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Abstract. Let K be a number field and let C be a curve of genus g > 1 defined over K. In this
dissertation we describe techniques for bounding the number of K-rational points on C.

In Chapter I we discuss Chabauty techniques. This is a review and synthesis of previously
known material, both published and unpublished. We have tried to eliminate unnecessary restric-
tions, such as assumptions of good reduction or the existence of a known rational point on the curve.
We have also attempted to clearly state the circumstances under which Chabauty techniques can
be applied. Our primary goal is to provide a flexible and powerful tool for computing on specific
curves.

In Chapter II we develop a technique which, given a K-rational isogeny to the Jacobian of
C, produces a positive integer n and a collection of covers of C with the property that the set of
K-rational points in the collection is in n-to-1 correspondence with the set of K-rational points on
C. If Chabauty is applicable to every curve in the collection, then we can use the covers to bound
the number of K-rational points on C.

The examples in Chapters I and II are taken from problem VI.17 in the Arabic text of the
Arithmetica. Chapter III is devoted to the background calculations for this problem. When we
assemble the pieces, we discover that the solution given by Diophantus is the only positive rational
solution to this problem.
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1. Preface

This work was motivated by a problem from the Arithmetica of Diophantus. In problem 17
of book 6 of the Arabic manuscript, Diophantus poses a problem which comes down to finding
positive rational solutions to y2 = x6 + x2 + 1. This equation describes a genus 2 curve which we
will call C. Diophantus provides the solution (1/2, 9/8) and a natural question is whether there
are any other positive rational solutions. It clearly will suffice to find all rational points on C. In
addition to the solution given by Diophantus and the 3 obvious variations obtained by negating
the x and y-coordinates, we have the 4 trivial solutions (0, 1), (0,−1), ∞+, and ∞−. Here ∞+ and
∞− are the points on the non-singular curve which lie over the point at infinity in the hyperelliptic
plane model for C.

There are several reasons why C is intriguing. First, it appears to be the only curve of genus
greater than one in the ten known books of the Arithmetica. Since the genus is greater than one, we
know by Faltings’ theorem that C has only finitely many rational points. So it makes sense to ask
if Diophantus had found all of the positive rational solutions. In other words, are the 8 solutions
we have described the only rational points on C?

Second, while C has many pleasant properties, it is just outside of reach for the usual methods
of determining the set of rational points on a genus 2 curve. In particular, C covers two elliptic
curves:

E1 : y2 = x3 + x + 1,

E2 : y2 = x3 + x2 + 1.

If either of these elliptic curves had only finitely many rational points, it would be a short calculation
to find the set of rational points on C; however, both E1 and E2 have rank 1. Along the same
lines, if J = Jac(C) had rank 0, then it would be a finite calculation to determine C(Q). If J had
rank 1, then it would be possible to bound the number of points in C(Q) by using Flynn’s explicit
description of Chabauty calculations on genus 2 curves [2, 8]. But J is isogenous to the product
E1×E2, so that J has rank 2.

The methods of Chapter II were developed in order to reduce the question of finding the rational
points on C to that of finding the rational points on curves to which Chabauty techniques could be
applied. This was successful, leading us to the question of determining the set of rational points on
two curves of genus 3. One of these curves has rank 0, and is therefore easily handled. The other
genus 3 curve has rank 1, so Chabauty techniques are required.

Flynn’s method of applying Chabauty is convenient for genus 2 curves, but requires a significant
amount of work to generalize. Other authors have not addressed the question of computing bounds
for specific curves. In Chapter I we discuss very general techniques for computing bounds on specific
curves. An extended example at the end of the chapter determines the set of rational points on
our genus 3 curve of rank 1, although certain calculations related to the Mordell-Weil group J(Q)
are assumed.

In Chapter III we present the details of the Mordell-Weil calculations. When we integrate
the results from all three chapters, we conclude that the solution given by Diophantus is the only
positive rational solution to problem VI.17.

We end on a note about the order of the chapters. The goal of Chapter II is to produce curves
to which Chabauty can be applied. The goal of Chapter III is to produce information which will be
used in Chabauty calculations. It therefore seems prudent to discuss Chabauty techniques first, in
Chapter I, as motivation for the other two chapters. Unfortunately, in the context of determining
the set of rational points on C, the natural order of the chapters would be II, III, I. We hope that
no confusion results.



CHAPTER 1

Chabauty bounds

1. Introduction

Let K be a number field and let C be a complete non-singular curve of genus g > 1 defined
over K. Let v be a non-archimedian valuation on K. In this chapter we will define a quantity
Chab(C, K, v) which we call the Chabauty rank of C over K at v. The Chabauty rank of a curve
is a non-negative integer less than or equal to the genus. If we know that the strict inequality
Chab(C, K, v) < g holds, then we can effectively bound the number of K-rational points on C.

The idea of using the above inequality to show the there are only finitely many K-rational
points on C dates back to a 1941 paper of Chabauty [3], while the details needed for obtaining an
effective bound in the case of good reduction were provided by Coleman [4] in 1985. McCallum [14]
and Flynn [8] have developed Coleman’s techniques for Fermat and genus 2 curves. We will call
any technique for computing a bound on #C(K) using Chab(C,K, v) < g a Chabauty technique
and any bound so obtained a Chabauty bound.

Our emphasis will be on computation, especially on refining the bounds we obtain in specific
situations. While the computations we will describe are generally quite straightforward, a certain
amount of theory will be required in order to set up our calculations. An overview of the theoretical
framework follows.

Let M be a complete non-archimedian field and let J be an abelian variety of dimension g
defined over M . Let TanJ and CotJ be the tangent and cotangent spaces to J at the identity.
The valuation topology on M induces natural M -analytic group structures on the sets J(M),
TanJ(M), and CotJ(M). The logarithm map on J(M) is an analytic homomorphism to TanJ(M).
More specifically, the logarithm is a local isomorphism and combining it with the duality between
TanJ and CotJ we obtain a natural analytic pairing

λ : CotJ(M)× J(M) −→ M

which is non-degenerate on the left. For any given cotangent vector ω we define λω = λ(ω, ·).
We are interested in the case where M is the completion of K at v and J is the Jacobian of C.

In this case J(K) is a finitely generated subgroup of J(M) and we consider the M -linear subspace
of TanJ(M) spanned by the logarithms of generators of J(K); the dimension of this subspace is
defined to be the Chabauty rank Chab(C, K, v) of C.

The dimension of TanJ(M) is g. If Chab(C,K, v) < g then there exists a non-zero cotangent
vector ω ∈ CotJ(M) such that λω kills J(K). Choosing a K-rational divisor D of positive degree r,
we define λω,D : C(M) → M by λω,D(P ) = λω([rP −D]). On the one hand, λω,D(P ) = 0 for every
P ∈ C(K). On the other hand, C(M) is compact and λω,D is analytic, so there is a finite covering
of C(M) by open balls on which λω,D is represented by a converging power series. A standard
Newton polygon argument allows us to bound the number of zeros of λω,D in each ball, thereby
bounding the number of K-rational points on C.

Note that we have not required C to have good reduction at v. While certain difficulties could
be avoided by assuming good reduction, we prefer to leave this possibility open. For example, in
some cases it may be worth the added effort in order to take advantage of a small residue field.

Note also that we have not required the K-rational divisor D used in defining λω,D to be
effective of degree 1. Because of this, we are able to work with curves on which we do not know
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6 1. CHABAUTY BOUNDS

any K-rational points. We will show that every K-rational divisor of positive degree leads to the
same bound, so we can let D be any divisor which is convenient. This generalizes Flynn’s use of
the map P 7→ [2P −∞+ −∞−] when doing similar calculation on genus 2 curves.

We end this introduction with a caveat. Chabauty techniques tend to hide a difficult and cur-
rently ineffective calculation in the assumption that Chab(C,K, v) is less than g. This assumption
is often verified in the literature by calculating the free rank of J(K), since the Chabauty rank of
C is at most the free rank of J . One exception is McCallum’s work on Fermat curves [14], in which
he discusses a technique for directly bounding the Chabauty rank. In any case, it is appropriate to
keep this computationally difficult prerequisite in mind when evaluating the difficulty of calculating
or refining a Chabauty bound.

2. Notation

Throughout this chapter, K will be a number field with non-archimedian valuation v of residue
characteristic p. We assume that v is normalized so that v(p) = 1. Let |x| = p−v(x) be the absolute
value on K corresponding to the valuation v. We let M = Kv be the completion of K at v and let
R = {x ∈ M : v(x) ≥ 0} be the ring of integers in M . R is a complete DVR with maximal ideal m

and residue field k. We recall that if e and f are the absolute ramification index and residue field
degree of M/Qp, then [k : Fp] = f , me = pR, and [M : Qp] = ef . Note that m is principal and that
if π is a uniformizing parameter, then v(π) = 1/e. Finally, we assume that all algebraic extensions
of M are subextensions of a fixed algebraic closure M .

Let X be a non-singular algebraic variety of dimension n defined over M . The set of M -valued
points X(M) has a natural M -analytic manifold structure. Note that if X is complete, then X(M)
is compact under this topology. If x ∈ X(M), let Ox be the ring of germs of algebraic functions
at x and let mx be its maximal ideal. We similarly define Oan

x and man
x to be the ring of germs

of analytic functions at x and its maximal ideal. If z1, . . . , zn form a basis for mx/m2
x, then they

also form a basis for man
x /(man

x )2 and the function (z1, . . . , zn) : X → Mn is a local analytic
isomorphism. We call z1, . . . , zn a local coordinate system for X at x. We note that there is a
natural inclusion of local rings Ox ⊂ Oan

x and the adic completion of either is the completed local
ring Ôx

∼= M [[z1, . . . , zn]]. An open ball about x on the manifold X(M) is an open neighborhood
B of x which is analytically isomorphic, via a local coordinate system at x, to an open polydisk
on Mn about 0 We will be more specific about choosing specific balls and local coordinate systems
when we introduce the arithmetic notions of models and residue classes in section 7.

3. Logarithms and Integrals on J

Let A be an abelian variety of dimension g defined over M . We begin this section by reviewing
the connection between cotangent vectors and global differential 1-forms on A.

Lemma 3.1. The map which sends every global 1-form to its section at 0 induces a natural
isomorphism Γ(A, Ω1

A/M ) ∼= CotA(M).

Proof. For any a ∈ A, the translation-by-a map ta induces a natural isomorphism between
the cotangent spaces at a and 0. This isomorphism yields a global trivialization of the cotangent
bundle. Thus, we can consider any global differential 1-form to be a map from A to CotA. Since
A is complete and CotA is affine, any such map must be constant; that is, every global differential
1-form must be translation invariant. The converse is trivial.

We next define the logarithm map and the pairing λ mentioned in the introduction. This is a
summary of material from [4], [10], [19], and [20].
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Lemma 3.2. Let ω ∈ Γ(A,Ω1
A/M ) be a global 1-form. There is a unique analytic homomorphism

λω : A(M) → M such that d(λω) = ω.

Proof. By the proof of lemma 3.1 we see that dω = 0, so we can express ω as the derivative
of a convergent power series at 0. In particular, let z1, . . . , zg be a local coordinate system for A at
0 and let λω ∈ M [[z1, . . . , zg]] to be the unique power series such that λω(0) = 0 and d(λω) = ω on
some open ball B about 0. There is a basis for the topology of A(M) consisting of open subgroups,
so we can also assume that B is a subgroup of A(M).

Since λω was obtained by formal integration of a converging power series, λω satisfies the formal
properties of an integral on B. This justifies writing

∫ b
a ω = λω(b)− λω(a) for a, b ∈ B. Since ω is

translation invariant, have the identity
∫ a+b

0
ω =

∫ a

0
ω +

∫ a+b

a
ω =

∫ a

0
ω +

∫ b

0
t∗aω =

∫ a

0
ω +

∫ b

0
ω

In other words, λω defines a homomorphism from B to M . Since A(M) is compact, B is a subgroup
of finite index; we can extend λω to a homomorphism on A(M) by the rule λω(a) = λω(na)/n where
n = [A(M) : B].

It is clear that the map ω 7→ λω is M -linear and injective. From this we obtain a pairing

λ : Γ(A,Ω1
A/M )×A(M)−→M

which is non-degenerate on the left. We use the duality between tangent and cotangent spaces and
the natural isomorphism between the cotangent space and the space of global 1-forms to define the
logarithm map log : A(M)−→TanA(M) by

log(x) = (ω 7−→ λω(x)).

The logarithm is a local isomorphism; since A(M) is compact, it follows that the kernel of the
logarithm is finite. Moreover, TanA(M) is torsion free, so the kernel of the logarithm is exactly the
set of torsion points on A(M). In other words,

0 −−−→ A(M)tors −−−→ A(M)
log−−−→ TanA(M)

is exact and
log : A(M)⊗Q ∼−−−→ TanA(M)

is an isomorphism.

Remark 3.3. In general, the concept of integration on a variety defined over M is complicated
by the fact that anti-derivatives are only well defined up to locally-constant functions. We have
avoided this problem (for global 1-forms on abelian varieties) by requiring the indefinite integral to
be a homomorphism. In the notation of this section, the integral

∫ b

a
ω = λω(b)− λω(a)

is uniquely determined and is functorial with respect to maps between abelian varieties, since any
such map is the translation of a homomorphism.

We can similarly define integration and the logarithm map on A for any finite field extension
N of M . It is easy to see that these integrals satisfy all of the usual formal properties: they are
linear in the integrand, switch signs when the limits are switched, etc. Furthermore, the integrals
and logarithm map are independent of any choices made in the above construction and respect the
action of Gal(M/M).
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4. Integrals on C

It is quite easy to determine whether C(M) is empty. If it is empty, we have a trivial bound
on C(K), so we assume that C(M) is not empty. Let P ∈ C(M) be an M -rational point on C and
define fP : C−→J by Q 7→ [Q − P ]. Let D be an M -rational divisor of degree r on C and define
fD : C−→J by Q 7→ [rQ − D]. Let ω ∈ Γ(J,Ω1

J/M ) be a global 1-form on J and note that both
f∗P ω and f∗Dω are global 1-forms on C.

Lemma 4.1. f∗Dω = r · f∗P ω.

Proof. Note that fD is equal to the composition

C
fP−−−→ J

[r]−−−→ J
t[rP−D]−−−−→ J.

But ω is translation invariant and [r]∗ω = rω; the statement follows.

Lemma 4.2. The map f∗ = f∗P : Γ(J,Ω1
J/M )−→Γ(C, Ω1

C/M ) is a natural isomorphism and is
independent of P .

Proof. From [16] we know that f∗P : Γ(J,Ω1
J/M

)−→Γ(C, Ω1
C/M

) is an isomorphism over the

algebraic closure. By the previous lemma we see that this isomorphism does not depend on the
choice of P , and it is clearly defined over M .

Let η ∈ Γ(C, Ω1
C/M ) be a global 1-form on C and let ω = f∗−1η be the corresponding 1-form

on J . For any M -rational divisor D of degree r, define

λη,D(Q) = λω([rQ−D]).

Note that λη,D = λω ◦ fD; abusing notation we define λω,D = λη,D. We see that λη,D is an analytic
function on C whose differential is rη. Indeed, fix Q0 ∈ C(M) and let u be a local coordinate
function on a ball B about Q0. Since η is global, we can express η as F (u)du, where F (u) ∈ M [[u]]
converges on B. The formal integral G of rF (u) is also a converging power series on B and is equal
to the function λη,D up to an additive constant. Note that if D = P is effective of degree 1 and if
P is in the ball B, then this constant of integration is −G(P ), since λη,P (P ) = 0. The question of
calculating the constant of integration for other balls will be considered in section 8.

Remark 4.3. We can define integration on C of global 1-forms by
∫ Q

P
η = λη,P (Q); in other words,

∫ Q

P
η =

∫ [Q−P ]

0
f∗−1η.

In [5], Coleman gives a canonical definition of integration on affinoids of good reduction using rigid
analysis and Dwork’s principle of analytic continuation along Frobenius. The crux of Coleman’s
definition is to show that there is a canonical choice for the constant of integration on any ball.
Our definitions of integration on algebraic curves and abelian varieties agrees with Coleman’s when
both are applicable; however, even in the case of good reduction the logarithmic approach seems to
be computational simpler. Coleman’s integrals satisfy all of the usual formal properties of integrals,
are functorial with respect to maps between varieties, and respect the action of Gal(M/M).

Remark 4.4. Note that we can calculate integrals on J in terms of integrals on C. Extending
the base field if necessary, we can write any degree 0 divisor class a ∈ J(M) as a = [

∑
Qi −

∑
Pi],

where repeats are allowed. We then have
∫ a

0
ω =

∑∫ Qi

Pi

f∗ω.

The interplay between integrals on C and integrals on J is a useful tool when performing explicit
Chabauty calculations.
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5. Chabauty rank

Let A be an abelian variety defined over K. Consider the image log(A(K)) of A(K) under the
logarithm. Let W be the M -linear subspace of TanA(M) spanned by elements of log(A(K)). We
define the Chabauty rank of A over K at v to be the dimension of W as a vector space over M :

Chab(A,K, v) = dimM (W ).

Lemma 5.1.

(i) 0 ≤ Chab(A,K, v) ≤ dimA.

(ii) Chab(A,K, v) ≤ rank(A(K)).
(iii) Chab(A,K, v) = 0 if and only if rank(A(K)) = 0.
(iv) If A is K-isogenous to a product

∏
Ai then Chab(A,K, v) =

∑
Chab(Ai,K, v).

Proof. These statements are obvious from the definitions.

For convenience, we define the Chabauty rank of a curve to be the Chabauty rank of its Jacobian,
so that Chab(C, K, v) = Chab(J,K, v).

Let V = Ann(J(K)) be the annihilator of J(K) under the pairing λ. In other words,

V = {ω ∈ Γ(J,Ω1
J/M ) : λω(a) = 0 for all a ∈ J(K)}.

Note that dimM (W ) + dimM (V ) = g; thus, V is non-trivial if and only if Chab(C, K, v) < g. From
this point forward we will assume that V = Ann(J(K)) is non-trivial.

Remark 5.2. The easiest way to show that V is non-trivial is for the rank of J(K) to be less
than g. Another relatively simple possibility is for some K-rational factor of J to have K-rank less
than its dimension; this will be important in Chapter II when considering covering collections.

6. Common zeros

Recall that we want to bound the number of K-rational points on C. Let D be an M -rational
divisor of positive degree r whose divisor class [D] is K-rational. (In the introduction we assumed
that D was K-rational; here we are slightly more general.) Since we have assumed that C(M) is
not empty, any K-rational divisor class will contain an M -rational divisor. Define

Z = {P ∈ C(M) : λω,D(P ) = 0 for all ω ∈ V }.
Since fD is K-rational and λω,D = λω ◦ fD, we see that C(K) ⊆ Z. Suppose D′ is another M -
rational divisor of positive degree whose divisor class is K-rational, and let r′ be the degree of D′.
We find that for any P ∈ C(M),

r′λω,D(P ) = rλω,D′(P ) + λω([rD′ − r′D]).

If ω ∈ V then λω([rD′−r′D]) = 0, in which case λω,D(P ) = 0 if and only if λω,D′(P ) = 0. It follows
that the set Z does not depend on the choice of D. Note that, in addition to C(K), Z contains
any point P ∈ C(M) which differs from a K-rational degree 1 divisor class by a torsion element in
J(M). This is not a complete list of points in Z, but it is the easiest subset to describe.

As we shall see, if Chab(C, K, v) < g, then Z is finite and its size can be effectively bounded.
If, in addition, we know a basis for the vector space V , then this bound takes the form of a set
of congruences which exhaust the possibilities for points in Z. In order to make this explicit we
will need to have better control over the power series which locally represent λω,D and the balls on
which these power series converge.
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7. Models and residue classes

In this section we introduce some arithmetic theory with the goal of explicitly describing a set
of balls on which our power series converge.

Let X be a non-singular algebraic variety of dimension n defined over M . Suppose that X is
a model for X over R; that is, X is a reduced, irreducible scheme over R whose generic fiber is
X. Let X be the special fiber of X . We will call the natural map from X (R) to X (k) = X (k) the
reduction map. As usual, we define a residue class to be a fiber of the reduction map.

We make two assumptions about X :
(i) the natural map X (R) → X(M) is bijective, and
(ii) every x ∈ X (R) reduces to a non-singular point x ∈ X (k).

The first assumption allows us to transport the notions of reduction and residue class to X(M). The
second assumption says that at every x ∈ X(M) there is a system z1, . . . , zn of local coordinates
which reduces to a basis for mx/m2

x. (In other words, z1, . . . , zn is a basis for mX ,x/m2
X ,x). This

system of local coordinates gives an analytic isomorphism of the residue class of x with the open
polydisk of radius 1 in Mn; in this case we will call z1, . . . , zn a system of local coordinates on
the residue class at x. We also note that if g ∈ Ox reduces to an element of Ox (equivalently,
g ∈ OX ,x), then g is represented by a power series in R[[z1, . . . , zn]]. Under these two assumptions
we can identify the residue classes of X(M) with the non-singular points of X (k). Residue classes
will be the most important examples of open balls on X(M) whenever X satisfies both of these
assumptions.

We are particularly interested in the curve C and its Jacobian J . Let C be a minimal regular
proper model for C over R and let C be its special fiber. (See, for example, Chapter IV in [22].)
Since C is proper over R, C(R) = C(M); since C is regular over R, every M -rational point in C(M)
reduces to a non-singular point on C [22, Cor IV.4.4]. Thus, both assumptions hold for C.

Let J be the Néron model for J over R and let J be its special fiber. (For a discussion of
Néron models, see [1].) We note that the connected components of Pic0(C/R) and J are canonically
isomorphic [1, Prop 1.20]. The Néron property tells us that J (R) = J(M). By definition, J is
smooth over R, so every point on J (k) is non-singular. This verifies both assumptions for J . The
reduction map is a homomorphism of abstract groups J(M) → J (k) and the residue class of the
identity is called the kernel of reduction, denoted by J1(M). Note that J1(M) is an open subgroup
of J(M).

By a lattice in a vector space V over M we mean a free R-submodule of rank equal to the
dimension of V which generates V over M . The R-modules TanJ (R), CotJ (R), Γ(J , Ω1

J /R),

and Γ(C, Ω1
C/R) form natural lattices for the vector spaces TanJ(M), CotJ(M), Γ(J,Ω1

J/M ), and

Γ(C, Ω1
C/M ) over M . These lattices are compatible with the natural maps discussed in the preceding

sections.

Proposition 7.1.

(i) The map which sends each global 1-form to its section at 0 induces a natural isomorphism

Γ(J ,Ω1
J /R) ∼= CotJ (R).

(ii) f∗ induces a natural isomorphism

Γ(J , Ω1
J /R) ∼= Γ(C,Ω1

C/R).

(iii) Let J 0 be the connected component of J . Restriction to J 0 induces an isomorphism

Γ(J , Ω1
J /R)/mΓ(J ,Ω1

J /R) ∼−−−→ Γ(J 0
, Ω1

J 0
/R

).
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(iv) Restriction to C induces an isomorphism

Γ(C, Ω1
C/R)/mΓ(C,Ω1

C/R) ∼−−−→ Γ(C, Ω1
C/R

).

Proof. We refer the reader to section 2.1 of [14] for a discussion of these lattices and isomor-
phisms.

We note that all of the open balls encountered thus far in our discussion can be assumed to be
residue classes.

Lemma 7.2. At each point a ∈ J(M) (P ∈ C(M)) there is a power series which converges on
the residue class of a (of P ) and is equal to λω (to λω,D) as a function on that residue class.

Proof. We start by considering λω at 0. Let ω ∈ Γ(J,Ω1
J/M ) and let z1, . . . , zg be a local

coordinate system for J1(M) at 0. We can multiply ω by a non-zero constant without affect
convergence of ω or λω, so we may assume that ω ∈ Γ(J , Ω1

J /R). Thus, we can write ω at 0 as∑
Fidzi, where Fi ∈ R[[z1, . . . , zg]]. Let G ∈ M [[z1, . . . , zg]] be the formal integral of

∑
Fidzi.

Since each coefficient of dG is in R, we see that the denominator of the coefficient of zai
1 . . . z

ag
g in

G is bounded by the greatest common divisor of the integers ai, . . . , ag. In particular, G converges
on J1(M). But G is equal to λω as a function on J1(M), so our result is proven in this case. Since
the above objects can be translated to any point of J(M), we see that λω can be represented by a
converging power series on every residue class of J(M).

A similar argument shows that for any M -rational divisor D, the function λω,D on C(M) can
be represented by a converging power series on each residue class of C(M).

We end this section with some useful information regarding the kernel of reduction. Let
z1, . . . , zg be a local coordinate system for J1(M) at 0. This local coordinate system identifies
J1(M) with the set m× · · ·×m. Define Jn(M) to be the subgroup corresponding to mn× . . .×mn;
note that this subgroup is independent of the choice of local coordinates.

Proposition 7.3.

(i) If v(mn) > 1/(p− 1), then the logarithm map induces an isomorphism

log : Jn(M) ∼−−−→ mn TanJ(R)

(ii) If n ≤ m ≤ 2n then taking local coordinates induces an isomorphism of additive groups

(z1, . . . , zg) : Jn(M)/Jm(M) ∼−−−→ (mn/mm)g.

Proof. This follows from [14, Lem 2.3.1] and [19, Thm IV.9.2].

Among other things, the first item in the above proposition tells us that if the ramification degree
e of M/Qp is less that p− 1 then there is no torsion in the kernel of reduction. In other words, if
e < p− 1, then the reduction map restricted to torsion points is injective.

8. Bounding the number of zeros

Let D be an M -rational divisor of positive degree r whose divisor class [D] is K-rational and
let η ∈ 1

rΓ(C, Ω1
C/R) be a differential on C such that rη is integral. Fix a point Q ∈ C(M) and let

u be a local coordinate on the residue class at Q. Our goal in this section is to bound the number
of zeros of λη,D on the residue class of Q.

As we have indicated in the previous section, rη can be expanded in the residue class of Q as

rη =
∞∑

i=0

ciu
idu
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where each ci ∈ R. Let π be a generator for m. Since λη,D is obtained by integrating rη, we find
that

λη,D = b0 +
∞∑

i=0

ci

i + 1
ui+1

= b0 +
∞∑

i=0

ciπ
i+1

i + 1

(u

π

)i+1

=
∞∑

i=0

biX
i

where b0 = λη,D(Q) is the constant of integration at Q, X = u/π, and bi = ci−1π
i/i for i ≥ 1.

Since we are restricting our attention to the residue class of Q, we see that u takes values in m and
X takes values in R. Using the theory of Newton polygons we obtain the following estimate on the
number of possible zeros to such a series.

Theorem 8.1 (Strassman). Let F (X) = b0 + b1X + · · · ∈ M [[X]] satisfy bn → 0 in M . Define
m uniquely by |bm| ≥ |bi| ∀i ≥ 0 and |bm| > |bi| ∀i > m. Then F (X) has at most m zeros in R.

Let F (X) =
∑∞

i=0 biX
i be the power series for λη,D in terms of X calculated above and let

F1(X) = F (X)− b0 =
∑∞

i=1 biX
i be the power series obtained by omitting the constant term. Let

e be the ramification degree of the extension M/Qp. Note that |1/i| ≤ logp i and |πi| = p−i/e. Thus

|bi| ≤ p−i/e logp i, which gives us an upper bound on the size of each coefficient. Given the size of
the any non-zero term bk we can easily determine N such that |bn| < |bk| for all n > N . Then the
Strassman bound is at most N . It is a finite amount of work to calculate the Strassman bound in
any given situation.

The Strassman bound will be our basic tool for bounding the number of zeros of λη,D on the
residue class of Q. We next consider some refinements and simplifications of this bound.

Approximate zeros. If we know η then formal integration gives us every coefficient of F (X)
except the constant of integration b0 = λη,D(Q). Suppose that we know b0 to some given accuracy.
Multiplying F (X) by a constant, if necessary, we may assume that F (X) ∈ R[[X]] and that F (x) /∈
m[[X]]. Suppose that after this rescaling we know every coefficient of F (X) modulo πn. Then we
can calculate all possible values of R/πn which satisfy F (X); call this our set of approximate zeros.
The number of these solutions (counting multiplicities) is a refinement on the Strassman bound. If
dimM (V ) > 1 then we further refine our bound on the number of elements of Z which lie in this
residue class by only accepting approximate zeros which are common to every η ∈ V . The values
of the approximate zeros may also help in searching for new K-rational points on C.

Ignoring the constant of integration. Let m and m′ be the Strassman bounds for F (X)
and F1(X), respectively. Note that m′ ≥ 1 and either m = m′ or m = 0. In either case, m′ gives an
upper bound for the number of zeros of F (X) in R. Since m′ ignores the constant of integration, it
can be computed directly from η. When using a bound which ignores the constant of integration,
keep in mind that the bound is always at least 1, so it cannot be used to rule out a residue class.
Also, since we do not have approximate zeros, when estimating the number of elements of Z which
lie in this residue class we must use the minimum of the bounds coming from some η ∈ V .

Reduction info only. Recall that Q reduces to a non-singular point Q of C. Let rη be the
reduction of rη. Note that if e < p− 1 and rη has order zero at Q (i.e.: |c0| = 1), then |b1| = p−1/e

and |bi| ≤ p−2/e for i ≥ 2; in other words, λω,D has at most one zero in this residue class. More
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generally, assume that ordQ(rη) = k − 1 and let n(rη, Q) = max{n : |π|n/|n| ≥ |π|k/|k|}. Looking

at the Strassman bound we see that λη,D has at most n(rη,Q) zeros in the residue class of Q.
(See [4].) Note that the order of rη at Q is at most 2g − 2, so n(rη, Q) can be bounded strictly
in terms of e and g. While n(rη, Q) may not give as sharp a bound as the Strassman estimate,
it is generally much easier to determine. Since we have not used the constant of integration, the
limitations discussed in the previous paragraph apply to this estimate also.

Effective Chabauty. The sum N(rη) =
∑

n(rη, P ) over the residue classes P of C(M) gives
an upper bound on the number of zeros of λη,D on C(M). Note that N(rη) depends only on the
divisor (rη). In fact, it only depends on that part of the divisor which is supported on non-singular
k-rational points of C; call this restricted divisor (rη)′. There are only finitely many divisors on C
which are of the form (α)′ for some differential α ∈ Γ(C, Ω1

C/R). Taking the maximum of the N(α)

gives an estimate for the maximum number of zeros on C(M) of any α. This is the approach taken
in [4]. This bound depends only on knowing that Chab(C, K, v) is less than g; in particular, it does
not require that we know any η ∈ V nor any generators for J(K).

Explicit Chabauty. Here we go to the other extreme. Suppose that we know generators for
a subgroup G of finite index in J(K). The M -linear spaces spanned by log(G) and log(J(K)) are
identical, so we will often be able to determine generators for V = Ann(J(K)). (As a practical
matter, we will only calculate log(G) to finite accuracy. If the space spanned by log(G) appears to
have lower dimension than expected, it may be difficult to determine V .)

Let G and J(K) be images of G and J(K) under the reduction map. If the index of G in
J(K) is coprime to the order of J (k), then G = J(K). Let P ∈ C(M) and let P ∈ C(k) be its
reduction. If P ∈ C(K) then clearly [rP −D] ∈ J(K); conversely, if [rP −D] /∈ J(K) then there is
no K-rational point in the residue class of P . This is a very effective way to rule out entire residue
classes; in fact, this is one way to eliminate points of Z which are not in C(K). As an added
benefit, if the residue class of Q ∈ C(M) is not ruled out then we know that the residue class of
[rQ−D] contains a K-rational divisor class; knowledge of this K-rational divisor class can be used
to calculate the constant of integration at Q.

Calculating the constant of integration. In theory, it is always possible to calculate b0 =
λω([rQ−D]) by the method discussed in sections 3 and 7: find an integer n such that n[rQ−D]
is in the kernel of reduction, expand λω as a power series at 0, and evaluate b0 = λω(n[rQ−D])/n.
Unfortunately, calculating n[rQ −D] can be difficult if n is large. Fortunately, we can sometimes
find a shortcut for calculating b0. We will assume ω ∈ V .

Recall that F1(X) is the formal integral of rη = f∗Dω on the residue class at Q. If we know a
K-rational point P in the residue class of Q, then b0 = −F1(P ). Alternatively, set Q = P so that
b0 = 0.

If we know a K-rational divisor class a in the residue class of [rQ − D], then we can make
use of the fact that λω(a) = 0. Note that to be useful, we will want degree 0 divisors D1 and D2

representing the divisor classes [rQ − D] and a such that D1 and D2 reduce to the same divisor
over k. If we have D1 and D2, then b0 = λω([rQ−D]) = λω([D1−D2]) can be evaluated as a sum
of integrals on C, where the limits of each integral are in the same residue class.

If we know an M -rational torsion point a in the residue class of [rQ−D], then we proceed as
in the previous paragraph. Note that if the order n of [rQ−D] in J is coprime to p, then we know
that the residue class contains an M -rational n-torsion point. In fact, if we know a function f on C
whose divisor is n(rQ−D), then we can use Hensel’s lemma to calculate (to any given accuracy)
a divisor in the divisor class of a whose reduction is rQ−D.



14 1. CHABAUTY BOUNDS

9. Example

Let C be the non-singular curve over Q which is birational to the plane curve

y2 = f(x) = (x4 − 2x2 − 8x + 1)(x3 + x + 1)

= x7 − x5 − 7x4 − x3 − 10x2 − 7x + 1.

Note that C is a genus 3 hyperelliptic curve. Let ρ : C−→C be the hyperelliptic involution. Since
f(x) has odd degree, we see that C has a single point at infinity, which we call ∞. Note that ∞,
(0, 1), and (0,−1) are rational points on C; we would like to show that these 3 points are the only
rational points on C.

The primes of bad reduction of C are 2 and 31. We choose to work with the prime p = 3 of
good reduction. In the terminology of this chapter we let K = Q, M = Q3, R = Z3, etc. Let C be
the minimal regular proper model for C over Z3 given by y2 = f(x) on the affine plane. Let J be
the Jacobian of C and let J be the Néron model of J . We note that J = Pic0(C/R).

There are 6 residue classes on C(Q3), corresponding to the 6 points ∞, (0, 1), (0, 2), (1, 0),
(2, 1), and (2, 2) in C(F3).

Let D3 be the effective Q-rational degree 3 divisor on C which is supported on points whose
x-coordinates satisfy x3 + x + 1 = 0 and whose y-coordinates are zero. Let D2 be the effective F3-
rational degree 2 divisor on C which is supported on points whose x-coordinates satisfy x2+x+2 = 0
and whose y-coordinates are zero. Note that the reduction of D3 is D2 + (1, 0).

As we will show in a chapter III, J(Q) ≈ Z × Z/2Z. The divisor class T = [D3 − 3∞] is the
non-trivial 2-torsion point in J(Q). The divisor class U = [∞− (0, 1)] ∈ J(Q) has infinite order.
Let T and U be the reductions of T and U at 3. The group J (F3) has order 48 while T has order
2 and U has order 12. Let G = 〈T,U〉 be the subgroup of J(Q) generated by T and U . We will
show that U is neither a double nor a triple in J(Q), so the index of G in J(Q) is coprime to 48.
Thus, G = J(Q) $ J (F3).

The power series. Note that x is a local coordinate on the residue class at (0, 1). A basis for
the global differentials on C is given by η0 = (1/y)dx, η1 = (x/y)dx, and η2 = (x2/y)dx. Expanding
1/y in terms of x we get

1
y

=
1√
f(x)

= 1 +
7
2
x +

187
8

x2 +
2563
16

x3 +
148755

128
x4 +

2210457
256

x5 +
66888879

1024
x6 + · · ·

in the residue class of (0, 1); from this we easily calculate power series expansions for the ηi.
Elementary information regarding roots of power series shows that 1/y ∈ Z3[[x]]; thus, the power
series for the ηi are in Z3[[x]] · dx, as predicted.

Let λ0, λ1, λ2 be defined by λi = ληi,D, or in other words

λi(P ) =
∫ P

(0,1)
ηi.

The series for the λi are

λ0 =x+ 7
4x2 + 187

24 x3 + 2563
64 x4 + 29751

128 x5 + 736819
512 x6 + 66888879

7168 x7 + · · · ,

λ1 = 1
2x2 + 7

6 x3 + 187
32 x4 + 2563

80 x5 + 49585
256 x6 + 2210457

1792 x7 + · · · ,

λ2 = 1
3 x3 + 7

8 x4 + 187
40 x5 + 2563

96 x6 + 148755
896 x7 + · · · .

Let ωi = f∗−1ηi be the differential on J corresponding to ηi on C, and let λ′i = λωi be the
homomorphism from J(Q3) to Q3 obtained by integrating ωi. We calculate λ′i explicitly on the
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kernel of reduction. Let a ∈ J1(Q3). The divisor class a can be represented a = [P1+P2+P3−3(0, 1)]
where Pi ∈ C(Q3) and Pi = (0, 1). Let sj =

∑3
i=1 x(Pi)j . From the expression

∫ a

0
ωi =

∑

j

∫ Pj

(0,1)
ηi

we see that

λ0 = s1 + 7
4s2 + 187

24 s3 + 2563
64 s4 + 29751

128 s5 + 736819
512 s6 + 66888879

7168 s7 + · · · ,

λ1 = 1
2s2 + 7

6 s3 + 187
32 s4 + 2563

80 s5 + 49585
256 s6 + 2210457

1792 s7 + · · · ,

λ2 = 1
3 s3 + 7

8 s4 + 187
40 s5 + 2563

96 s6 + 148755
896 s7 + · · · .

The annihilator. We want to calculate V = Ann(J(K)). The span of log(J(Q)) is 1-
dimensional, so the annihilator V will be 2-dimensional. Note that the divisor class 12U is in
the kernel of reduction, and that a 1-form kills J(K) if and only if it kills 12U . Using the obvious
generalization of methods in [2], we calculate that the divisor class 12U is represented by a divisor
of the form [P1 + P2 + P3 − 3(0, 1)] where the first 3 elementary symmetric functions in the x(Pi)
are

σ1 =− 711098862585431048203628054718792792
1791388989232843315879537625475772081 = 32 · 17 (mod 35)

σ2 = 2724451266300892942794426898300957680
1791388989232843315879537625475772081 = 32 · 14 (mod 35)

σ3 =−1176445915710480852653316703575738240
1791388989232843315879537625475772081 = 34 · 1 (mod 35).

The decision to use a precision of 35 is somewhat arbitrary. We will find, however, that it is more
than adequate.

Note that the valuation of every x(Pi) is at least min{v(σi)/i} = min{2, 1, 4/3} = 1; conse-
quently, the valuation of each sj is at least j. Note that in the power series for λ′i the valuation of
the coefficient of sj is at least v(1/j). One easily checks that every term of λi(12U) beyond j = 4
is 0 modulo 35.

We can calculate each sj in terms of the σi; the values we get are

s1 = σ1 = 32 · 17 (mod 35)
s2 = σ2

1 − 2σ2 = 32 · 8 (mod 35)
s3 = σ3

1 − 3σ1σ2 + 3σ3 = 0 (mod 36)
s4 = σ4

1 − 4σ2
1σ2 + 4σ1σ3 + 2σ2

2 = 34 · 14 (mod 37).

Substituting these values into the series for the λ′i, we find that

λ′0(12U) = 32 · 22 (mod 35)

λ′1(12U) = 32 · 13 (mod 35)

λ′2(12U) = 34 · 1 (mod 35).

Since integration is linear in the integrand we conclude that there are differentials α′, β′ ∈ V such
that α′ = 13ω1 − 22ω0 (mod 33), and β′ = ω2 − 9ω0 (mod 33). Let the corresponding differentials
on C be α and β.

Bounding each residue class. We know that any rational point P ∈ C(Q) must satisfy both∫ P
(0,1) α = 0 and

∫ P
(0,1) β = 0. Recall that we can give at least a preliminary bound on the number

of zeros of these integrals by considering the order of vanishing of the reductions α and β of α and
β modulo 3. Note that α = (x− 1)/y dx and β = x2/y dx. We list the order of vanishing of these
differentials at each residue class in table 1.
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α = x−1
y dx β = x2

y dx

(0, 1) 0 2
(0, 2) 0 2
∞ 2 0

(1, 0) 2 0
(2, 1) 0 0
(2, 2) 0 0

Table 1. Order of vanishing of α and β

n nU + 3[(0, 1)] nU + T + 3[(0, 1)]

0 3(0, 1) 2(2, 1) + 1(0, 1)
1 1∞+ 2(0, 1) 2(2, 1) + 1∞
2 2∞+ 1(0, 1) 2(2, 1) + 1(0, 2)
3 3∞ 1D2 + 1(1, 0)
4 2∞+ 1(0, 2) 2(2, 2) + 1(0, 1)
5 1∞+ 2(0, 2) 2(2, 2) + 1∞
6 3(0, 2) 2(2, 2) + 1(0, 2)
7 1(1, 0) + 2(0, 1) 2(2, 1) + 1(1, 0)
8 1(1, 0) + 1(0, 1) + 1∞ 1D2 + 1(0, 1)
9 3(1, 0) 1D2 + 1∞

10 1(1, 0) + 1(0, 2) + 1∞ 1D2 + 1(0, 2)
11 1(1, 0) + 2(0, 2) 2(2, 2) + 1(1, 0)

Table 2. Reduction of J(Q), offset by 3[(0, 1)]

Note that either α or β has order zero at each residue class. Since order 0 implies a bound of
1, there is at most one common zero in each residue class. In particular, the points ∞, (0, 1), and
(0,−1) are the only rational points in their residue classes.

Using Hensel’s Lemma, we find that the residue class of (1, 0) contains a Weierstrass point W
which is defined over Q3 but is not rational. Since [W −∞] is torsion, W is a zero of both integrals.
By the previous paragraph, W must be the only common zero in its residue class, so the residue
class (1, 0) does not contain any rational points. We will be finished if we can show that there are
no rational points in the residue classes (2, 1) and (2, 2).

Ruling out residue classes. We want to show that there are no rational points in the residue
classes (2, 1) and (2, 2). We proceed by showing that neither [3(2, 1)− 3(0, 1)] nor [3(2, 2)− 3(0, 1)]
is in J(Q). As noted in the introduction of this example, we know generators for J(Q), so this
calculation is straightforward.

The group J(Q) ⊂ J (F3) is shown in table 2. Each entry in this table is an effective divisor
E of degree three in the specified divisor class. We interpret this divisor as an element of J(Q) by
subtracting 3(0, 1). (For example, 0U = [3(0, 1)−3(0, 1)].) Except for the cases 3U+[3(0, 1)] = [3∞]
and 9U +[3(0, 1)] = [3(1, 0)], every entry in table 2 is the unique effective divisor in its divisor class.
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The complete linear system containing 3∞ has dimension 1; it consist of divisors of the form
∞+P +ρ(P ). Likewise, the complete linear system containing 3(1, 0) has dimension 1 and consists
of divisors of the form (1, 0)+P +ρ(P ). Taking table 2 together with these two families of divisors
gives us an exhaustive list of effective divisors E over F3 such that [E − 3(0, 1)] is in the reduction
of J(Q). The point we want to make is that 3(2, 1) does not appear in this list. Hence there are no
rational points in the residue class of (2, 1). Likewise, there are no rational points in the residue
class of (2, 2).

We conclude that the set of rational points on C is exactly {(0, 1), (0,−1),∞}. This completes
the example.
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CHAPTER 2

Covering Collections

1. Introduction

Let C be a curve defined over K with Jacobian J . We define a covering collection for C over
K to be a set {Di → C} of K-rational covers of C in a single K-isomorphism class, and such that
every point in C(K) is hit by a point in some Di(K). Given a covering collection, the question
of determining or bounding the set of rational points on C is reduced to determining or bounding
the set of rational points on each of the covers. In fact, it is not difficult to construct a covering
collection for C. Assuming that C(K) is not empty, we will show that there are infinitely many
unramified abelian covering collections for C over K, and that they can be described explicitly
and effectively in terms of isogenies to J . We also have what appears to be a new result on the
relationship between the number of rational points on C and the covering collection Dϕ associated
to an isogeny ϕ.

Proposition. Let n = #A(K)[ϕ] be the number of K-rational points in the kernel of ϕ. Then
the natural map ⋃

D∈Dϕ

D(K) −→ C(K)

is n-to-1 and onto.

While it may seem pointless to pass from a single curve to several curves of higher genus,
there are circumstances where this is a productive strategy. For example, the curves in a covering
collection may cover elliptic curves of rank 0; Coombes and Grant [6] use this technique to bound
the set of rational points on certain classes of hyperelliptic curves.

Our intended application is to extend the range of curves to which Chabauty techniques can
be applied. Let v be a valuation on K and suppose that Chab(C,K, v) = g, so that Chabauty
techniques cannot be applied directly to C. (See Chapter I of this work for details.) Let g′ be the
genus of the curves in the covering collection. Note that Jac(Di) is isogenous over K to the product
J × Ai for some K-rational abelian variety of dimension g′ − g. Using additivity of the Chabauty
rank, the question of whether Chabauty can be applied to Di is precisely the question of whether
the Chabauty rank of Ai is less than g′ − g. No matter how large the rank of J(K) is, it does not
rule out the possibility of applying Chabauty on each of the Di.

Thus, it may be possible to obtain a bound on C by applying Chabauty to each curve Di

in a covering collection. Unfortunately, the Chabauty rank of each Di is difficult to predict, and
requires extensive (and ineffective) computation to determine. In this chapter we will describe the
determination of a covering collection; we leave questions of Chabauty techniques to Chapter I and
rank calculations to Chapter III.

This chapter starts by developing a theory of covering collections applicable to any curve. This
is not essentially new material. We then provide a detailed treatment of the bielliptic genus 2
case, which has several agreeable properties including an explicitly computable rational subcover
of genus 3 and elimination of the requirement of a known rational point. Finally, we apply these
techniques to a bielliptic genus 2 curve with rank 2. We are able to completely determine the set
of rational points on this curve.

19
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In the following, all curves will be assumed to be complete and nonsingular. We fix a choice of
number field K and curve C (of genus g > 1) defined over K. The Jacobian of C will be denoted
by J = JacC; it is also defined over K. We will assume that C(K) is not empty, and fix a choice
of P ∈ C(K). Finally, we fix a Galois closure K of K and let GK = Gal(K/K) be the absolute
Galois group of K.

2. Covering Collections

Recall that a (connected) cover of C is a surjective map from a curve D onto C. (We shall
assume that all covers are connected.) We write a cover as D → C, D/C, or even just D if the
map to C is understood, but we shall always intend the map and not just the curve D.

Covers have an obvious notion of morphism. If D → C is defined over K, then by AutK(D/C)
we will mean the group of K-automorphisms of the cover; AutK(D/C) or simply Aut(D/C) will
denote the GK-module of K-automorphisms of the cover. If the number of K-automorphisms is
equal to the degree of the cover, we say that D → C is a Galois cover with Galois group Gal(D/C) =
Aut(D/C). An abelian cover is a Galois cover with abelian Galois group.

Our goal in studying a K-rational cover D → C is to use D(K) to discover information about
C(K). With that in mind it is useful to introduce the following terminology. We will say that the
cover D → C hits the point Q ∈ C(K) if Q is in the image of D(K). If D hits at least one point of
C(K), then we will say that D → C is productive. Note that D → C is productive exactly when
D(K) is not empty.

We now come to our main definition. Let D = {Di → C}i∈I be a set of K-isomorphism classes
of covers of C. We will say that D is a (K-rational) covering collection for C if

(i) all of the covers in D are K-isomorphic, and
(ii) every point of C(K) is hit by some cover in D.

We will often abuse notation by saying that a cover D → C is in D when the K-isomorphism class
of D → C is in D; we will say that it is in the class of D when it is in the K-isomorphism class of
D.

Theorem 2.1. An unramified Galois covering collection contains every productive cover in its
class.

Proof. Let D be an unramified Galois K-rational covering collection for C, and let f : D → C
be a productive K-rational cover in the class of D. By assumption, D(K) is not empty; fix an
element R ∈ D(K). Since D is a covering collection we can find a cover f ′ : D′ → C in D and a
point R′ ∈ D′(K) with f ′(R′) = f(R).

Since D/C is in the class of D, there is a K-isomorphism g : D′/C → D/C; since D/C is Galois
we can choose g so that R′ maps to R. Then for every σ ∈ GK , gσ(R′) = g(R′)σ = g(R′). Since
the non-trivial automorphisms of an unramified cover contain no fixed-points, we see that gσ = g.
Thus D/C is in D.

By the proof of theorem 2.1 we see that if D is an unramified Galois covering collection, then
every rational point of C is hit by exactly one cover in D. This means that we can characterize a
productive cover in the class of D by any rational point it hits.

3. Unramified Abelian Covers

Our main subject of study in the remainder of this chapter will be unramified abelian covering
collections for C. As we shall see, these have an intimate connection with J , the Jacobian of C.

Recall that we have fixed the choice of a point P ∈ C(K). For every rational divisor class
b ∈ J(K), we define a K-rational map fP,b : C → J which is given on geometric points by
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Q 7→ [Q−P ]−b. Note that the classical Abel-Jacobi map with basepoint P is given by Q 7→ [Q−P ];
we will write fP = fP,0 for this map. Let tb be the K-rational map a 7→ a + b (translation by b) on
J ; then fP,b = t−b ◦ fP . It follows that many of the properties of the Abel-Jacobi map carry over
to fP,b; in particular, fP,b is a closed embedding.

Define CP,b = fP,b(C). As previously noted, fP,b defines an isomorphism between C and CP,b.
In case C has automorphisms, the notation CP,b will always refer to the particular identification of
CP,b with C given by fP,b. Note that CP,b(K) ⊂ J(K).

Now suppose we are given an abelian variety A/K and a K-rational isogeny ϕ : A → J of
degree d. Since an isogeny is a finite connected abelian cover, the pullback of CP,b to A via ϕ is a
finite connected abelian cover of C; let us call it DP,b.

CP,b ×J A = DP,b −−−→ CP,by
y

A
ϕ−−−→ J

DP,b is a curve of genus d(g − 1) + 1. The embedding DP,b↪→A induces an isomorphism
Aut(DP,b/C) ∼= A[ϕ] of GK-modules. The notation DP,b → C will always denote the cover of
C given by DP,b → CP,b → C.

Lemma 3.1. The K-isomorphism class of the cover DP,b → C is determined by the point P ∈
C(K) and the class of b in J(K)/ϕ(A(K)).

Proof. Let a ∈ A(K) and consider the following diagram.

DP,b
≈−−−→

t−a

DP,b+ϕ(a)

y
y

CP,b
≈−−−−→

tϕ(−a)

CP,b+ϕ(a)

Definition 3.2. We define Dϕ to be the set of isomorphism classes of covers

Dϕ = {DP,b → C}b∈J(K)/ϕ(A(K)).

Theorem 3.3. Dϕ is a covering collection for C, and Dϕ does not depend on the choice of
P ∈ C(K).

Proof. Let Q ∈ C(K) and let b = fP (Q). Since the image of Q in CP,b(K) is 0J , we see that
0A is in DP,b(K); thus, DP,b hits Q. In other words, fP induces a map C(K) → J(K)/ϕ(A(K))
which sends every Q ∈ C(K) to the unique cover which hits it.

Suppose P, P ′ ∈ C(K) are two rational points on C. Then for any b ∈ J(K), we have DP ′,b =
DP,b+[P ′−P ]. It follows that the set of K-isomorphism classes of covers in Dϕ is independent of
the choice of P . Note, however, that the implied map from J(K)/ϕ(A(K)) to Dϕ does depend on
P .

The next result gives us the exact relationship between the number of rational points on C and
the number of rational points in an unramified abelian covering collection.
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Proposition 3.4. Let n = #A(K)[ϕ] be the number of K-rational points in the kernel of ϕ.
Then the natural map ⋃

D∈Dϕ

D(K) −→ C(K)

is n-to-1 and onto.

Proof. A(K)
ϕ−→ϕ(A(K)) is n-to-1, and DP,b(K) = ϕ−1(CP,b(K)) ∩A(K).

3.1. Galois Cohomology. Consider the exact sequence of GK-modules

0 → A[ϕ] → A → J → 0.

Taking Galois cohomology gives us a long exact sequence from which we can extract the short exact
sequence

0 → J(K)/ϕ(A(K)) → H1(GK , A[ϕ]) → H1(GK , A)[ϕ] → 0.(∗)
Now suppose that D/C is an arbitrary K-rational cover in the class of Dϕ, and let g : D/C →

DP,0/C be an isomorphism over K. The class of the cocycle

ξD/C(σ) = gσg−1 ∈ H1(GK ,Aut(DP,0/C)) ∼= H1(GK , A[ϕ])

is independent of the choice of isomorphism g. Thus, we can identify the middle term in (∗) with
the set Twist(DP,0/C) of K-isomorphism classes of covers of C in the class of Dϕ.

Next consider the last term in (∗). We can identify H1(GK , A) with the set of principal
homogeneous spaces for A defined over K; in this interpretation, H1(GK , A)[ϕ] is the set of principal
homogeneous spaces for A which can be provided with a K-rational map to J which is K-isomorphic
to ϕ.

The map H1(GK , A[ϕ]) → H1(GK , A)[ϕ] sends a twist of DP,0/C to the principal homogeneous
space in which it is naturally embedded. Thus, J(K)/ϕ(A(K)) is identified with the set of twists
which lie on A. Also, since non-trivial principal homogeneous spaces do not contain any rational
points, we have a second proof of the fact that Dϕ contains all of the productive covers in its class.

On the other hand, suppose H ⊂ H1(GK , A[ϕ]) is a finite cohomology subgroup containing the
image of J(K)/ϕ(A(K)). Then we can define a covering collection

DH = {Dξ
P,0}ξ∈H ,

where Dξ
P,0 is the twist of DP,0 associated to the cocycle ξ. In particular, if we let H be the ϕ-Selmer

group S(ϕ)(A/K), this leads (at theory, at least) to an effectively computable covering collection
for C. See also Coombes and Grant [6], where the set of cohomology classes that are unramified
outside of the primes over 2, the infinite places, and the primes of bad reduction of C are used to
analyze hyperelliptic curves whose Jacobians have a rational 2-torsion point.

4. Bielliptic Genus 2

Having laid out a general framework which is applicable to any curve, we now work out a
detailed description of the curves and maps in the V4 covering collection associated to a bielliptic
genus 2 curve C. For each genus 5 cover in the collection, we also examine a genus 3 quotient
associated to the hyperelliptic involution on C. In many applications, use of the genus 3 curve has
both practical and theoretical advantages.

We will use the following naming convention for curves:



4. BIELLIPTIC GENUS 2 23

L∗ genus 0
E∗ genus 1
C∗ genus 2
F∗ genus 3
D∗ genus 5

The case of genus 0 curves bears special attention. Whenever we consider a genus 0 curve
defined over K, it will be K-isomorphic to P1

K , but not canonically. Thus we will give specific
names to the roles played by various genus 0 curves. In particular, LX will frequently denote the
quotient of a hyperelliptic curve X by its hyperelliptic involution; one exception to this rule is the
genus 0 curve L0, which is the terminal object in the set of maps we will be considering. On the
other hand, if we simply wish to indicate that some genus 0 curve occupies a particular place in a
diagram, we may on occasion refer to it as P1 rather than giving it a specific name.

4.1. Description of Bielliptic Genus 2.

Definition 4.1. A curve is called bielliptic if it has a degree 2 map to an elliptic curve.

We start by summarizing results from the literature which provide a description of K-rational
bielliptic genus 2 curves.

Theorem 4.2. Suppose C is a genus 2 curve with a K-rational degree 2 map to a curve of
genus 1.

(i) C has degree 2 maps to two genus 1 curves E1 and E2.
(ii) There is a polynomial r(x) ∈ K[x] such that C, E1, and E2 have equations of the form

C : y2 = r(x2) = r3x
6 + r2x

4 + r1x
2 + r0

E1 : y2 = r(x) = r3x
3 + r2x

2 + r1x + r0

E2 : y2 = x3 · r(x−1) = r0x
3 + r1x

2 + r2x + r3.

With this choice of coordinates, there are degree 2 maps ϕ1 : C → E1 and ϕ2 : C → E2

given by ϕ1(x, y) = (x2, y) and ϕ2(x, y) = (1/x2, y/x3). In particular, both E1 and E2 have
a K-rational point at infinity, and we will consider each of them to be an elliptic curve with
this choice of identity element.

(iii) The maps ϕ1 and ϕ2 induce V4 isogenies

E1×E2
ϕ1
∗ + ϕ2

∗
−−−−−−−−→ J

ϕ1∗ × ϕ2∗−−−−−−−−→ E1×E2

whose composition is multiplication by 2. If the roots of r are α, β, and γ, then the kernel
of the first isogeny is

{0×0, (α, 0)×(1/α, 0), (β, 0)×(1/β, 0), (γ, 0)×(1/γ, 0)}
and the kernel of the second isogeny is

{0, [( +
√

α, 0)− ( −
√

α, 0)], [( +
√

β, 0)− ( −
√

β, 0)], [( +
√

γ, 0)− ( −
√

γ, 0)]}.
(iv) With the choice of coordinates above, we obtain a commutative diagram of K-rational maps:

C
©©©

HHH

-

-

-

ϕ1

ϕ2

x

E1

E2

LC

x

1/x

x2

HHHj-

©©©*
L0

Proof. See Frey and Kani [11], or Kuhn [13].
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Note. Since our intended application is to bound the number of rational points on C, we will
assume that neither E1 nor E2 has rank 0. If it were that case that, say, E1 had rank 0, then
it would be relatively straightforward to completely determine the set of rational points on C by
examining the preimages of the set of rational torsion points on E1.

Set A = E1×E2 and ϕ = ϕ1
∗ + ϕ2

∗, and assume the existence of a rational point P ∈ C(K),
which we fix. (But note that we will eventually be able to remove this restriction.) Then for every
rational b ∈ J(K) we obtain a genus 5 cover DP,b → C with V4 Galois group. We now focus on this
cover.

We start by introducing two important values related to the cover DP,b:

e1 = ϕ1(P ) + ϕ1∗(b) ∈ E1(K),

e2 = ϕ2(P ) + ϕ2∗(b) ∈ E2(K).

The definition of e1 is motivated by the observation that when we are working with the cover DP,b

we have two different “natural” maps from C to E1. The first is ϕ1 : C → E1 and the second is the
composition

C ∼= CP,b↪→J
ϕ1∗−→E1

Q 7→ ϕ1(Q)− ϕ1(P )− ϕ1∗(b).

Note that this second map is equal to t−e1 ◦ ϕ1. We shall often depend on the notation C → E1

and CP,b → E1 to distinguish these maps; a similar convention holds for maps to E2.

Remark 4.3. The connection between E1 and E2 is arithmetic rather than geometric. If C is
bielliptic to the elliptic curves E1 and E2, then E1[2] is GK-isomorphic to E2[2]. Conversely, for
any two elliptic curves E1 and E2 over K and any GK-module isomorphism g : E1[2] → E2[2],
either we obtain a genus 2 bielliptic curve over K or E1 is K-isomorphic to E2 and g is induced by
this isomorphism. For example, if E1 and E2 have different j-invariants and K(E1[2]) = K(E2[2]),
then E1 and E2 are degree 2 subcovers of respectively 6, 2, 3, or 6 different bielliptic genus 2 curves
depending on whether the degree of the extension K(E1[2])/K is 1, 2, 3, or 6.

4.2. Involutions. Because of the prominent role played by degree 2 and V4 maps, it is con-
venient to examine various involutions on DP,b. As we shall see, this analysis is greatly facilitated
if the involution on DP,b is carried by an involution on E1×E2; by this we mean that there is an
involution of the variety E1×E2 which sends the embedded curve DP,b into itself and induces the
desired involution on DP,b. We will also talk about involutions on DP,b which lie over an involution
on C (or equivalently on CP,b). This means that the involutions commute with the covering map;
since DP,b/C is Galois, it is clear that if there are any K-defined involutions of DP,b lying over a
given involution of C, then there are exactly 4 such. For notational convenience, we will generally
write [n,m] for the endomorphism on E1×E2 that is [n] on E1 and [m] on E2.

Consider the map DP,b → E1 obtained by projecting DP,b↪→E1×E2 onto the first coordinate.
This map sits in a commutative diagram

DP,b
ϕ−−−→ CP,by

y

E1
[2]−−−→ E1

and checking degrees shows that both vertical maps are degree 2. Thus the vertical maps correspond
to involutions ρ1,D and ρ1,C on DP,b and CP,b, respectively. Furthermore, the commutativity of the
diagram implies that ρ1,D lies over ρ1,C . We similarly define the involutions ρ2,D and ρ2,C relative
to DP,b → E2 and CP,b → E2.
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Note that we can easily give formulas for ρ1,C and ρ2,C :

ρ1,C(x, y) = (−x, y),

ρ2,C(x, y) = (−x,−y).

It follows that ρ1,C commutes with ρ2,C , and that their product ρ0,C = ρ1,C ◦ρ2,C is the hyperelliptic
involution on C. We also note that the fixed points for ρ1,C are (0, 1) and (0,−1), while the fixed
points for ρ2,C are the two points over infinity on C, which we will call ∞+ and ∞−.

Theorem 4.4. Let e1 ∈ E1 and e2 ∈ E2 be defined as above.
Then ρ1,D is carried by the involution [1,−1] ◦ t0×e2

on E1×E2, and ρ2,D is carried by the
involution [−1, 1] ◦ te1×0.

Proof. First we show that [1,−1]◦ t0×e2
induces an involution which lies over ρ1,C . Note that

ρ1,C induces an automorphism ρ1,J = ρ1,C
∗ on J . The automorphism [1,−1] on E1×E2 lies over

ρ1,J and one easily verifies that

ρ1,J(ϕ(0×e2)) = −ϕ2
∗(e2)

= −ϕ2
∗ ◦ ϕ2(P )− ϕ2

∗ ◦ ϕ2∗(b)

= −[ρ2,C(P ) + P ]− [ρ2,J(b) + b]

= [ρ1,C(P )− P ] + [ρ1,J(b)− b].

In particular, if we apply ρ1,J ◦ tϕ(0×e2) to a point in CP,b, we see that

ρ1,J ◦ tϕ(0×e2)([Q− P ]− b) = [ρ1,C(Q)− P ]− b ∈ CP,b.

Since ρ1,J ◦ tϕ(0×e2) carries CP,b to itself and induces ρ1,C , we find that [1,−1] ◦ t0×e2
carries DP,b

to itself and induces an involution which lies over ρ1,C .
Now, ρ1,J lies under the 4 involutions [1,−1] ◦ tT1×T2

, T1×T2 ∈ E1×E2[ϕ]. It follows that ρ1,D

is carried by one of the 4 involutions [1,−1]◦tT1×(e2−T2). Riemann-Hurwitz tells us that DP,b → E1

is ramified, so ρ1,D must be carried by an involution with fixed points. But [1,−1]◦ tT1×(e2−T2) acts
by tT1 on the E1 coordinate; it can only have fixed points if T1 = 0. Since T1 = 0 implies T2 = 0,
we conclude that ρ1,D is carried by [1,−1] ◦ t0×e2

.
A similar argument shows that ρ2,D is carried by [−1, 1] ◦ te1×0.

Since ρ1,D and ρ2,D are carried by morphisms on E1×E2, we easily verify that they commute
with each other and with the automorphisms from Aut(DP,b/C). In particular, we see that the
product ρ0,D = ρ1,D ◦ ρ2,D is an involution on DP,b which lies over the hyperelliptic involution
ρ0,C = ρ1,C ◦ ρ2,C on C. Note that ρ0,D is carried by [−1,−1] ◦ te1×e2

.
Define FP,b to be the quotient of DP,b by ρ0,D.

Theorem 4.5. FP,b is a K-rational genus 3 curve.

Proof. Define LF to be the quotient of DP,b by the V4 group of automorphisms generated by
ρ1,D and ρ2,D. We then obtain a commutative diagram

DP,b
©©©*

-
HHHj

E1

E2

FP,b

HHHj-

©©©*
LF
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where all of the maps are induced by involutions, and in fact the first three maps are induced by
ρ1,D, ρ2,D, and ρ0,D, and the second three maps are induced by the residues of these involutions.

By Riemann-Hurwitz we know that DP,b → E1 and DP,b → E2 are each ramified at 8 points;
since the fixed points for ρ1,D and ρ2,D must lie over the fixed points for ρ1,C and ρ2,C , we see that
these two fixed point sets do not intersect. One consequence is that the map E1 → LF is ramified,
so LF has genus 0.

Using Riemann-Hurwitz again, we find that map DP,b → LF has 16 ramification points; since
this must include all of the fixed points of ρ1,D, ρ2,D, and ρ0,D, we find that the fixed point set of ρ0,D

must be a subset of the union of the fixed point sets of ρ1,D and ρ2,D. But writing ρ0,D = ρ2,D ◦ρ1,D

we see that none of the fixed points for ρ1,D are fixed by ρ0,D, and switching the order we see that
in fact ρ0,D does not have any fixed points. Thus DP,b → FP,b is unramified, from which it follows
by Riemann-Hurwitz that FP,b is of genus 3.

Remark 4.6. Since any rational point on DP,b will map to a rational point on FP,b, it will
suffice to bound the set of rational points on FP,b. As we shall see, working with FP,b instead of
DP,b has at least three distinct advantages. First, the difference between genus 3 and genus 5 is
significant in terms of computational difficulty. Second, FP,b is hyperelliptic while DP,b is not; this
also affects computational difficulty. Third, the rank of DP,b is the sum of the ranks of C and FP,b.
Since by assumption C has rank at least 2, we see that it is never a disadvantage, and frequently
an advantage, to attempt to apply Chabauty to FP,b instead of DP,b. In the extreme case, if the
rank of C is at least 5 it will never be possible to apply Chabauty to DP,b, while there is no a priori
reason to believe Chabauty on FP,b will be impossible.

Corollary 4.7. FP,b is hyperelliptic.

Proof. This is implicit in the degree 2 map FP,b → LF found in the previous theorem. The
hyperelliptic involution on FP,b is given by ρ1,D (mod ρ0,D), which is equivalent to ρ2,D (mod ρ0,D).

Lemma 4.8. DP,b is not hyperelliptic.

Proof. If DP,b were hyperelliptic, then the hyperelliptic involution on DP,b would necessarily
lie over the hyperelliptic involution on CP,b. (Consider that [−1] commutes with the Albanese map
from the Jacobian of DP,b to E1×E2.)

Working over K, the 4 involutions on DP,b lying over ρ0,C are carried by the 4 maps [−1,−1] ◦
t(e1+T1)×(e2+T2), T1×T2 ∈ (E1×E2)[ϕ]. Direct calculation shows that the fixed points of these in-
volutions on E1×E2 intersect DP,b in respectively 0,8,8,8 points; thus, these involutions on DP,b

correspond to maps to FP,b and 3 elliptic curves. In particular, none of these involutions is hyper-
elliptic.

Our next step is to describe the decomposition of the Jacobians of DP,b and FP,b. It will be
useful to have the following technical lemma.

Lemma 4.9. Suppose H is a V4 group of automorphisms on a curve X, inducing a commutative
diagram

X
©©©*

-
HHHj

Y

Y ′

Y ′′

HHHj-

©©©*
W

Let JX be the Jacobian of X, JY the Jacobian of Y , etc. Then JX/JW is isogenous to JY /JW ×
JY ′/JW × JY ′′/JW .
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Proof. Let ρ, ρ′, and ρ′′ be the involutions on X associated to Y , Y ′, and Y ′′, respectively.
Let ∼ denote isogeny. We start by making 3 observations:

(i) The image of JY in JX is (1 + ρ∗)JX ; hence JY ∼ (1 + ρ∗)JX .
(ii) Since ρ and ρ′ commute, ρ′∗ operates on both JY and (1 + ρ∗)JX .
(iii) If ι is any involution on an abelian variety A, then A ∼ (1 + ι)A× (1− ι)A.

Applying these observations to JY , we see that

JY ∼ (1 + ρ∗)JX

∼ (1 + ρ′∗)(1 + ρ∗)JX × (1− ρ′∗)(1 + ρ∗)JX

∼ (1 + ρ∗ + ρ′∗ + ρ′′∗)JX × (1 + ρ∗ − ρ′∗ − ρ′′∗)JX .

Similar calculations show that

JY ′ ∼ (1 + ρ∗ + ρ′∗ + ρ′′∗)JX × (1− ρ∗ + ρ′∗ − ρ′′∗)JX ,

JY ′′ ∼ (1 + ρ∗ + ρ′∗ + ρ′′∗)JX × (1− ρ∗ − ρ′∗ + ρ′′∗)JX ,

JW ∼ (1 + ρ∗ + ρ′∗ + ρ′′∗)JX ,

and finally,

JX ∼ (1 + ρ∗ + ρ′∗ + ρ′′∗)JX × (1 + ρ∗ − ρ′∗ − ρ′′∗)JX

× (1− ρ∗ + ρ′∗ − ρ′′∗)JX × (1− ρ∗ − ρ′∗ + ρ′′∗)JX .

The result now follows easily.

Theorem 4.10. Jac(DP,b) is K-isogenous to E1×E2× Jac(FP,b), and Jac(FP,b) is K-isogenous
to a product of 3 elliptic curves.

Proof. The first statement is clear from the preceding corollary and the definitions of ρ1,D,
ρ2,D, and ρ0,D. For the second statement, note that DP,b → C is a V4 unramified cover. Thus over
K there are 3 intermediate unramified subcovers, which must have genus 3. The result follows from
either of the following diagrams.

DP,b
©©©*

-
HHHj

Fα

Fβ

Fγ

HHHj-

©©©*
C

quotient by ρ0,D−−−−−−−−−−→

FP,b
©©©*

-
HHHj

Eα

Eβ

Eγ

HHHj-

©©©*
LC

Remark 4.11. In the proof of lemma 4.8 it was mentioned that the K-involutions on DP,b lying
over ρ0,C induce maps to FP,b and “three elliptic curves”. In fact, these curves are 2-isogenous to
the elliptic curves Eα, Eβ, and Eγ mentioned above; let us call them E′

α, E′
β, and E′

γ . Then over

K these elliptic curves can be characterized in the following way: The map DP,b → L0 is ramified
over 5 points on L0. These points are {0, α, β, γ,∞}. Now, E1 → L0 is ramified over {α, β, γ,∞}
and E2 → L0 is ramified over {0, α, β, γ}. We claim that the elliptic curves E′

α, E′
β, and E′

γ are
ramified over {0, β, γ,∞}, {0, α, γ,∞}, and {0, α, β,∞}, and that Eα, Eβ, and Eγ are 2-isogenous
to respectively E′

α, E′
β, and E′

γ by the isogeny which identifies 0 and ∞ on each of these curves.
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4.3. Explicit Equations. The involutions ρ0,D, ρ1,D, and ρ2,D, and the group of involutions
corresponding to Aut(DP,b/C) are K-rational and commute. Taking the quotient of DP,b by the
various combinations of these K-rational automorphism subgroups give us a large diagram of K-
rational maps:

DP,b PPPPq@
@
@R

B
B
B
BBN

E1

E2

FP,b

B
B
B
BBN

@
@
@RPPPPq

LF

-

-

-

-

-

ϕ

[2]

[2]

Y

h

CP,b PPPPq@
@
@R

B
B
B
BBN

E1

E2

LC

B
B
B
BBN

@
@
@RPPPPPq L0

Z
Y 2

t−e1 ◦ ϕ1

x ◦ te1

(∗∗)

In this diagram we introduce labels h, Y , Z for maps that will be important in the sequel.
Let [x] and [y] be the x and y coordinate maps on E1. As mentioned earlier, the map CP,b → E1

is t−e1 ◦ ϕ1; the corresponding map E1 → L0 is [x] ◦ te1 . With this convention, the map LC → L0

is still the squaring map, which we have labeled as Y 2 to be compatible with the map Y .
So far we have chosen a specific isomorphism to P1 for every genus 0 curve in this diagram

except LF . Ignoring the PGL(2,K) ambiguity for the moment, we can take Z to be the coordinate
system for LF . The diagram suggests the following proposition:

Proposition 4.12. The plane curve Y 2 = h(Z) on LC × LF is birational to FP,b.

From the diagram it is clear that FP,b covers Y 2 = h(Z), so it will suffice to show that Y 2 = h(Z)
is genus 3. The remainder of this section will be devoted to proving this result; along the way we
also provide an explicit description of the map h.

As noted above, we need to choose an isomorphism LF
∼= P1. The map E1 → LF is induced

by the involution ρ2,D (mod ρ1,D); this gives the involution [−1] ◦ te1 on E1. If d ∈ E1(K) is a
point whose double is e1, then the K-defined function [x] ◦ td is K-isomorphic to the desired map
E1 → LF , and there is a fractional linear transformation g ∈ PGL(2, K) such that g ◦ [x] ◦ td is
K-rational. The choice of g is well-defined up to PGL(2,K).

We now demonstrate a method for explicitly constructing an appropriate choice of g. By
assumption, the rank of E1 is positive; choose points R0, R1, R∞ ∈ E1(K) which are in distinct
orbits under the involution [−1] ◦ te1 . Define x0 = [x](R0 + d), x1 = [x](R1 + d), x∞ = [x](R∞+ d).
Then we can define

g(Z) = g(d,R0, R1, R∞;Z) =
x1 − x∞
x1 − x0

(
Z − x0

Z − x∞

)
.

Note that g ◦ [x] ◦ td sends R0, R1, and R∞ to 0, 1, and ∞, respectively.

Lemma 4.13. With the given choice of R0, R1, R∞, and for any choice of point d ∈ E1(K) with
[2]d = e1, the map g(d, R0, R1, R∞; ·) ◦ [x] ◦ td is K-rational and is independent of the choice of d.

Proof. Let d and d′ be any two points whose doubles are e1, and let g and g′ be given by
the above formula. Both [x] ◦ td and [x] ◦ td′ are degree two functions which induce the involution
[−1] ◦ te1 ; thus, they both induce degree one functions on the quotient curve LF . It follows that
there is a transformation η ∈ PGL(2,K) such that [x] ◦ td′ = η ◦ [x] ◦ td. Thus,

g′ ◦ [x] ◦ td′ = g′ ◦ η ◦ [x] ◦ td.

But both g′ ◦ η and g are in PGL(2,K); since they send the same three points to 0, 1, and ∞,
they must be identical. Thus the given map does not depend on the choice of d. K-rationality
follows.
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Note. The above formula only gives one possible choice for g. If there is a rational point whose
double is e1, it will generally be much more convenient to choose this point for d, in which case we
can choose g = Id. Note that this set of choices will not necessarily result in any rational point on
E1 being sent to 0, 1, or ∞ on LF .

We can now give an explicit formula for h in terms of our choices for d and g. Let [2x] be the
x-coordinate duplication formula for E1. Then we have the following diagram, where the curve
labeled P1 and the diagonal arrows to and from it are not necessarily defined over K.

E1 E1

LF L0

P1

-

-
? ?

A
A
AU

¡ª
XXXXXXXz

[2]

g ◦ [x] ◦ td

h = [2x] ◦ g−1

[x] ◦ te1

[x] ◦ td

g [2x]

Now, the relationship Y 2 = h(Z) holds on FP,b. By the identity h = [2x] ◦ g−1 we see that h
is a degree 4 map ramified exactly over the x-coordinates of the 3 non-trivial 2-torsion points on
E1. In particular, h is not ramified over 0 or ∞. Thus, Y 2 = h(Z) gives the equation for a genus 3
hyperelliptic curve whose 8 Weierstrass points have Z-coordinates in h−1(0) ∪ h−1(∞). Since FP,b

covers this curve, they must be birational.

Remark 4.14. The divisor Z∗h∗([0−∞]) on FP,b gives a rational 2-torsion point on the Jaco-
bian of FP,b. Let B be the quotient of Jac(FP,b) by this 2-torsion element. Then the unramified
abelian cover DP,b → FP,b is in the class of the covering collection given by the dual isogeny
B∨→ Jac(FP,b).

Remark 4.15. It is now quite easy to give equations for DP,b. We can, for example, take the
obvious relations given in the large diagram (∗∗):

(x, y) ∈ E1, (Z, Y ) ∈ FP,b, ([x] ◦ te1 ◦ [2])(x, y) = h(Z).

However, the last two equations collapse, giving us the more succinct formulation:

y2 = r3x
3 + r2x

2 + r1x + r0

Y 2 = ([x] ◦ te1 ◦ [2])(x, y).

Given these equations for DP,b, the maps to FP,b and C are:
DP,b → FP,b: (x, y, Y ) 7→ ((g ◦ [x] ◦ td)(x, y), Y )

DP,b → C : (x, y, Y ) 7→ (Y, ([y] ◦ te1 ◦ [2])(x, y))

Note that the Y coordinate on FP,b agrees with the x coordinate on C. This means we can move
points back and forth between C and FP,b with minimal ambiguity; there is no need to actually lift
points to DP,b in order to determine the relationship between rational points on C and FP,b.

4.4. Effective Computation. The alert reader will have noticed that we have constructed a
bijection between elements b ∈ J(K)/ϕ((E1×E2)(K)) and certain covers DP,b of C, but that we
have given explicit equation for DP,b in terms of a parameter e1 = e1(P, b) ∈ E1(K)/2E1(K). This
is no illusion: a quick check of theorem 4.2 shows that E1×E2[ϕ] is GK-isomorphic to both E1[2]
and E2[2]. Then from the diagram

0 −−−→ J(K)/ϕ((E1×E2)(K)) −−−→ H1(GK , E1×E2[ϕ])yϕ1∗
∥∥∥

0 −−−→ E1(K)/2E1(K) −−−→ H1(GK , E1[2])



30 2. COVERING COLLECTIONS

we see that ϕ1∗ induces injections from J(K)/ϕ((E1×E2)(K)) into E1(K)/2E1(K) and from the
Selmer group S(ϕ)(E1×E2/K) into S(2)(E1/K). The map of sets e1 is simply a translation of ϕ1∗
by a factor in E1(K), so it, too, induces injections.

So far, the largest practical obstacle to the calculation of Dϕ is the necessity of finding repre-
sentatives for J(K)/ϕ((E1×E2)(K)). This can now be improved in several ways. First, the size of
J(K)/ϕ((E1×E2)(K)) is limited by the smaller of E1(K)/2E1(K) and E2(K)/2E2(K). Second,
the cohomology classes representing J(K)/ϕ((E1×E2)(K)) must be unramified outside the infinite
places, the primes over 2, and the intersection of the primes of bad reduction of E1 and E2; this
can restrict the search even further. Third, one can abandon J(K)/ϕ((E1×E2)(K)) altogether and
use either E1(K)/2E1(K) or the 2-Selmer group S(2)(E1/K); in fact, one does not even need to
know a rational point P ∈ C(K) in order to use this option.

This last point deserves some emphasis. Given a curve C which is bielliptic and genus 2 over
K, we readily calculate the genus 3 curve associated to e1 = 0:

F0 : Y 2 = [2x]E1(Z).

If we know a set of representatives for E1(K)/2E1(K), we calculate the genus 3 curve Fe1 asso-
ciated to each possible e1 ∈ E1(K)/2E1(K); otherwise, we use the cohomology twist F ξ

0 for each
ξ ∈ S(2)(E1/K). Note that S(2)(E1/K) is effectively computable, and that good tools exist for
calculating it. If we know a rational point P ∈ C(K) we may be able to use it to limit the number
of cases (as discussed above), but this is no longer a requirement.

5. Example

Problem VI.17 in Diophantus’ Arithmetica (Arabic text) asks for positive rational solutions to

y2 = x8 + x4 + x2.

Removing the singularity at (0, 0) and generalizing to all rational solutions, we obtain the following
bielliptic genus 2 curve:

C : y2 = x6 + x2 + 1,

with associated elliptic curves:

E1 : y2 = x3 + x + 1,

E2 : y2 = x3 + x2 + 1.

Let ∞+ and ∞− be the two points at infinity on C.

Proposition 5.1. C(Q) consists of the 8 points {(0,±1), (±1
2 ,±9

8),∞+,∞−}.
E1 and E2 are 496A1 and 248A1 from Cremona’s tables. Both E1 and E2 have rank 1 over

Q, generated by the points (0,1) and (0,1). Both elliptic curves have bad reduction at 2 and 31.
Since x6 + x2 + 1 has no rational factors, J(Q), E1(Q), and E2(Q) contain no 2-torsion. One also
observes that

[(0, 1)− (0,−1)] = ϕ((0, 1)×0) 6∈ [2]J(Q)
and

ϕ1∗×ϕ2∗([(0, 1)−∞+]) = (0, 1)×(0, 1) 6∈ 2(E1×E2)(Q).
It follows that J(Q)/ϕ((E1×E2)(Q)) has two elements, which can be represented by 0 and [(0, 1)−
∞+].

Let us choose P = ∞+ for our basepoint. Then our two embeddings of C in J are C∞+,0 and
C(0,1),0 = C∞+,[(0,1)−∞+]; for notational convenience we will call these curves C1 and C2, and we
carry this notation over to D1, D2, F1, and F2.



5. EXAMPLE 31

5.1. Equations for F1. Note that e1(∞+, 0) = ϕ1(∞+) − ϕ1∗(0) = 0E1 . Thus we can let
d = 0E1 and g = Id. Then

F1 : Y 2 = h1(Z) = [2x]E1(Z) =
Z4 − 2Z2 − 8Z + 1

4(Z3 + Z + 1)
.

Note the rational Weierstrass point at infinity, as well as the solutions (0,±1
2). This curve has

bad reduction at 2 and 31.

5.2. Equations for F2. Note that e2((0, 1), 0) = ϕ2((0, 1)) − ϕ2∗(0) = 0E2 . Switching the
roles of E1 and E2 we can let d = 0E2 and g = Id. Then

F2 : Y 2 = h2(Z) = [2x]E2(Z) =
Z4 − 8Z − 4

4(Z3 + Z2 + 1)
.

Note the rational Weierstrass point at infinity. This curve has bad reduction at 2 and 31.

5.3. Bounding the rational points. We will defer certain calculations regarding Mordell-
Weil groups until Chapter III. Other calculations have already been performed in Chapter I.

We start with the curve F1. For convenience, we shift to the equation:

F ′
1 : Y ′2 = h′1(Z) = (Z4 − 2Z2 − 8Z + 1)(Z3 + Z + 1).

Note that this is the equation for the curve from the example at the end of Chapter I. We conclude
that F ′

1(Q) = {(0, 1), (0,−1),∞}.
We tackle F2 next. Let ∞ ∈ F2(Q) be the rational Weierstrass point on F2, and let J2 be the

Jacobian of F2. We will consider F2 to be embedded in J2 by the map Q 7→ [Q −∞]. By lemma
4.2 we see that J2(Q) ≈ Z/2Z. Thus, if [Q−∞] ∈ J2(Q), then Q is a Weierstrass point of C. Since
the only rational Weierstrass point is ∞, we find that F2(Q) = {∞}.

Finally, note that the maps D1 → F1, D2 → F2 are degree 2 maps. Thus, the 3 rational points
on F1 and the 1 rational point on F2 tell us that there are at most 6 rational points on D1 and 2
rational points on D2. It follows that there are at most 8 rational points on C. But we have named
8 rational points on C. This completes the proof of Proposition 5.1.
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CHAPTER 3

The Mordell-Weil group

1. Introduction

In Chapters I and II we quoted results concerning the structure of the Mordell-Weil groups of
the Jacobians of the curves

F1 : y2 = (x4 − 2x2 − 8x + 1)(x3 + x + 1),

F2 : y2 = (x4 − 8x− 4)(x3 + x2 + 1).

Our goal in this chapter is to prove these results.

2. Background

Let K be a number field, the completion of a number field at a finite or infinite valuation, or
a finite field of odd characteristic. Choose an algebraic closure K of K. Let F/K be a complete
non-singular hyperelliptic curve of genus g. For our purposes it will suffice to assume that F has
a plane model y2 = f(x) where f(x) ∈ K[x] is a separable polynomial of degree 2g + 1. A model
of this form is non-singular in the affine plane and we identify affine points (x, y) in this model
with the corresponding points of F . In addition to the affine points there is one K-valued point at
infinity, which we will call ∞; the point ∞ is a K-rational Weierstrass point on F . Note that the
hyperelliptic involution ρ on F takes an affine point P = (x, y) ∈ F (K) to the point ρ(P ) = (x,−y)
and that the affine Weierstrass points in F (K) are exactly those points for which y = 0.

Let J = Jac(F ) be the Jacobian of F . Since F has a K-rational point, every K-rational
divisor class contains a K-rational divisor. In fact, for every divisor class a ∈ J(K) we can write
a = [D − g∞], where D is an effective K-rational divisor of degree g. Note that P + ρ(P ) ∼ 2∞
for any point P ∈ F (K). We will call an effective K-rational divisor D standard if D− P − ρ(P )
is not effective for every P 6= ∞; a simple application of the Riemann-Roch theorem shows that in
every K-rational divisor class of degree g there is a unique standard divisor. In particular, every
divisor class in J(K) has a unique representation of the form [D−d∞] where D is a standard affine
divisor of degree d ≤ g.

The set of K-rational effective affine divisors on F can be identified with the set of non-zero
ideals of K[x, y]/(y2− f(x)). Under this identification, maximal ideals correspond to the sum over
galois conjugates

∑
P σ of a single point P ∈ F (K) where each point in the sum occurs only once;

furthermore, depending on whether y(P ) ∈ K is contained in the field K(x(P )) or not, the maximal
ideal associated to

∑
P σ can be written in either the form (h(x), y − k(x)) or (h(x), y2 − k(x)).

Note that the corresponding divisor is standard in the first case and not standard in the second.
In either case, if (h(x), yn− k(x)) is maximal then h is irreducible. We will call a divisor maximal
if it is K-rational, effective, affine, and corresponds to a maximal ideal.

We are primarily interested in ideals of the form (h(x), yn−k(x)) and will write {h(x), yn − k(x)}
for the corresponding divisor. The degree of (h(x), yn − k(x)) is ndeg(h). To fix representations
we will always assume that h(x) is a monic polynomial. The polynomial k(x) is only defined up
to elements of the radical of the ideal generated by h(x); if we assume h(x) is separable then we

33
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can fix k(x) by requiring that its degree be less than that of h(x). If h(x) is separable, it is clear
that {h(x), y − k(x)} is a standard divisor; conversely, any standard affine divisor can be written
as {h(x), y − k(x)} for some separable polynomial h(x). In fact, if D is a standard affine divisor,
then

h(T ) =
∏

P∈D

(T − x(P ))

and the polynomial k(x) can be determined by the Chinese Remainder Theorem. Note that for the
more general divisor D = {h(x), yn − k(x)}, the above product yields h(T )n.

2.1. 2-torsion. Suppose f(x) factors over K as f(x) = h(x)h′(x) and let d be the degree of
h. Since the divisor of h is

(h) = 2{h(x), y} − 2d∞,

the divisor class [{h(x), y} − d∞] is an element of J(K)[2]; furthermore, since

(y) = {f(x), y} − (2g + 1)∞,

we see that [{h(x), y} − d∞] represents the same 2-torsion point as [{h′(x), y} − (2g + 1− d)∞].
On the other hand, let a ∈ J(K)[2] and let [D− d∞] be the unique representation such that D

is a standard affine divisor of degree d ≤ g. Since a is 2-torsion and since ρ∗ acts as −1 on J , we
conclude that ρ∗(D) = D. Thus, for every point P in the support of D, ρ(P ) must also be in the
support of D. Given the restrictions on D, this means that D is supported on affine Weierstrass
points, each of which occurs with multiplicity at most 1. We see that, up to a constant factor, we
can express any K-rational 2-torsion point in the form [{h(x), y}− d∞] for exactly one polynomial
h(x) dividing f(x) of degree less than or equal to g. In particular, #J(K)[2] is equal to half the
total number of (monic) factors of f(x) over K and the dimension of J(K)[2] as an F2-vector space
is one less than the number of irreducible factors of f(x) over K.

3. The (x-T) map

We next describe an efficient method for determining whether a point a ∈ J(K) is contained in
2J(K). This algorithm is specific to the case of a hyperelliptic curve with K-rational Weierstrass
point.

Fix the plane model y2 = f(x) for F , and write f =
∏r

i=1 fi where each fi is irreducible over
K. By choosing a root αi ∈ K for each fi, we can identify the algebra K[T ]/f(T ) with the product
of fields

∏
K(αi) by the homomorphism

T 7−→ (α1, . . . , αr).

For convenience, we define L = K[T ]/f(T ) and Ki = K(αi). We also give a name to the Weierstrass
point Wi = (αi, 0) ∈ F (Ki) whose x-coordinate is our chosen root of fi.

Let D be a divisor on F which is rational over K. If, in addition, the support of D avoids the
Weierstrass points of F , we will call D a good divisor. The set of good divisors forms a group under
addition and the good maximal divisors are a generating set.

Next we define a homomorphism from the group of good divisors to L∗ known as the (x − T )
map. Let D = {h(x), yn − k(x)} be a good maximal divisor where h is monic of degree d. Define
(x− T )(D) to be the element of L∗ given by

(x− T ) ({h(x), yn − k(x)}) = (−1)dnh(T )n.

We extend the (x − T ) map to the entire group of good divisors by linearity. Note that we can
rewrite the right hand side of the previous equation as

(−1)dnh(T )n = (−1)dn
∏

P∈D

(T − x(P )) =
∏

P∈D

(x(P )− T ),
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where the product takes place in K[T ]/f(T ). Thus, we have the alternate definition

(x− T )
(∑

miP
)

=
∏

(x(P )− T )mi

from which the (x − T ) map gets its name. In general, the first definition is more convenient for
computation, since one can work entirely in L∗.

Lemma 3.1. The (x− T ) map on good divisors induces a well-defined homomorphism

(x− T ) : Pic(F )(K) −→ L∗/L∗2.

Proof. See [17, lemma 2.1]. Since the proof is instructive, we repeat it for the reader.
Every K-rational divisor is linearly equivalent to a K-rational divisor which misses any given

finite set. It follows that every K-rational divisor class contains a good divisor.
Next, let M be a field extension of K and let s be a function on F defined over M . We can

extend s to divisors whose support avoids the zeros and poles of s by

s
(∑

miP
)

=
∏

s(P )mi ∈ M
∗
.

If D is an M -rational divisor then s(D) ∈ M∗. Furthermore, if s and s′ are two functions on F

whose divisors are supported on disjoint sets, then Weil reciprocity tells us that s((s′)) = s′((s)).
(See, for example [21, ex. II.11])

If we follow the (x− T ) map on good divisors by projection onto the ith factor we get the map
(x − αi) as defined above. Note that (x − αi) is defined over Ki. Suppose D and D′ are linearly
equivalent good divisors, say D −D′ = (s), then

(x− αi)(D −D′) = (x− αi)((s)) = s((x− αi)) = s(2Wi − 2∞) = s(Wi −∞)2 ∈ K∗2
i .

It follows that (x−T )(D−D′) ∈ L∗2; this shows that the (x−T ) map is well-defined on K-rational
divisor classes.

We end this section by quoting some useful results from [17].

Proposition 3.2. The (x− T ) map induces an injective homomorphism

(x− T ) : J(K)/2J(K) −→ L∗/L∗2.

Proof. See [17, theorem 1.2].

Proposition 3.3.

(i) (x− T )([∞]) = 1.

(ii) Suppose f(x) factors over K as f(x) = h(x)h′(x) where h(x) is a polynomial of degree d.
Then (x− T )([{h(x), y}]) = (−1)dh(T ) + (−1)1−dh′(T ).

Proof. See [17, lemma 2.2].

Example 3.4. We now do a few calculations which will be useful in the sequel. Let K = Q and
let F1 be the genus 3 curve y2 = (x4−2x2−8x+1)(x3 +x+1). Let K1 = Q[T ]/(T 4−2T 2−8T +1),
K2 = Q[T ]/(T 3 + T + 1), and L = K1 × K2 = Q[T ]/((T 4 − 2T 2 − 8T + 1)(T 3 + T + 1)). Let
T1 = [{x3 + x + 1, y} − 3∞], and let U1 = [(0, 1)−∞].
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Using the preceding propositions, we calculate the image of T1 and U1.

(x− T )(T1) = −(T 3 + T + 1) + (T 4 − 2T 2 − 8T + 1) ∈ L∗/L∗2

= ( −(T 3 + T + 1) , (T 4 − 2T 2 − 8T + 1) ) ∈ K1
∗/K1

∗2 ×K2
∗/K2

∗2

= ( −((T 3 − T − 1)/2)2 , (3T 2 + 1)2 ) ∈ K1
∗/K1

∗2 ×K2
∗/K2

∗2

= (−1, 1). ∈ K1
∗/K1

∗2 ×K2
∗/K2

∗2

(x− T )(U1) = −T ∈ L∗/L∗2

= (−T ,−T ) ∈ K1
∗/K1

∗2 ×K2
∗/K2

∗2

Example 3.5. Let K = Q and let F2 be the genus 3 curve y2 = (x4− 8x− 4)(x3 +x2 +1). Let
K1, K2, and L be defined as in the previous example. We note that Q[T ]/(T 4 − 2T 2 − 8T + 1) ∼=
Q[R]/(R4− 8R− 4) by the map R = 1

2T 2− 1
2 . Similarly, Q[T ]/(T 3 + T + 1) ∼= Q[R]/(R3 + R2 + 1)

by the map R = −T 2− 1. Thus, the “(x−R)” map can also be interpreted as taking values in L∗.
The image of T2 = [{x3 + x2 + 1, y} − 3∞] is

(x−R)(T2) = −(R3 + R2 + 1) + (R4 − 8R− 4) ∈ L∗/L∗2

= ( −(R3 + R2 + 1) , (R4 − 8R− 4) ) ∈ K1
∗/K1

∗2 ×K2
∗/K2

∗2

= ( −(T 3 + T + 1) , (10T 2 − T + 7) ) ∈ K1
∗/K1

∗2 ×K2
∗/K2

∗2

= ( −((T 3 − T − 1)/2)2 , (T 2 − 3T + 1)2 ) ∈ K1
∗/K1

∗2 ×K2
∗/K2

∗2

= (−1, 1). ∈ K1
∗/K1

∗2 ×K2
∗/K2

∗2

4. Summary of calculation

Terminology. Assume the following definitions.
f1(x) = (x4 − 2x2 − 8x + 1)(x3 + x + 1).
F1 = Nonsingular curve over Q birational to y2 = f1(x).
J1 = Jacobian of F1 over Q.
T1 = [{x3 + x + 1, y} − 3∞] ∈ J1(Q).
U1 = [(0, 1)−∞] ∈ J1(Q).

f2(x) = (x4 − 8x− 4)(x3 + x2 + 1).
F2 = Nonsingular curve over Q birational to y2 = f2(x).
J2 = Jacobian of F2 over Q.
T2 = [{x3 + x2 + 1, y} − 3∞] ∈ J2(Q).

K1 = Q[T ]/(T 4 − 2T 2 − 8T + 1)
K2 = Q[T ]/(T 3 + T + 1)
L = Q[T ]/f1(T ) ∼= K1 ×K2

Lp = Qp[T ]/f1(T ) for any finite or infinite prime p of Q

Summary of Results. We will show the following:

Lemma 4.1 (Reduction information).
(i) J1(Q)tor ≈ Z/2Z and is generated by T1.
(ii) J2(Q)tor ≈ Z/2Z and is generated by T2.
(iii) U1 has infinite order, and U1 is neither the double nor the triple of a point in J1(Q).

Lemma 4.2 (Rank information).
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(i) J1(Q) ≈ Z× Z/2Z.
(ii) J2(Q) ≈ Z/2Z.

5. Reduction information

We can obtain a large amount of information by reducing J1 and J2 at various primes of good
reduction. For both F1 and F2, the primes of bad reduction of the given hyperelliptic model are 2
and 31; the curves and their Jacobians have good reduction at all other primes.

In fact, we need only a little information to determine the torsion on J1. The number of F3-
valued points of J1 is 48 = 24 ·3 and the number of F5-valued points is 112 = 24 ·7. The ramification
degree of Q at any prime is 1; in particular, it is less than p − 1 for any odd prime p. Thus the
torsion of J1(Q) injects under the reduction map at both 3 and 5. Since the gcd of 48 and 112 is
24 we see that the torsion of J1(Q) must be 2-power order. But the only 2-torsion point in J1(Q)
is T1, and the (x − T ) map shows that it is not a double. So the only non-trivial torsion point in
J1(Q) is T1. This shows the first part of lemma 4.1.

A similar argument shows that the only non-trivial torsion point on J2(Q) is T2; in this case,
the number of F3-valued points of J2 is 24 = 23 · 3 while the number of F5-valued points is again
112 = 24 · 7. This is the second part of lemma 4.1.

Finally, since U1 is not in the torsion subgroup, it must be of infinite order. The reduction of
U1 at 3 has order 12. Since J1 has 48 F3-valued points, the reduction of U1 is not a triple in J1(F3).
It follows that U1 is not a triple over Q. The (x − T ) map calculation from the previous example
shows that U1 is not a double over Q. This completes lemma 4.1.

Note. Let F be a genus 3 curve defined over the finite field Fq and let J be its Jacobian. A
comparison of the zeta functions of F and J shows that

#J(Fq) =
1
6
a3 + (

1
2
b− p) · a +

1
3
c

where a = #F (Fq), b = #F (Fq2), c = #F (Fq3).

This is not the most efficient method for counting the number of points on J over a large finite
field, but it suffices for small values of q.

6. Rank information

We want to verify that J1 has rank 1 over Q, and that J2 has rank 0. Since we know the
structure of the Q-rational torsion, it will suffice to show that J1(Q)/2J1(Q) is generated by U1

and T1 and that J2(Q)/2J2(Q) is generated by T2. In order to do this we will need to look somewhat
more closely at the (x− T ) map.

First we will need a few definitions. Let S = {2, 31,∞}; as with the proof of the weak Mordell-
Weil theorem for J(K)/nJ(K), the set S is chosen to include the primes of bad reduction (2 and 31)
and the primes dividing n = 2 and infinity. Define (K1

∗/K1
∗2)S to be the subgroup of K1

∗/K1
∗2

consisting of classes which are unramified outside of S; that is, for every class [β] ∈ (K1
∗/K1

∗2)S ,
the field extension K1(

√
β)/K1 is unramified outside of primes of K1 lying over primes of S.

Note that there are only finitely many quadratic extensions of K1 with the given ramification
restriction, so (K1

∗/K1
∗2)S is finite. Similarly, we define (K2

∗/K2
∗2)S to be the subgroup of

K2
∗/K2

∗2 consisting of classes which are unramified outside of S and we let (L∗/L∗2)S be the
subgroup of L∗/L∗2 = K1

∗/K1
∗2 ×K2

∗/K2
∗2 corresponding to (K1

∗/K1
∗2)S × (K2

∗/K2
∗2)S . The

groups (K2
∗/K2

∗2)S and (L∗/L∗2)S are also finite. Finally, note that the norm maps from K1 and
K2 to Q induce a norm map from (L∗/L∗2)S to Q∗/Q∗2.
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Proposition 6.1. The image of the injective map

(x− T ) : J(Q)/2J(Q) −→ L∗/L∗2

is contained in the kernel of the norm from (L∗/L∗2)S to Q∗/Q∗2.

Proof. This follows from theorems 1.1 and 1.2 in [17].

Let H be the kernel of the norm from (L∗/L∗2)S to Q∗/Q∗2 and let v be a valuation of Q.
Consider the diagram

0 −→

0 −→

J(Q)/2J(Q)
(x−T )−−−−→ H ⊂ (L∗/L∗2)Sy

yβv

J(Qv)/2J(Qv)
(x−T )v−−−−→ Lv

∗/Lv
∗2.

In this diagram βv is the restriction to H of the natural map from L∗/L∗2 to Lv
∗/Lv

∗2 and (x−T )v

is the (x− T ) map over Qv.
Let Im(x−T )v denote the image of the (x−T )v map. It is clear that J(Q)/2J(Q) is contained

in β−1
v (Im(x − T )v) for each v. In order to show that a given set of divisor classes generates

J(Q)/2J(Q), it will suffice to show that this same set generates the intersection
⋂
v

β−1
v (Im(x− T )v)

where v ranges over the set of all valuations of Q. Since H is a finite group, the intersection is
stable after a finite number of steps. In our case β−1

2 (Im(x− T )2) ∩ β−1
31 (Im(x− T )31) will suffice.

Computing the group H and the maps βv are both relatively straightforward. On the other
hand, one generally has to search for generators of J(Qv)/2J(Qv). The following proposition lets
us know when the search is complete.

Proposition 6.2. Let K be a finite extension of Qp and let A be an abelian variety of dimension
g defined over K.

(i) If p 6= 2, then #A(K)/2A(K) = #A(K)[2].
(ii) If p = 2, then #A(K)/2A(K) = 2g[K:Qp] ·#A(K)[2].
(iii) #A(R)/2A(R) = 2−g ·#A(R)[2].

Proof. This is a special case of propositions 2.4 and 2.5 in [18].

Remark 6.3. The intersection
⋂

β−1
v (Im(x−T )v) can be related to the 2-Selmer group S2(J,K).

The process described above is a truncated version of the algorithm given in [17] for computing
the 2-Selmer group on Jacobians of hyperelliptic curves with a rational Weierstrass point. For a
description of a general approach to computing Selmer groups of Jacobians, see [18].

6.1. Computing modulo squares. Before we get into the actual rank calculations it would
be appropriate to say a few words about computing in K∗/K∗2 for some of the fields K we are
working with. We will not add anything new to the topic, but hopefully it will be a useful discussion
for the reader who is interested in performing actual computations.

Note that the groups K∗/K∗2 and J(K)/2J(K) have natural F2-vector space structures; this
is the context in which we will discuss dimensions, generators, a basis, etc. We will also frequently
use the notation 〈b1, . . . , bn〉 to denote the subspace generated by the elements b1, . . . , bn.

Finite Fields. Clearly the easiest case is when K is a finite field with q elements. If q is
even then every element is a square. If q is odd then there is one non-trivial class modulo squares;
a ∈ K∗ is a square if and only if a(q−1)/2 = 1.
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Extensions of Qp, p odd. The case where K is a finite extension of Qp, p odd, is also
straightforward. Fix a uniformizing element π ∈ K. Then K∗/K∗2 = 〈π, u〉, where u is any non-
square unit in K. Since all non-square units in K are equivalent class modulo squares, this basis is
well-defined. On the other hand, each choice of uniformizing element modulo π2 yields a different
basis.

We can express an element a ∈ K∗ on the basis {π, u} in the following way: let n be the
valuation of a, so that a = πn · a′ for some unit a′. The class of πn modulo squares is clearly
determined by n (mod 2), while the class of a′ is determined by the image of a′ in the residue field.

Extensions of Q2. When K is a finite extension of Q2 we must work a bit harder. Let k be
the residue field of K and let (e,f) be the ramification index and residue field degree of K over Q2.
Thus, [K : Q2] = ef and [k : F2] = f . Fix a uniformizing element π ∈ K∗ and let b1, . . . , bf be a
set of elements in K whose residues form a basis for k as a vector space over F2. We leave it as an
exercise to the reader to show that K∗/K∗2 has dimension ef + 2 and that the ef + 1 elements

π, 1 + b1π, . . . , 1 + bfπ, 1 + b1π
3, . . . , 1 + bfπ3, . . . , 1 + b1π

2e−1, . . . , 1 + bfπ2e−1

are independent modulo squares. We complete this basis with a non-square element µ in 1+(π)2e =
1 + (4). Note that if µ and µ′ are two non-squares which are 1 mod 4 then µ and µ′ are equivalent
mod squares. In practice it is not necessary to choose a specific value for µ.

Let a ∈ K∗, and let v(a) be the valuation of a. Let q = 2f be the size of the residue field. If
v(a − 1) = m > 0, define w(a) = (a − 1)/πm. The following algorithm can be used to recursively
express any element a ∈ K∗ on the above basis. At each step we simplify a (generally by increasing
the valuation of a− 1) and record the basis elements involved in the transformation, if any.

condition action result

v(a) = n 6= 0 Divide a by πn and record change. v(a) = 0

v(a) = 0 = v(a− 1) Divide a by aq. (No change modulo squares.) v(a− 1) > 0

0 < v(a− 1) < 2e,
m = v(a− 1) even

Divide a by (1 + w(a)q/2πm/2)2.
(No change modulo squares.)

v(a− 1) > m

0 < v(a− 1) < 2e,
m = v(a− 1) odd

Find αi ∈ {0, 1} such that
w(a) ≡ ∑

αibi (mod π).
Divide a by

∏
(1 + biπ

m)αi and record change.

v(a− 1) > m

v(a− 1) = 2e Let b = (a− 1)/4.
If

∑f−1
i=1 bi ≡ 0 (mod π) then a is a square,

else divide a by µ and record change.
In either case, a is now a square.

Done.

v(a− 1) > 2e, Note that a is a square. Done.

We make two notes about the above algorithm. First, the condition “If
∑f−1

i=1 bi ≡ 0 (mod π)
. . . ” in the second-to-last case uses the fact that b = (a−1)/4; attempting to use the more general
expression b = (a− 1)/π2e would require a much more complex conditional.

Second, all of the computations except for the initial division by a power of π can be done
modulo 4π (or modulo 8 if that is more convenient). In particular, we only need to specify π and
b1, . . . , bf to this accuracy.
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Number Fields. Finally, we consider the case where K is a number field. If K has class
number 1 and if we know a basis of the fundamental units and roots of unity, then it is fairly
straightforward to determine the class of an element a ∈ K∗: First factor the fractional ideal (a)
as a product of (principal) prime ideals. Divide a by the corresponding product of prime elements
to get a unit a′. Next, express a′ as a product of powers of the fundamental units modulo roots of
unity; this can be done using the logarithms of embeddings of K in C. Finally, divide a′ by this
product of fundamental units and determine whether the resulting root of unity is a square.

For our present purposes it will suffice to assume that the class number is 1, and we will not
discuss the alternative in detail. The calculation of fundamental units and roots of unity can be
performed by PARI/GP for number fields of modest size, so this requirement will not introduce
significant difficulty.

6.2. Rank verification for F1. We would like to verify that J1(Q)/2J1(Q) is generated by
T1 and U1. Recall the definitions.

f1(x) = (x4 − 2x2 − 8x + 1)(x3 + x + 1).
F1 = Nonsingular curve over Q birational to y2 = f1(x).
J1 = Jacobian of F1 over Q.
T1 = [{x3 + x + 1, y} − 3∞] ∈ J1(Q).
U1 = [(0, 1)−∞] ∈ J1(Q).

K1 = Q[T ]/(T 4 − 2T 2 − 8T + 1)
K2 = Q[T ]/(T 3 + T + 1)
L = Q[T ]/f1(T ) ∼= K1 ×K2

Lp = Qp[T ]/f1(T )
We start by recording various pieces of information about the number fields K1 and K2. The

majority of this information comes from PARI/GP.

field K1 K2

discriminant −1984 −31
Minkowski bound ≈ 5.2 ≈ 1.6
class number 1 1
(r1, r2) (2, 1) (1, 1)
rank of unit group 2 1
torsion in unit group 〈−1〉 〈−1〉
(e, f) for primes over 2 (4, 1) (1, 3)
(e, f) for primes over 31 (2, 1), (1, 2) (2, 1), (1, 1)

The fact that both K1 and K2 have trivial class group simplifies the computation of (K1
∗/K1

∗2)S

and (K2
∗/K2

∗2)S . In fact, we see that these groups are generated by −1, the fundamental units,
and by generators for the primes over 2 and 31. Specifically, a basis for K1

∗/K1
∗2 is given by

name element norm description
−1 −1 1 root of unity
u1 T 1 fundamental unit
u2 (T 3 − T 2 − T − 3)/4 −1 fundamental unit
p2 (T 3 + T 2 − T − 9)/4 −2 (e, f) = (4, 1)
p31 (−T 3 + T + 2)/2 −31 (e, f) = (2, 1)
p′31 −T 2 + 3T + 3 312 (e, f) = (1, 2)
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p31 p′31 q31 q′31

number field K1 K1 K2 K2

completion Q31(
√

31 ) Q31(i) Q31(
√−31 ) Q31

image of T 14 + (p31) 17 + 7i + (p′31) 14 + (q31) 3 + (q′31)
basis mod squares −1, p31 4 + i, p′31 −1, q31 −1, q′31

Table 1. Description of L31

p31 p′31 q31 q′31

T1 −1 1 1 1
U1 −1 1 −1 1
[(1,

√−24)−∞] 1 4 + i 1 −1

Table 2. Image of (x− T )31 for J1

and a basis for K2
∗/K2

∗2 is given by

name element norm description
−1 −1 −1 root of unity
v1 T −1 fundamental unit
2 2 8 (e, f) = (1, 3)

q31 T 2 − 3T + 1 31 (e, f) = (2, 1)
q′31 T − 3 −31 (e, f) = (1, 1)

From the above bases for K1
∗/K1

∗2 and K2
∗/K2

∗2 we easily obtain a basis for L∗/L∗2. Exam-
ining the norm, we see that its kernel, H, has dimension 8 generated by the elements

h1 = −1×1, h2 = −u1×−v1, h3 = u1×1, h4 = −u2 · p2×2,
h5 = u2×v1, h6 = 1×−q31 · q′31, h7 = p′31×1, h8 = p31×q′31.

The hi have been chosen to make the linear algebra which follows as transparent as possible. In
particular, h1 and h2 are the images of T1 and U1 under the (x− T ) map.

Calculations at 31. From the prime decomposition of 31 in K1 and K2 we see that L31 is
isomorphic to the product of four local fields, two of which are localizations of K1 and two of K2.
These local fields are described in table 1. We use the chosen generator of each prime ideal lying
over 31 as the uniformizing element in the corresponding local field. In each case, a basis for the
multiplicative group modulo squares is given by a non-square unit and the uniformizing element.
In order to aid any reader interested in following along with the computations, table 1 also specifies
the value of T modulo the maximal ideal in each local field.

In order to calculate β−1
31 (Im(x − T )31) we will want to know the image of (x − T )31 and of

β31. From the prime decomposition of 31 we see that f1(x) has 4 factors over Q31. Since the
dimension of J1(Q31)/2J1(Q31) equals the dimension of J1(Q31)[2] (Proposition 6.2), we see that to
specify Im(x−T )31 we will need 4-1=3 independent divisor classes. We find that T1 and U1 remain
independent over Q31, and a small amount of searching uncovers [(1,

√−24) −∞]. The image of
these elements in L31

∗/L31
∗2 is described in table 2.

Note that table 3 describes the image of β31. One easily checks that the subspace 〈h1, h2, h3, h4, h5〉
maps onto the image of (x−T )31 and that the kernel of β31 in H has dimension 2. Counting dimen-
sions we find that the subspace generated by h1 through h5 is the full inverse image of Im(x−T )31

in H. From now on we will limit our attention to this subspace.
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p31 p′31 q31 q′31

h1 = −1×1 −1 1 1 1
h2 = −u1×−v1 −1 1 −1 1
h3 = u1×1 1 1 1 1
h4 = −u2 · p2×2 1 1 1 1
h5 = u2×v1 1 4 + i 1 −1
h6 = 1×−q31 · q′31 1 1 q31 −qc′
h7 = p′31×1 1 p′31 1 1
h8 = p31×q′31 p31 1 −1 q′31

Table 3. Image of β31

p2 2
number field K1 K2

completion Q2(p2) Q2(ζ), ζ7 = 1
image of T 1 + p3

2 + p5
2 + p6

2 + p7
2 + p8

2 + (p2)9 2 + 5ζ + (2)3

b1, . . . , bf 1 1, ζ, ζ2

basis mod squares p2, η1, η3, η5, η7, 5 2, 3, 1 + 2ζ, 1 + 2ζ2, 5

Table 4. Description of L2

p2 2
T1 5η7 1
U1 5η3η5η7 (1 + 2ζ2)
[{x2 + 2x + 57, ∗} − 2∞] η7 1
[{x3 + x2 + x + 3, ∗} − 3∞] η5 5(1 + 2ζ)(1 + 2ζ2)

Table 5. Image of (x− T )2 for J1

Calculations at 2. From the prime decomposition of 2 in K1 and K2 we see that L2 is
isomorphic to the product of two local fields; these local fields are described in table 4. We use the
chosen generator of each prime ideal lying over 2 as the uniformizing element in the corresponding
local field. In addition, we define ηi = 1 + pi

2 ∈ K1 and let ζ be a primitive 7th root of unity in
K2. Since the ramification indices of K1 and K2 are 4 and 1, the class of units modulo squares is
determined modulo (4p2) = (p2)9 and (4 ·2) = (2)3, respectively. Table 4 specifies the image of T to
this accuracy in both local fields. The residue field degrees of K1 and K2 are 1 and 3, respectively,
and the reductions of the sets {1} and {1, ζ, ζ2} form a basis for the corresponding residue field
over F2. We use the basis modulo squares discussed in the section on computation modulo squares.

From the prime decomposition of 2 we see that f1(x) has 2 factors over Q2 and that the
dimension of J1(Q2)[2] is 1. From proposition 6.2 the dimension of J1(Q2)/2J1(Q2) is g + 1 = 4.
The divisor classes of T1 and U1 remain independent over Q2, so we need two more independent
divisor classes. A computer-assisted search discovered independent Q2-rational divisors of the form
[{x2 + 2x + 57, ∗} − 2∞] and [{x3 + x2 + x + 3, ∗} − 3∞]. The “∗” in each of these divisors means
a polynomial over Q2 of the form y − k(x) which we choose not to specify since it is complicated
and not relevant to the calculation. The image of (x− T )2 in L2

∗/L2
∗2 is described in table 5.

From Table 6 we see that the map β2 restricted to 〈h1, h2, h3, h4, h5〉 is injective. With a small
amount of work one can verify that the intersection of the image of β2 with the image of (x− T )2
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p2 2
h1 = −1×1 5η7 1
h2 = −u1×−v1 5η3η5η7 (1 + 2ζ2)
h3 = u1×1 η3η5 1
h4 = −u2 · p2×2 5η1η7p2 2
h5 = u2×v1 η1 3 · 5(1 + 2ζ2)

Table 6. Image of β2

is generated by the images of h1 = (x − T )(T1) and h2 = (x − T )(U1). Since 〈h1, h2, h3, h4, h5〉
is the inverse image of Im(x − T )31 restricted to H, and since 〈h1, h2〉 is the inverse image of
Im(x− T )2 restricted to 〈h1, h2, h3, h4, h5〉, we see that the intersection in H of β−1

31 (Im(x− T )31)
with β−1

2 (Im(x − T )2) is 〈h1, h2〉 = (x − T )(〈T1, U1〉). But this is exactly what we wanted to
demonstrate, so we are finished.

Unwinding all of the arguments which went into getting here, we see that we have now shown
that J1(Q)/2J1(Q) is generated by T1 and U1, that J1 has rank 1, and that J1(Q) ≈ Z× Z/2Z.

6.3. Rank verification for F2. We would like to verify that J2(Q)/2J2(Q) is generated by
T2. Recall the definitions.
f2(x) = (x4 − 8x− 4)(x3 + x2 + 1).
F2 = Nonsingular curve over Q birational to y2 = f2(x).
J2 = Jacobian of F2 over Q.
T2 = [{x3 + x2 + 1, y} − 3∞] ∈ J2(Q).

K1 = Q[T ]/(T 4 − 2T 2 − 8T + 1) ∼= Q[R]/(R4 − 8R− 4) where R = 1
2T 2 − 1

2
K2 = Q[T ]/(T 3 + T + 1) ∼= Q[R]/(R3 + R2 + 1) where R = −T 2 − 1
L = Q[R]/f2(R) ∼= K1 ×K2

Lp = Qp[R]/f2(R) ∼= (K1 ×K2)⊗Qp

As noted in the examples, the rings K1, K2, and L for J2 are isomorphic to the corresponding
rings for J1. This means that we can use the same bases for L∗/L∗2, L31

∗/L31
∗2, and L2

∗/L2
∗2; in

particular we can use the same basis h1, . . . , h8 for the kernel of the norm from L∗/L∗2 to Q∗/Q∗2.
We also see that the maps β31 and β2 are identical.

Calculations at 31. We recall that L31 is isomorphic to the product of four local fields, two
of which are localizations of K1 and two of K2. We retain the choice of basis for L31

∗/L31
∗2 from

the discussion of J1.
From the prime decomposition of 31 we see that f2(x) has 4 factors over Q31. Since the

dimension of J2(Q31)/2J2(Q31) equals the dimension of J2(Q31)[2] (Proposition 6.2), we see that
to specify Im(x− T )31 we will need 4-1=3 independent divisor classes. We find that T2 maps non-
trivially, so we will need 2 more independent divisor classes. A small amount of searching uncovers
[(3,

√
1961)−∞] and [(2,

√−52)−∞]. The image of (x− T )31 is described in table 7.
Comparing the images of the (x − T )31 maps for J1 and J2 (tables 2 and 7), we immediately

see that they span the same subspace of L31
∗/L31

∗2. We conclude that 〈h1, h2, h3, h4, h5〉 is the full
inverse image of Im(x− T )31 in H. From now on we will limit our attention to this subspace.

Calculations at 2. We recall that L2 is isomorphic to the product of two local fields, the first
extending K1 and the second extending K2. We retain the choice of basis for L2

∗/L2
∗2 from the

discussion of J1.
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p31 p′31 q31 q′31

T2 −1 1 1 1
[(3,

√
1961)−∞] 1 4 + i 1 −1

[(2,
√−52)−∞] −1 4 + i −1 −1

Table 7. Image of (x− T )31 for J2

p2 2
T2 5η7 1
[(3,

√
1961)−∞] η3η7 5

[{x2 + 2x + 10, ∗} − 2∞] η7 (1 + 2ζ)(1 + 2ζ2)
[{x2 + 3x + 1, ∗} − 2∞] η3 5

Table 8. Image of (x− T )2 for J2

From the prime decomposition of 2 we see that f2(x) has 2 factors over Q2 and that the dimen-
sion of J2(Q2)[2] is 1. From proposition 6.2 the dimension of J2(Q2)/2J2(Q2) is g + 1 = 4. The
divisor class of T2 maps non-trivially, so we need three more independent divisor classes. A small
amount of searching uncovers [(3,

√
1961)−∞] and more extensive searching finds [{x2 + 2x + 10, ∗}−

2∞] and [{x2 + 3x + 1, ∗}−2∞]. Once again, “∗” means a polynomial over Q2 of the form y−k(x)
which we choose not to specify. The image of (x− T )2 is described in table 8.

We again note that the map β2 restricted to 〈h1, h2, h3, h4, h5〉 is injective. Comparing tables 6
and 8, one can verify that the intersection of the image of β2 with the image of (x−T )2 is generated
by the image of h1 = (x − T )(T2). Since 〈h1, h2, h3, h4, h5〉 is the inverse image of Im(x − T )31

restricted to H, and since 〈h1〉 is the inverse image of Im(x − T )2 restricted to 〈h1, h2, h3, h4, h5〉,
we see that the intersection in H of β−1

31 (Im(x−T )31) with β−1
2 (Im(x−T )2) is 〈h1〉 = (x−T )(〈T2〉).

This shows that J2(Q)/2J2(Q) is generated by T2, that J2 has rank 0, and that J2(Q) ≈ Z/2Z.
This completes the proof of lemma 4.2.
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[1] Artin, M., Néron Models, in Cornell, G. & Silverman, J.H. (eds.), Arithmetic Geometry, 213–230, Springer-

Verlag, New York, 1986.

[2] Cassels, J.W.S. & Flynn, E.V., Prolegomena to a middlebrow arithmetic of curves of genus 2, London Math.

Soc., Lecture Notes, Cambridge Univ. Press, 1996.

[3] Chabauty, C., Sur les points rationnels des courbes algébriques de genre supérieur à l’unité, Comptes Rendus
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