C which sum to zero and are relatively prime. By the power,
P (A,B, C) of an ABC-solution (A,B,C) we mean the real number

P (A,B,C) := log max (|A|, |B|, |C|)/log rad (A,B, C, ).
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By the (Hellegouarch ?-) Frey curve E = EA,B,C associated to an ABC- solution
(A,B,C), we mean the elliptic curve

y2 = x(x−A)(x + B).

See Oesterlé’s article [O] concerning this. In the case of ABC- solutions (A,B,C) sat-
isfying the congruences A ≡ −1 mod 4 and B ≡ 0 mod 16, we have that EA,B,C is
semi-stable. A minimal equation for EA,B,C can be taken to be

y2 + xy = x3 + (B −A− 1)/4 · x2 −AB/16 · x.

One calculates
c4 = −(AB + AC + BC),

c6 = (B −A)(C −B)(A− C)/2,

and
∆ = (ABC/16)2 ; N = rad ABC.

Using the above data one calculates (compare [O], [Mu]) that

h(E/Q) ³ 1/2 P (A,B, C) · log N,

where E ranges through all (semi-stable) Frey curves attached to ABC-solutions satisfying
the above congruence conditions on B and A.

Example. Take the Frey curve corresponding to the “top” of the list of ABC-solutions
we gave at the end of Lecture I:

2 + 310 · 109 + (−235) = 0.

As is reported in de Weger’s [de W] the corresponding elliptic curve,

y2 = x3 − 6436339x2 − 12872682x,

of conductor N = 240672 has Mordell-Weil rank zero, and (anticipating our discussion of
“Sha” in Lecture III) its Shafarevich-Tate group, ShaE is a product of two cyclic groups
of order 19.

Corollary. There is an infinity of semi-stable (Frey) curves with

h(E/Q) ≥ 1/2 · log N.

Proof. Form the Frey curves associated to Elkies’ sequence of ABC-“near-misses” (cf.
[E]: In Elkies ’ notation we must take an infinite family with N(r) a fixed positive multiple
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of H(r) and then throw out a finite number of members of this family to get the inequality
in the Corollary).

4. The ABC-conjecture and heights of semi-stable elliptic curves.

Recall that the ABC-conjecture asserts that for any number η > 1, there are only
a finite number of ABC-solutions with P (A,B, C) ≥ η.

By the congruence ABC-conjecture with modulus m we mean the ABC-conjecture
as above, but restricted to ABC-solutions (A, B,C) such that B is divisible by m.

Proposition 2. ( Oesterlé, Szpiro, Hindry,... ) These statements are equivalent.

1. There exists a prime power m = `n such that the congruence ABC-conjecture
with modulus m is true.

2. The ABC-conjecture is true.

3. h(E/Q) ≤ (1/2 + ε) · log N + Oε(1) for all semi-stable elliptic curves E.

4. h(E/Q) ≤ (1/2 + ε) · log N + Oε(1) for all semi-stable Frey curves E.

Remarks. The ideas behind these equivalences are (using Proposition 1) due to Oesterlé,
Szpiro, and Hindry. Jordan Ellenberg showed me a simple proof of the equivalence of 1.
and 2.. To see that 2 implies 3, we must show that

log max {|c4|3, |c6|2} ≤ (6 + ε) · log N + Oε(1)

when E ranges through all semi-stable elliptic curves. For this apply the ABC-conjecture
to the three-term equation

c3
4 − c2

6 − 1728∆ = 0,

where A, B, and C are obtained from the three terms in the equation by removing, if
necessary, common factors of 2 and 3 (cf. [O]). Clearly 3 implies 4.

Since h(E/Q) ³ 1/2 P (A,B, C) · log N, we have that 4 implies 1 with modulus
m = 16.

II.3 Relationship between the ABC-conjecture and modular degree.

Let E be an optimal elliptic factor of conductor N and let fE denote the normalized
newform on Γ0(N) attached to E. Among other things this means that if ψ : X0(N) → E
is the modular parametrization, the pullback (to the upper half-plane) of a holomorphic
differential on E (via the composition of the projection of the upper half-plane onto X0(N)
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with ψ) yields a multiple of the differential form fE(τ)dτ . We may use this to normalize
the differential on the Riemann surface E(C) and an identification,

E(C) ∼= C/ΛE

where ΛE ⊂ C is a lattice. We may find such a lattice, and identification, such that the
holomorphic differential dz on C/ΛE is identified with the Néron differential ωE (well-
defined up to sign) on E(C). Pulling dz back to the upper half plane (via ψ ) we obtain
a differential form on the upper half plane which is equal to

cE · 2πifE(τ)dτ,

where cE (“Manin’s constant”) is a nonzero rational number, and fE =
∑

n=1 anqn is the
newform associated to E (“newform” includes the requirement that fE be normalized so
that a1 = 1). By appropriate choice of sign of the Néron differential, we can guarantee
that cE is positive; cE is proven to be an integer for all conductors N ( not only those that
are square-free) and is conjectured always to be equal to 1. We have:

*Proposition 3 Let N be square-free. The Manin constant cE is either 1 or 2 (and the
latter possibility can not happen unless E has good, ordinary reduction in characteristic
2).

Proof. This follows by combining [M ?] and [Ra]. For further results due to Stephens
and Edixhoven when N is not square-free, see [E].

Proposition 4.

4π2cE · (fE , fE) = δE ·
∫

E(C)

ωE ∧ ω̄E .

Proof. Here, ( , ) denotes the Petersson inner product, and by Vol(ΛE) we mean rather
the volume of a fundamental domain of the lattice ΛE ⊂ C. To prove this formula, just
consider

4π2ce · (fE , fE) = 2π2i

∫

X0(N)(C)

fE(τ)dτ ∧ fE(τ)dτ

= i/2
∫

X0(N)(C)

(2πifE(τ))dτ ∧ 2πifE(τ)dτ

= i/2
∫

X0(N)(C)

ψE
∗(dz) ∧ ψE

∗(dz)

= i/2 · δE ·
∫

C/ΛE

dz ∧ dz̄
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= δE ·
∫

E(C)

ωE ∧ ω̄E .

Writing the integral on the right in terms of the height of the elliptic curve, h(E/Q) :=
−1/2log

∫
E(C)

ωE ∧ ω̄E , and noting that for semi-stable modular elliptic curves E of
conductor N we have

(fE , fE) = N · L(Symm2(fE), 2)/288 π3

where L(Symm2(fE), s) is the L-function of the “symmetric square” of fE , (cf. ) we get:

*Proposition 5

log δE = log N + 2h(E/Q) + log L(Symm2(fE), 2) + log (cE/72π)

We wish to get some estimate for the size of δE . By Proposition 3, we have log (cE/72π) =
O(1). We need:

*Proposition 6 (Mai-Murty ?? Hoffstein-Lockhart??): For any ε > 0 there is a positive
constant κε such that

κε ·N−ε ≤ L(Symm2(fE), 2) ≤ O(log N).

NOTE:*** Include fuller description of this result with commentary about
implied constants. Can we get, for example, an explicit lower bound for
L(Symm2(fE), 2) in terms of N , so as to get a lower bound for log δE? Com-
pare with Yau’s bound; see below. ***

Corollary 1. As E runs through all semi-stable elliptic curves, we have

log δE ³ log N + 2 h(E/Q),

(or, equivalently, in view of Proposition 1 of section 1.

log δE ³ log N + 1/6log max{|c4|3, |c6|2}.

Corollary 2. For every postive ε we have

log δE ≥ (7/6− ε) log N + Oε(1).

Proof. This follows from the Corollary to Proposition 1 in section 1.
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6. Explicit lower bounds for δE. There are various approaches to obtaining lower
bounds for log δE in terms of N (e.g., one can try to by work out the constants, for
example, in the above Corollary). There is also the approach given by Yau [Y] and Li-Yau
[L-Y] (see also [Ab]) which has the advantage that it gives an explicit lower bound for the
gonality of any congruence modular curve.

Definition. If X is a Riemann surface, its gonality is the minimum degree of any
(nonconstant) meromorphic function on X.

In [Y], Yau shows that if X is a a congruence modular curve of genus g and having ν
cusps, the gonality γ(X) admits the following lower bound:

γ(X) ≥ 3(2g − 2 + ν)/64.

Since δE is visibly ≥ γ(X0(N))/2, we have:

Proposition 7. (Yau)

δE ≥ 3(2g − 2 + ν)/128,

where g is the genus of X0(N) and ν is the number of cusps of X0(N).

Since

2g − 2 + ν ≥ 1/6 N
∏

p|N
(1 + p)− 1/2

∏

p|N
(1 +

(−1
p

)
)− 2/3

∏

p|N
(1 +

(−3
p

)
),

Yau’s bound gives a fairly usable estimate (e.g., it can be used to show that 131 is the
largest conductor of an elliptic curve whose modular degree is 2, as was asserted in section
3 of the main text of this article).

Corollary. As E = E(A,B,C) runs through all semi-stable Frey elliptic curves

log δE ³ (1 + P (A,B, C)) · log radical(ABC).

Corollary 4. The four equivalent conjectures formulated in the Proposition 2 of section

log δE ≤ (2 + ε)/log N + Oε(1).
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Lecture III Relationship between the ABC-conjecture and the Shafarevich-Tate group.

III.1 The Shafarevich-Tate group.

Introduction. An element in the Shafarevich-Tate group, ShaE , of an elliptic curve
E over Q is given by an isomorphism class of pairs (Σ, ι) where Σ is a curve over Q
which is of genus 1 possessing a Q`-rational point for every prime number ` as well as
an R-rational point, and where ι : E → jac Σ is an isomorphism over Q between E and
the jacobian of Σ. It is known that ShaE is a torsion abelian group, that for each prime
number p, the pontrjagin dual of its (“ind”-)p-primary component is a module of finite type
over Zp. From the very definition we have given of it, the “size” of the Shafarevich-Tate
group is a measure of how badly the “local-to-global principle” (also known as the “Hasse
principle”) fails. For example, it is clear from our definition that to say that ShaE vanishes
is equivalent to saying that any curve of genus 1 over Q whose jacobian is isomorphic to
E has a Q-rational point if and only if it has a Qp rational point for all prime numbers p
and has a real point.

Recall that the Shafarevich-Tate Conjecture is that ShaE is a finite group.

If ShaE is finite, it supports a natural alternating non-degenerate self-pairing, and
therefore its order is a perfect square. Finiteness of ShaE is now known for a class of
elliptic curves, thanks to the work of Kolyvagin and Rubin. What can we say about the
size of ShaE? Goldfeld and Szpiro conjecture (for all elliptic curves, semi-stable or not; cf
[G-S]) that

Conjecture (Goldfeld-Szpiro).

|ShaE | << N
1/2+ε
E ,

for any positive ε.

They prove [G-S] that (given the Birch- Swinnerton-Dyer Conjecture) that the ABC-
Conjecture is equivalent to this upper bound restricted to semi-stable elliptic curves E.

As for lower bounds, I would expect that there are semi-stable elliptic curves of arbi-
trarily high conductor, with trivial ShaE . If that is so, the natural “next question” in the
lower bound direction (a question which was in effect posed by de Weger, in his preprint
[de W]) is to determine some positive exponent d such that there is an infinity of elliptic
curves with Nd−ε

E << ShaE . de Weger has shown that (at least if one broadens the class of
elliptic curves ever-so-slightly more generally than semi-stable) that some “standard” ana-
lytic conjectures (Birch-Swinnerton-Dyer, and the Riemann hypothesis for Rankin-Selberg
zeta functions associated to certain weight 3/2 modular forms) imply that you can take
d = 1/2; i.e., you cannot improve on the exponent 1/2 occurring in the Goldfeld-Szpiro
conjecture.
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III.2 Visualizing the Shafarevich-Tate group. How well can we ”see” the curves of genus
1 classified by the Shafarevich-Tate group of elliptic curves over Q?

Here is one instance where we can do this satisfactorily: Consider the smooth plane
cubic curve E : x3 + y3 + 60z3 = 0. By work of Kolyvagin and Rubin, one knows that

ShaE
∼= Z/3Z× Z/3Z.

Noting that change of sign of ι corresponds to multiplying by −1 in ShaE we see that there
are, in toto, four “nontrivial” Σ’s to find here and after some minor computations (cf [M])
one finds all of them again as smooth plane cubics:

Σ1 : 3x3 + 4y3 + 5z3 = 0

Σ2 : 12x3 + y3 + 5z3 = 0

Σ3 : 15x3 + 4y3 + z3 = 0

Σ4 : 3x3 + 20y3 + z3 = 0.

Of course, the only elements of any ShaE that could be realized as plane cubic curves
are elements of order ≤ 3, so a pre-condition for “seeing” all of ShaE in anything like the
above format is that ShaE be annihilated by 6. This suggests that, in general, we should
look to varieties other than P2 as candidate “ambient spaces” within which we might hope
to find the curves of genus 1 representing the elements of ShaE .

Assume that E is an elliptic curve over Q of square-free conductor N . The elliptic
curve E is semi-stable, and consequently (by [W] and [T-W]) modular. We shall assume
even more, that E is an “optimal factor” of the jacobian J = J0(N) of the modular curve
X0(N) over Q and therefore (see section 2 below) there is an imbedding (unique up to
multiplication by ±1) of E into J . In a word, we can “find”, uniquely, the elliptic curve
E as an abelian sub-variety of J = J0(N). The idea suggests itself that, since we have
“found” the elliptic curve E in the ambient space J , perhaps we should look for elements
of Sha in the same ambient space.

How much of ShaE can we find represented as curves in J? If a given element x of
ShaE can be represented as a curve, defined over Q in J , we shall say (see the technical
definition below) that x is visible.

As we will discuss in more detail below, the visible part Sha◦E of ShaE is simply the
kernel of the homomorphism ShaE → ShaJ induced from the injection E → J = J0(N).
Loic Merel has been independently investigating (along with his student Amod Agoshe)
the order of the Shafarevich-Tate group of the winding quotients of J0(N) for N prime
(see XXXX). They find that ********

There is a companion to these questions which, to focus on, I’ll phrase very narrowly.
Let E over Q be an elliptic curve optimal factor of J0(N) (as above, N is the conductor
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of E, assumed square-free). Suppose that ShaE
∼= Z/pZ × Z/pZ, for p a prime number

and suppose further that the Mordell-Weil group of E is finite, of order prime to p. Can
we find an optimal factor A of J0(N), i.e., of the same conductor as E, with the following
properties?

i. The ring of endomorphisms of A is an order O ⊂ K in a number field K.

ii. There is a maximal ideal m ⊂ O of residual characteristic p such that if A[m]
denotes the kernel of the ideal m in A, A[m] is an Fp-vector space of dimension 2.

iii. There is a “p-congruence between E and A”; more explicitly, there is a Galois
(i.e., Gal (Q̄/Q)-) equivariant isomorphism of Fp-vector spaces of dimension 2,

E[p] ∼= A[m].

iv. The isomorphism above induces an isomorphism on the m-torsion in the corre-
sponding Selmer groups.

v. If the subscript m denotes m-adic completion, the m-adic completion of the
Mordell-Weil group of A (i.e. A(Q)m = A(Q)⊗O Om) is free of rank two over Om. (This,
combined with iv. implies that the m-part of ShaA vanishes.)

When such an optimal factor A can be found, we shall say (but see the more technical
definition below which applies more widely) that ShaE is explained by jumps in the
rank of Mordell-Weil. The motivation for this terminology is simply that (assuming
i-v) although the p-congruence allows us to identify p-torsion in the Selmer group of E
with that of A, this “same” Selmer group accounts for rank of the Mordell-Weil group of A
while it accounts for the p-torsion in the Shafarevich-Tate group of E (whose Mordell-Weil
rank is 0 and therefore needs no “accounting for”). When ShaE is explained by jumps in
the rank of Mordell-Weil, ShaE is also “visible” (in the sense described above and defined
precisely below).

If you come across an element of ShaE of order p it might, at least at first glance, seem
quite unlikely that you could explain it away by “jumps in the rank of Mordell-Weil” as
described above. But consider the first two instances of nontrivial Shafarevich-Tate group
for optimal semi-stable elliptic curves (i.e. the lowest conductor N for which this occurs)
are for the curves 571A and 681B as given in [Cr]. Both 571A and 681B have trivial
Mordell-Weil group and their Shafarevich-Tate groups are isomorphic to Z/2Z × Z/2Z
and to Z/3Z × Z/3Z, respectively. Checking Cremona’s book [Cr] one immediately finds
the happy “accident” that 571A seems to admit a 2-congruence with the optimal elliptic
curve factor 571B, whose Mordell-Weil rank is 2 and whose 2-part of Sha is trivial. As
for 681B, a similar “accident” happens: 681B seems to admit a 3-congruence with the
optimal elliptic curve factor 681C, whose Mordell-Weil rank is 2 and whose 3-part of Sha
is trivial. By the phrase “seems to admit a p-congruence” what I mean here is that one
checks that the required congruence mod p hold for all the traces of Frobenius tabulated
in [Cr] for the elliptic curves involved. It would take further work (using, say, effective
Chebotarev) to actually prove that the p-congruence holds, and this I have not done. If
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one does this further work in both instances, one will have shown that the Shafarevich-
Tate groups are “explained by jumps in the rank of Mordell-Weil” in the sense formulated
above. In particular, the Shafarevich-Tate groups involved are all “visible”. To investigate
numerically how much longer these “accidents” occur, Adam Logan made computations
amplifying Cremona’s data, and compiled the table which we reproduce in section 9 below.
The surprise for us is that, restricting to the odd part of the Shafarevich-Tate groups for
the moment, all of the (odd part of) the Shafarevich-Tate group of optimal elliptic curves
E of (squarefree) conductor N < 2849 “seem to be” explained by jumps in the rank of
Mordell-Weil, and in all these cases, the optimal factor A that does the explaining can be
taken to be an elliptic curve (these are the curves F in the table). In particular, all odd Sha
for semi-stable optimal elliptic curves of conductor < 2849 is visible. Indeed, the situation
is pretty nearly the same if we include 2-primary components but the prevalence of rational
2-torsion in these elliptic curves requires that we make a more elaborate discussion of these
cases. As our numerical investigations now stand, the only guaranteed invisible elements
in ShaE that we have found for elliptic curves E of square-free conductor is the single
instance of 2849A where Sha2849A is of order 9 (assuming Birch and Swinnerton-Dyer)
and is entirely invisible. Consulting the table in section 9 one finds a few unresolved cases
among which one might expect a few more instances of invisibility.

I feel that these issues deserve to be investigated further. Is the prevalence of “visi-
bility” a phenomenon occurring only in this modest range of conductors? Is most of Sha
invisible? Or is most of Sha visible? In the vocabulary of the previous lecture, what is
the minimal upper bound exponent for Sha◦E as E ranges through all semi-stable optimal
elliptic curves over Q? That is,

Query! What is the minimal exponent α ≥ 0 for which the subgroup of visible elements
in Sha satisfies the upper bound

|Sha◦E | << Nα+ε
E

as E ranges through all semi-stable optimal elliptic curves over Q?

Given the ABC- conjecture and [BST] we would have

0 ≤ α ≤ 1/2.

But at present we haven’t even a guess about the size of α beyond these inequalities.

As we shall see below, the subgroup of visible elements in ShaE is annihilated by δE ,
the modular degree of E so it is particularly relevant, in the search for invisible Sha, to
find prime divisors of the order of ShaE which do not divide δE .

At present writing we can prove almost nothing of a general nature. The rest of this
article is devoted to making precise some of the definitions we have alluded to in this
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introduction, proving some related basic lemmas (all of which are either well known, or
should have been) and reproducing the table of Adam Logan (based to a large part on
computations of Cremona).

1. Optimal factors of the jacobians of modular curves

The varieties that appear in this paragraph will be varieties defined over Q, unless
otherwise indicated. Let N be a square-free positive integer, and let π : J0(N) → A be an
optimal factor. That is, π is a surjective homomorphism of abelian varieties over Q with
the following properties:
1. The homomorphism π factors through the new part, J0(N) → J0(N)new.
2. The homomorphism π has connected kernel.
3. The abelian variety A is Q-simple.

Let TA be the image in the totally real field KA := EndQ−a.v.(A)⊗Q of the algebra
generated by (all) Hecke operators Tp for primes p not dividing N and all Atkin-Lehner
operators Uq for primes q|N . We refer to TA as the Hecke algebra of the optimal factor A.

If B is an abelian variety, let B̂ denote the dual abelian variety. Since J0(N) is the
jacobian of a curve, the classical Poincaré divisor gives us a canonical identification

ι : Ĵ0(N) ∼= J0(N).

If A is an optimal factor, and Â is its dual, the Hecke algebra TA acts naturally on Â and
the isogeny ι commutes with the action of TA on its domain and range.

Dualizing the homomorphism π we get a homomorphism

π̂ : Â → Ĵ0(N).

Compose the morphisms Â → Ĵ0(N) ∼= J0(N) → A to give us a homomorphism

ιA := πιπ̂ : Â → A.

Proposition 8. the homomorphism ιA : Â → A is an isogeny.

Proof. Since A and Â are Q-simple and since ιA is defined over Q, it follows that ιA is
either an isogeny or else it is 0. But if it were 0, it would then follow that the factorization
of J0(M) (up to isogeny) as product of Q-simple abelian varieties would have at least
two factors isogenous to A, contradicting the fact that A occurs in this factorization with
multiplicity one.

Proposition 9. the homomorphism π̂ : Â → Ĵ0(N) is injective.
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Proof. By Proposition 1, we see that the kernel of π̂ is a finite subgroup(scheme) of Â;
call it Φ ⊂ Â. Now factor π̂ as the composition of the isogeny Â → Â/Φ and an injection
Â/Φ → Ĵ0(N). Dualize this composition, and use the canonical isomorphism between the
double dual and the identity functor to get that π factors through an isogeny A′ → A
which is dual to Â → Â/Φ. Since π is optimal, this isogeny A′ → A is an isomorphism.
So, Φ = {0}, and π̂ : Â → Ĵ0(N) is injective.

Data-gathering Problem. Cremona has tabulated the degrees of the isogenies ιA for
optimal elliptic curve factors A of conductor N < 5, 000. It would be interesting to get
some similar data for optimal abelian variety factors A (of dimensions > 1 as well). How
often is it the case that the kernel of ιA in Â is the kernel of a locally principal ideal
IA ⊂ TA; i.e.,

ker(ιA) = Â[IA]?

2. Optimal factors which are elliptic curves

Let A be an optimal factor of dimension one, i.e., an elliptic curve. Then TA = Z. To
emphasize that A is an elliptic curve, we will change letters A = E. We have a canonical
identification of an elliptic curve with its dual, and by means of this, we identify Â with
E. The injective homomorphism π̂ then identifies E with a sub-elliptic curve in J0(N); so
that E may be considered as both sub-elliptic curve and quotient elliptic curve of J0(N),
the identifications given by the injection π̂ and the projection π. By the “multiplicity one”
theorem, the factorization of the abelian variety J0(N)new into simple abelian varieties
over C (up to isogeny) contains the isogeny class of E only once, and hence this is also
true for the factorization of J0(N). Since it is also true that the automorphism group of E
is {±1}, it then follows that the injection E ↪→ J0(N) is unique (up to multiplication by
{±1}; that is, we may identify E with a sub-abelian variety of J0(N) in a unique manner,
up to sign.

The isogeny ιA is the composition of π and π̂; ιA then may be identified with a
Q-rational endomorphism

ιE : E → E

which is of necessity multiplication by a scalar.

Recall the definition of the “modular degree” of the (semi-stable, optimal) elliptic
curve E, denoted δE , as introduced in the previous lecture. One way of thinking of δE

is to consider the nautral mapping X0(N) → J0(N) given by sending the cusp ∞ to the
origin. Let A = E be our optimal elliptic curve factor of J0(N). Composing the modular
parametrization πE : J0(N) → E with the “natural” mapping X0(N) → J0(N) ( which
we normalize by requiring that the cusp ∞ ∈ X′(N ) be sent to the origin in J0(N)) we get
a surjective mapping of curves,

ψ = ψE : X0(N) → E,
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whose degree is, by definition, δE .

Proposition 10. The endomorphism ιE : E → E is multiplication by the modular
degree, δE .

Proof of Proposition 10. The mapping ψE : X0(N) → E induces the homomorphism
ιE : J0(N) → E on “jacobians”. The adjoint ψE

∗ : Pico(E) → Pico(X0(N)) is identified
with ι̂E : Ê → Ĵ0(N). After making the natural identifications, we get

δ = ψE · ψE
∗ : E → E.

But for any surjective mapping ψ : X → E (of any curve X onto E) ψ ·ψ∗ is multiplication
by the degree of ψ. The proposition follows.

Proposition 11. Let B = ker(π) ⊂ J0(N). Then B is an abelian subvariety of J0(N)
and the intersection of the abelian subvarieties E and B in J0(N) is given by the kernel
of multiplication by δE in E:

E ∩B = E[δE ] ⊂ E.

Proof. This is evident. We may interpret it as saying that δE is the largest “modulus
of congruence” connecting the newform attached to E to the complementary space of
modular forms of weight two on Γ0(N).

The importance of the modular degree was clear already from examples (and com-
putations of congruences satisfied by modular eigenforms) due to Doi, and Shimura. The
notion of modular degree plays a prominent role in the work of Hida, Ribet, Tilouine, and
others. In particular, Ribet’s “level-raising” and “level-lowering” theories both pivot on
the “modular degree”.

3. Examples. Low modular degrees.

For a more complete discussion of the modular degree, see the appendix below. To
say that the modular degree is 1 is to say that X0(N) is of genus 1, and that E = X0(N)
and that’s all there is to say about it. This happens for N = 11, 14, 15, 17, 19, 20, 21,
23, 27, 32, 36, 40, 48, 49, and 64. To say that the modular degree is 2 is to say that
there is an involution of the modular curve X0(N) whose quotient is the elliptic curve E.
The elliptic curve E then has the property that there is an isomorphism of its 2-torsion
subgroup E[2] with a subgroup of the complementary abelian variety B ⊂ J0(N). This
happens for N = 26, 26, 30, 34, 35, 37, 37, 38, 39, 43, 44, 45, 50, 50, 51, 53, 54, 55, 56, 61,
62, 65, 69, 79, 83, 89, 92, 94, 101, and 131. Particularly amusing are the cases N = 26, 37.
The curve X0(37) is of genus 2, and is therefore hyperelliptic. Let u : X0(37) → X0(37)
denote the hyperelliptic involution, and let w : X0(37) → X0(37) be the Atkin-Lehner
involution w = w37. These involutions can be seen to be distinct. Since the hyperelliptic
involution of a hyperelliptic curve of genus ≥ 2 is in the center of the automorphism group,
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these involutions u and w commute. They generate the full group of automorphisms of the
Riemann surface X0(37), which is of order four. The quotient of X0(37) by the hyperelliptic
involution u is of genus zero (this characterizes the hyperelliptic involution of a hyperelliptic
curve of genus ≥ 2). Denoting by E and F the quotients of X0(37) by w and by uw, one
sees easily that E and F are elliptic curves, both optimal quotients of J0(37), both clearly
having modular degree equal to 2, and, viewing them as sub-abelian varieties of J0(37)
they are complementary sub-abelian varieties, whose intersection is precisely given by the
2-torsion subgroup of each of them:

E[2] = E ∩ F = F [2].

In particular, if e =
∑

an(e) · qn and f =
∑

an(f) · qn denote the newforms attached
to E and F , we have that their Fourier coefficients admit a congruence modulo 2, i.e.,

an(e) ≡ an(f)

for all n ≥ 1; they do not admit a congruence modulo any larger integer.

4. Visible elements in the Shafarevich-Tate group.

Let E be a semi-stable, elliptic curve over Q of conductor N which is an “optimal”
factor of J0(N). Let J = J0(N), and recall that given an optimal modular parametrization
J → E, we may dualize this mapping (and use the canonical self-dulality of both domain
and range) to get an injection E → J . In this paragraph, then we view E as a sub-elliptic
curve of J . Let Σ denote an E-torsor; that is, Σ is a curve of genus 1 over Q given together
with an isomorphism E ∼= Jac (Σ). Equivalently, Σ represents an element of the continuous
cohomology group H1(GQ, E).

DEFINITION 1. Say that the E-torsor Σ is visible (i.e., “visible in J0(N)”) if the
curve Σ is isomorphic over Q to a subvariety (a curve, of course) in the variety J .

Proposition 12. Let Σ be an E-torsor (over Q). These are equivalent:
1. Σ is visible.
2. Σ is isomorphic ( over Q) to a subvariety (defined over Q) of J which is a translate

of E ⊂ J .
3. The pushout of the E-torsor Σ with respect to the homomorphism E → J is the

trivial J-torsor; equivalently, the image of Σ under H1(GQ, E) → H1(GQ, J) vanishes.

Proof. Suppose 1 . Let Σ be visible, and let us identify Σ with a curve in J . Since
N is squarefree, and equal to the conductor of E, the quotient abelian variety J/E (even
over C) contains no factor isogenous to E, and therefore the image of Σ in J/E is a point,
which gives 2 . Now suppose 2 and note that the imbedding of Σ in J (as a translate of
E) enables us to define an isomorphism from the “trivial” J-torsor (i.e., J) to J := the
pushout of Σ with respect ot the inclusion E ⊂ J . This gives 3 . But 3 clearly implies
1.
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In a word, the visible E-torsors are represented by the kernel of the homomorphism

H1(GQ, E) → H1(GQ, J).

If B/Q is any abelian variety, let ShaB denote its Shafarevich-Tate group (over Q).

Let E be an optimal elliptic curve factor, of squarefree conductor, as before. Consider
the exact sequence of abelian varieties

0 → E → J → B → 0,

where B = J/E is the quotient .

NOTATION. Let Sha◦E denote the visible part of ShaE . That is, an element of ShaE

is in Sha◦E if and only if it is represented by a visible E-torsor.

Proposition 13.

1. The visible part of ShaE is a subgroup and we have an exact sequence

0 → Sha◦E → ShaE → ShaJ .

2. Let B(Q) ⊂ B(Q) denote the subgroup of elements β ∈ B(Q) with the property
that if βv ∈ B(Qv) denotes the image of β under the mapping induced by completion
Q ⊂ Qv, then for all primes v (the archimedean prime included) βv is in the image of the
mapping J(Qv) → B(Qv) . Clearly B(Q) contains the image of J(Q). The long exact
sequence of GQ cohomology applied to the displayed exact sequence of abelian varieties
above yields

Sha◦E ∼= B(Q) / image J(Q).

Corollary. The subgroup Sha◦E is annihilated by the modular degree δE .

(for further discussion of modular degree, see the appendix.)

5. A “finite type” version of the Selmer group .

We have the standard exact sequence,

0 → B(Q)⊗Q/Z → Ŝ(B) → ShaB → 0,

where ShaB is the Shafarevich-Tate group of B, and Ŝ(B) is the (pro-finite) Selmer group
of B. The conjecture of Shafarevich-Tate implies that ShaB is finite. We assume that
ShaB is finite (for all B) in what follows.

Now consider the natural injection

ι : Q/Z ↪→ R/Z
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which induces an injection 1 ⊗ ι : B(Q) ⊗Q/Z ↪→ B(Q) ⊗R/Z. Let us “push out” the
displayed exact sequence with respect to the mapping 1⊗ ι to get an exact sequence:

0 → B(Q)⊗R/Z → S(B) → ShaB → O,

where S(B) is a compact abelian topological group, given our assumption that ShaB is
finite. Let B∗ be the (Néron model over Z of) the dual abelian variety to B. Let Selmer (B)
denote the pontrjagin dual of the compact topological group S(B∗). We have slipped in
the dual here to keep the functor Selmer(−) covariant. The abelian group Selmer(B) (after
our hypothesis) is finitely generated abelian. We shall refer to it as the finite type Selmer
group of B. The rank of the Mordell-Weil group of B is the rank of the finitely generated
abelian group Selmer(B) and we can “retrieve” (the dual of) ShaB∗ as the torsion subgroup
in Selmer(B). If B/Q admits a commutative ring of endomorphisms R (i.e., defined over
Q) then B̂, S(B) and Selmer(B) inherits an R-action, as does ShaB .

6. The Selmer group of the jacobian of modular curves, and of optimal factors.
The example that interests us primarily is when B = J = J0(N), the jacobian of the
modular curve X0(N) for N a squarefree positive integer. We have a natural action of the
(full) Hecke algebra T on J , and therefore on Selmer(J).

Continuing with this example, consider now an (optimal) projection π : J0(N) → A
where A is an optimal factor, as in section 1. In particular, we have TA ⊂ KA where TA

denotes the image of the Hecke algebra in the endomorphism ring of A, and KA = TA⊗Q
is a totally real field. Recall the diagram

(∗) A∗ ↪→ J → A,

which induces a diagram of homomorphisms of ind-quasi-finite flat groups Â∗ → Ĵ → Â,
and therefore it also induces homomorphisms S(A∗) → S(J) → S(A) and

Selmer(A∗) → Selmer(J) → Selmer(A).

The homomorphism Selmer(J) → Selmer(A) is equivariant with respect to the action of
T (and TA), and therefore we have an induced homomorphism of TA-modules:

λA : Selmer(J)⊗T TA → Selmer(A).

Let J0(N) → A be an optimal factor, and m ⊂ TA a maximal ideal. We view m as a
point of SpecTA ⊂ SpecT. Let the subscript m attached to a T-algebra denote “completion
at m”. In particular, Tm → TA,m denotes the homomorphism induced from T → TA

on completions with respect to m. Let the subscripts m attached to J , A or A∗ denote
associated m-divisible subgroup-schemes, i.e. the p-divisible groups, Jm =

⋃∞
ν=1 J [mν ],

and Am =
⋃∞

ν=1 A[mν ] , etc. , where p is the residual characteristic of m. Passing to
m-divisible group schemes attached to the diagram (*) gives a diagram

(∗∗) A∗m ↪→ Jm → Am,
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where A∗m may be taken to be either the m-divisible group scheme attached to the dual
abelian variety A∗ to A, or also the “Cartier” dual of the m-divisible group scheme Am.

Proposition 14. Let m ∈ SpecTA be a maximal ideal whose associated residual
representation is absolutely irreducible and is not of residual characteristic dividing 2N.
Then the induced homomorphism

λA,m : Selmer(J)m ⊗Tm
TA,m → Selmer(A)m

is an isomorphism.

Proof. Since the associated residual representation of m is absolutely irreducible, and is
not of characteristic 2, we may identify

S(J)m
∼= H1

flat(Spec Z,Jm)

and
{ShaE}m

∼= H1
flat(Spec Z,J )m,

where in the displayed formulas above, J is the Néron model of J0(N) over Spec Z; for this
see [M ]. One needn’t make use of the flat topology here, and one can perfectly well follow
through (what would essentially be a very close paraphrase of) the proof we are about to
give using the more traditional definitions via Galois cohomology. We leave this proof in
more elementary langauge as an exercise to the reader, and simply record the more rapid
proof below using sheaves for the flat topology.

Consider the functor H1 = H1
flat(Spec Z,−) (i.e., flat one-dimensional cohomology)

on the category of ind-quasi-finite flat group schemes isomorphic to subquotients of Jm.
H0 of any such subquotient is zero, and H1 is left-exact on this category. Moreover,
H1

finite flat(Spec Z, Jm
o) → H1

finite flat(Spec Z, Jm) is an isomorphism and (since m is of
residual characteristic different from 2) we may identify the Pontrjagin dual of either
domain or range with the m-adic completion of Selmer(J). One computes that for any
ideal A ⊂ T,

(∗ ∗ ∗) H1
flat(Spec Z, Jm[A]) ∼= H1

flat(Spec Z, Jm)[A].

Now let A ⊂ T be the kernel of T → TA and note that by [R] Th. 5.2 (b) we have
that the Pontrjagin dual of Jm(Q̄) is free of rank two over Tm and therefore so is the
Pontriagin dual of Jm(Q̄)[A] free of rank two over TA,m. It follows by an easy argument
then, that A∗m = Jm[A]. Consequently (***) may be written as follows:

H1
flat(Spec Z, A∗m) ∼= H1

flat(Spec Z, Jm)[A].

Passing, now, to Pontrjagin duals, we have

Selmer(J)⊗T Tm/A ∼= Selmer(A)⊗TA
TA,m

which is what we want.
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DEFINITION Let us say that the m-primary component of ShaA is “explained by”
jumps in the rank of Mordell-Weil if:

a. The abelian group Selmer(J0(N))m is torsionfree,
and

b. the induced homomorphism

λA,m : Selmer(J)m ⊗Tm
TA,m → Selmer(A)m

is an isomorphism.

Note that since TA is not flat over T (unless J = A) and Selmer(J) need not be
locally free over T, it is perfectly conceivable that for some values of N , the abelian group
Selmer(J) is torsionfree (equivalently, ShaJ is trivial) , and the homomorphisms λA are
isomorphisms (for optimal factors A of J0(N)) and yet some ShaA’s do not vanish. Indeed,
the numerical examples below suggest that phenomena of this sort happen more than one
might at first expect.

Proposition 15. If E is an optimal factor of J0(N) and if p is a prime number for which
the p-primary component of ShaE is “explained by” jumps in the rank of Mordell-Weil,
then the p-primary component of ShaE is visible (and is annihilated by δE).

Proof. This is evident.

7. Primes of fusion, and Mordell-Weil “jumps”. If A is an optimal factor of
J0(N), by the Mordell-Weil rank of A we mean

ρ(A) := dimKA(A(Q)⊗Q).

By a fusion prime m ∈ Spec T = Spec T0(N) let us mean a (maximal) prime
ideal contained in Spec TA1 and Spec TA2 where A1 and A2 are distinct optimal factors
of J0(N). If A1 and A2 are the only optimal factors A of J0(N) such that m ∈ Spec TA

and if the residual characteristic of m is different from 2 let us say that m is an ordinary
fusion prime. If m is an ordinary fusion prime, by the Mordell-Weil jump at m we mean
the non-negative integer

j(m) := |ρ(A1)− ρ(A2)|.

8. Remarks on the Numerical Examples. Cremona’s book [Cr] lists all optimal
elliptic curve factors (referred to there as “strong Weil curves”) of conductor < 1000 and
among these there are only four instances where the (Birch Swinnerton-Dyer conjectured)
value of the order of the Shafarevich-Tate group is > 1. In three of these instances the
(conjectured) value is 4. If we want odd prime divisors of the order of Sha, we are left with
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precisely one example: namely it is given by the curve E := 681B1 which has ρ(E) = 0
and |ShaE | = 9. The prime 3 seems to be a prime of fusion for the optimal factor E
because there is another optimal elliptic curve factor F := 681B1 such that the Hecke
eigenvalues for newforms corresponding to E and F are congruent modulo 3, at least for
the Hecke operators Tp for p ≤ 97 (according to Cremona’s table on page 272 of [C]). Since
the Galois representations on E[3] and F [3] are irreducible (which one also deduces from
the facts given in [C]) it is natural to imagine that they are indeed isomorphic (this could
be determined rigorously by some further computation). The curve F has the property
that Selmer(F ) is a free abelian group on two generators. In particular, the jump at the
prime m of fusion in T0(681) corresponding to the prime 3 in TE = Z and TF = Z is
equal to 2.
Remark. For m a prime of fusion, I sometimes find it convenient to “sketch” SpecT0(N)m

labelling each irreducible component by the letter denoting the optimal factor of conduc-
tor N corresponding to that irreducible component, and also “decorating” each irreducible
component by the corresponding Mordell-Weil rank “ρ”. For instance in the case of the
prime of fusion m in T0(681) of residual characteristic 3 which fuses the two elliptic curves
E = 681B and F = 681C we would just have the simple diagram

9. Adam Logan’s data.
Adam Logan studied all instances of nontrivial Shafarevich-Tate groups for elliptic

curves E of square-free conductor < 3000. Indeed his calculations extended to 5077, and we
include this data below, but the tables are still relatively incomplete in the higher ranges.
As it turns out, all of the (semi-stable) elliptic curves with nontrivial Shafarevich-Tate
group with conductor < 5077 have Mordell-Weil rank 0. The nontrivial Shafarevich-Tate
groups in this range are either of order p2 for p = 2, 3, or 5 or else of order 16. In discussing
the data, it is useful to distinguish between instances where the Shafarevich-Tate group is
of odd order or of order a power of two (these being the only cases that arise in the range
tabulated).
the odd order cases: Logan finds only one case where an odd nontrivial p-primary
component of ShaE is provably “unexplained” among all the instances he investigated.
The one provably “unexplained case” is given by the curve E = 2849A which has ShaE

of order 9, but modular degree not divisible by 3. In all other cases where an odd prime
number p divides the order of Sha, Logan found much the same pattern as was exhibited
by the example given above, of conductor 681. Namely, for optimal elliptic curve factors
E (other than 2849A) for which an odd prime p divides the order of ShaE , Logan finds
(by means of the data available, thanks to John Cremona, via anonymous ftp) another
optimal elliptic curve factor F of the same conductor as E such that p “seems to be” a
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prime of fusion, fusing E to F and F seems to provide the “explanation” for the nontrivial
Sha of E, in that the order of ShaE is p2 and the Mordell-Weil rank of E is trivial, while
F has trivial Sha but Mordell-Weil rank 2. In one case (conductor 2534) three optimal
elliptic curve factors seem to be fused together at the prime p = 3. Two of these elliptic
curves have Mordell-Weil rank zero and Sha of order 9 and the third seems to be the
“explanatory” optimal factor: it has trivial Sha but Mordell-Weil rank equal to 2.
the “invisible” example: 2849A. Since this is our first square-free example, it may be
worth looking a bit more closely at it. Both Loic Merel and Richard Taylor have suggested
that one test to see if its Shafarevich-Tate group becomes visible in J1(2849A). This is a
natural suggestion in view of Glenn Stevens ideas regarding J1-optimality (cf. [St]) but
we have not yet made this test.
examples where Sha is of even order. As for the cases where the order of Sha is even,
a similar pattern is found. In all but one of these cases, either the ShaE is “explained”
by the existence of a congruence modulo 2 between E and another elliptic curve F which
has Mordell-Weil rank 2 (or in one instance, Mordell-Weil rank one), or else E has a point
of order 2. In the remaining instance, E = 3017A, the order of ShaE is 4, and E admits
no congruence to any of the other elliptic curves of its conductor. The modular degree
δE is equal to 1944 and therefore (in contrast to the case 2849A) it is conceivable that
ShaE is “explained” by a congruence modulo two to an optimal abelian variety factor A
of J0(3017) such that dim A > 1, with Mordell-Weil of rank two (over its Hecke algebra);
we have not yet investigated whether this is the case. One feature peculiar to the prime
p = 2 is that it is possible for two optimal factors of J0(N) to admit a congruence modulo
p = 2 and have the property that they have different sign in their functional equations.
This happens in the table below exactly once (2886A has Sha of order 4 and is congruent
mod 2 to an elliptic curve with Mordell-Weil rank one).

In the table below, the data compiled by Logan is reproduced. The elliptic curves E
of squarefree conductor with nontrivial ShaE are listed, together with the corresponding
elliptic curve F of positive Mordell-Weil rank which “explains” ShaE (except in the cases
where it doesn’t exist). If there is no indication to the contrary, the “ congruence prime”
(or “prime of fusion”) linking E and F is is

√
|Sha|. The modular degrees δE are tabulated,

as are δF when they are known.

E
√
|ShaE | δE F δF Remarks

571A 2 23 · 3 · 5 571B 24 · 3
681B 3 3 · 55 681C 25 · 3
1105A 2 25 · 55 none − 2-torsion
1246B 5 26 · 34 · 5 1246C 26 · 5
1309A 4 27 · 3 · 7 · 17 1309B 28

1365F 2 2 · 34 none − 2-torsion
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1443D 2 24 · 33 · 5 1443C 24 · 7 2-torsion
1613B 2 24 · 19 1613A 24 · 5
1717A 2 23 · 41 1717B 23 · 13
1738B 2 211 · 33 · 7 1738A 28

1785G 2 27 none − 2-torsion
1785H 2 27 · 3 none − 2-torsion
1913B 3 3 · 103 1913A 22 · 3 · 52

2006E 3 26 · 3 · 5 · 7 · 23 2006D 27 · 3
2035A 2 24 · 3 · 5 2035C 24 · 3 · 11
2089D 2 25 · 3 · 5 2089E 25 · 11
2145D 2 28 · 37 none −
2145G 2 26 · 3 none − cong. mod 4 to 2145D
2265A 2 25 · 32 · 52 · 7 2265B 25 · 5 · 7 cong. mod 4
2310B 2 29 · 72 none − 2-torsion
2405B 4 23 · 3 · 52 · 7 · 17 2406C 24 · 7 · 13
2405D 2 25 · 19 none − 4-torsion
2409B 2 29 · 52 2409D 25 · 72

2429B 3 2 · 3 · 73 2429D 23 · 3 · 13
2534E 3 22 · 32 · 53 · 11 2534G 25 · 32 · 13
2534F 3 22 · 32 · 5 · 7 2534G 25 · 32 · 13
2554B 2 25 · 13 2554C 24 · 32 · 7
2563C 2 26 · 3 · 7 2563D 24 · 3 · 5
2665A 2 26 · 5 none − 2-torsion
2674B 3 24 · 33 · 13 2674A 24 · 32

2678A 2 29 · 32 · 23 2678B 27 · 3 cong. mod 4
2678A 2 29 · 32 · 23 2678I 25 · 3 · 11 cong. mod 2
2710C 3 25 · 33 · 7 2710B 25 · 32

2710A 2 25 · 3 · 52 2710B 25 · 32

2710A 2 25 · 3 · 52 2710D 25 · 5 · 11
2742B 4 26 · 5 · 17 · 23 2742C 26 · 5 rat’l 2-torsion; cong. mod 4
2834D 5 22 · 35 · 5 · 109 2834C 26 · 32 · 5
2849A 3 25 · 5 · 61 NONE −
2886A 2 29 · 32 2886B 28 · 3 2886B has 2-torsion, rank 1
2955B 3 23 · 35 · 5 2955C 26 · 33

3017A 2 23 · 52 · 11 none −
3054A 5 23 · 52 · 11 3054C 24 · 3 · 5 · 7
3306B 3 ? none −
3370D 2 ? 3370E ?
3742A 2 ? 3742B ?
3774G 2 ? 3774D ? cong. mod 4
3686D 2 ? 3686E ? cong. mod 4
3883B 2 ? 3883A ?
3886B 2 ? 3886G ?
3954C 3 ? 3954D ?
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3995A 2 ? none −
4229A 3 25 · 3 · 52 none −
4334B 3 ? none −
4630D 2 ? 4630B,4630C ?
4749A 2 ? 4749B ?
5073D 3 ? none −
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