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In elementary terms, the arithmetic theory of a curve X is concerned with
solutions to a geometrically irreducible polynomial equation in two variables:

f(x, y) = 0 (∗)
In contrast to the geometric theory, where the different kinds of number pairs
(x, y) that can occur as solutions are viewed as homogeneous, the arithmetic b
g gggj b b bbstudy classifies more carefully the structure of solutions of specific
type. That is, one tries to understand the solutions to the equation (*) where
(x, y) are constrained to lie in some arithmetically defined set. One common
case is that of rational solutions or, more generally, the case of solutions where
x, y are constrained to lie inside a fixed number field F . For example, when
f(x, y) has genus 1 (that is, the smooth points of the complex solution set form
a genus one Riemann surface with punctures), the Mordell-Weil theorem says
the solution set, in conjunction with a few additional points, acquires the natural
structure of a finitely generated abelian group. For another example, when the
genus is greater than one, Faltings [8] proved that the solution set is finite. In
both cases, one derives finite-type structures for the solution set from finiteness
contraints on the ‘type’ of the solution. A theorem of Ihara-Serre-Tate [11] gives
an example of finiteness theorems deriving from a different kind of arithmetic
constraint. Namely, one considers solutions that are roots of unity of arbitrary
order. Then as soon as the genus is at least one, there are again only finitely
many solutions to (*). It is interesting to note that in this case, the constraint in
question is of ‘group-type’ in contrast to the ‘field-type’ constraint of the other
two examples.

A conjecture of Manin and Mumford as proved by Raynaud [17] deals with
the projective case of this theorem. What is meant by the projective case? In
the Ihara-Serre-Tate theorem, one can view the curve X as essentially lying in
the affine torus C∗ × C∗ and the assertion is that X has a finite intersection
with the torsion points of the torus. Now, when X is a projective smooth
curve of genus at least two, it has an essentially canonical embedding into a
group variety J = J(X), the Jacobian of X. Raynaud’s theorem states that
the intersection between X and Jtor, the torsion subgroup of J , is finite. It
should also be noted that Raynaud generalizes this statement considerably to
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include refined statements about intersections between subvarieties of abelian
varieties and division points of finitely generated groups [18], while a common
generalization of the projective and affine case concerned with subvarieties of
semi-abelian varieties has been found by Hindry [10].

On the other hand, Coleman [2] [3] [4] has stressed the importance of actually
being able to determine explicitly the finite set occuring in Raynaud theorem for
specific curves. In fact, unlike the case of Faltings’ theorem there has been some
recent success in making Raynaud’s theorem completely effective, most notably
in the case of Fermat curves, due to Coleman, Tamagawa, and Tzermias [6],
and the modular curves X0(N) for N prime, due to Baker [1] and Tamagawa.
A new proof for the modular curve case was given by Ken Ribet using a refined
analysis of the Eisenstein torsion in J0(N) and this paper is devoted to an
exposition of this proof. It is similar in many ways to the second proof of [1]
except for conceptual simplifications arising from systematic use of the notion
of an ‘almost rational torsion point.’ In particular, a complete computation of
these points is given for J0(N), N prime and Lemma 1 makes clear how the main
theorem hinges upon this notion. The result in question was first conjectured
by Coleman, Kaskel, and Ribet [5] and we go on to describe the statement. As
mentioned, we will always be interested in N prime, and N ≥ 23 (which occurs
iff X0(N) has genus ≥ 2). X0(N) has two cusps corresponding to the orbits
of 0 and ∞ in the extended upper half-plane, and we will use the latter, again
denoted ∞ to embed X0(N) into its Jacobian i : X0(N)↪→J0(N). That is, a
point P ∈ X0(N) maps to the class of the divisor [P ] − [∞]. In the following,
we will suppress the embedding i from the notation or leave it in according to
convenience. By a theorem of Manin and Drinfeld [7], the other cusp point 0 is
a torsion point under this embedding. Another way for a torsion point to arise
is as follows: the curve X0(N) has an involution w which switches 0 and ∞,
that is, 0 = w(∞). Denote by X0(N)+ the curve obtained as the quotient of
X0(N) by the action of this involution. Now, it can happen that X0(N)+ is a
curve of genus zero, in which case X0(N) is a hyperelliptic curve. Let

f : X0(N)→X0(N)+

be the quotient map and let P ∈ X be a Weierstrass point. The inverse image
divisor of any two points are rationally equivalent, since X0(N)+ ' P1. In
particular, 2[P ] = [∞] + [0]. Thus, 2i(P ) = i(0) and i(P ) is a torsion point.
According to Ogg [16], the values of N for which X0(N) is hyperelliptic are
23, 29, 31, 37, 41, 47, 59, 71. In the case of N = 37 the hyperelliptic involution
h is different from w. That is X0(37) is hyperelliptic even though X(37)+ is
not of genus zero. It was shown by Mazur and Swinnerton-dyer [15] that in
this case [∞] − [h(∞)] is of infinite order in J0(37). From this it is an easy
exercise to deduce that the Weierstrass points are not torsion in this case. That
is, hyperelliptic torsion points occur only when X0(N)+ is of genus zero. Thus,
we will have completely determined the torsion points as soon as we have found
the non-Weierstrass ones.

The conjecture of Coleman, Kaskel, and Ribet as proved by Baker and Tam-
agawa says, in fact,
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Theorem 1 (Baker, Tamagawa) [X0(N)−(Weierstrass points)]∩Jtor = {0,∞}.

1 Almost rational torsion points

Lang’s original suggestion [12] was to prove the Manin-Mumford conjecture itself
using Galois theory. Let’s suppose given a curve C embedded in an abelian
variety A. The data is defined over some field K finitely generated over the
rationals, and hence, the torsion points of A will admit an action of the Galois
group G = Gal(K/K). This action induces a representation

ρ : G→Aut(T̂A)

where T̂A denotes the adelic Tate module of A. Lang’s conjecture concerned
the intersection between the image ρ(G) of G and the group of homotheties
Ẑ∗ ⊂ Aut(T̂A). He conjectured that ρ(G) ∩ Ẑ∗ is of finite index in Ẑ. The
Manin-Mumford conjecture follows from this by an elementary argument.

Although Lang’s conjecture is still unproven, Serre proved a weaker version
in his College de France lectures 85-86 [21]. That is, he proved that Ẑ∗/ρ(G)∩Ẑ∗

is of finite exponent. Using Serre’s result Ribet manages to give a very elegant
proof of the Manin-Mumford conjecture.

In this proof crucial use is made of the notion of an ‘almost rational’ torsion
points, which we will abbreviate to a.r.t.:

Definition 1 Let A be an abelian variety over a field k. A point p ∈ A(k̄) is
called almost rational (a.r.) if

σ(p)− p = p− τ(p) ⇒ p = σ(p) = τ(p)

for all σ, τ ∈ Gal(k̄/k).

Here are a few elementary facts that follow directly from the definition:
-Rational points are almost rational.
-A Galois conjugate of an a.r. point is a.r.
-If P is almost rational and 2σ(P )− 2P = 0 then σ(P ) = P .
The definition is not likely to be very intuitive, so it is probably best to see

right away a concrete result that uses it.

Lemma 1 Let X be a curve of genus at least 2 embedded in its Jacobian J via
a rational point p0. Then

X = Xa.r. ∪ (Weierstrass points)

Thus, we get an inclusion Xtor−(w.p.) ⊂ Ja.r.t. reducing the Baker-Tamagawa
theorem to a study of Ja.r.t..

Proof of Lemma. Suppose [P ]− [P0] is not almost rational. Then there are
σ and τ in the Galois group such that [σ(P )] − [P ] ∼ [P ] − [τ(P )] as divisors
and neither are equivalent to zero. Thus, 2[P ] − [σ(P )] − [τ(P )] ∼ 0, meaning
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we can find a rational function with a pole of order two at P . That is, P is a
Weierstrass point.

We will investigate this notion extensively in the specific context of modular
curves in order to prove the Baker-Tamagawa theorem. In the meanwhile, we
outline how to deduce the Manin-Mumford conjecture from Serre’s result. In
fact, Manin-Mumford follows in an obvious way from Lemma 1 and the following
theorem, whose proof will occupy us to the end of this section.

Theorem 2 Let A be an abelian variety over a finitely generated field k. Then
Aa.r.t is finite.

In the course of the proof, we will need the following simple

Lemma 2 For each e ≥ 1, we can find C(e) > 0 such that for any m > C(e),
there exist x, y ∈ (Z/mZ)∗)e with x 6= 1, y 6= 1 and x + y = 2.

Proof. First note that if m =
∏

pnp , then by the Chinese remainder theorem,
one need prove the existence of x, y for just one of the Z/pnpZ and set the
modulus for the other factors to be 1. Also, by setting C(e) sufficiently large,
we can make sure that there is at least one prime power factor pn ≥ A(e), where
A(e) is the maximum of e3 and the smallest prime l such that xe +ye = 2 has at
least e2 +2e+1 solutions in Fl. Such an l clearly exists by elementary counting
when e is 1 or 2 and by the Weil bounds when e ≥ 3.

In the case n ≥ 2 write e = upk where u is relatively prime to p. Now put
x = 1 + epn−k−1 and y = 1 − epn−k−1 and note that pn ≥ e3 = u3p3k implies
that k ≤ bn/3c ≤ n−2 so that x and y are both units in Z/pn. Clearly x, y 6= 1
(mod pn) but x+y = 2 (mod pn). It is also easily checked that x = (1+pn−k−1)e

and y = (1− pn−k−1)e (mod pn). Next suppose n = 1. Then we are looking for
solutions to xe + ye = 2 in Fp such that neither xe nor ye are 0 or 1. We are
done by counting number of points mod p.

It is easy to sharpen the proof slightly and take C(e) = 3 if e = 1.
Proof of theorem. According to Serre, if we consider the action ρ : G→Aut(T̂A)

of the Galois group on the adelic Tate module, Ẑ∗/ρ(G)∩Ẑ∗ has finite exponent
e. We claim that if P is a torsion point of order m > C(e), the P is not a.r. To
see this, let x, y ∈ ((Z/mZ)∗)e satisfy the conditions of the proposition. Find
σ, τ ∈ G such that σ 7→ x and τ 7→ y as operators on A[m]. Then we have

σ(P ) + τ(P ) = 2P ⇒ σ(P )− P = P − τ(P )

but σ(P )− P = (x− 1)P 6= 0. That is, P is not almost rational.
Thus, the general finiteness follows from very general considerations. To

prove the target theorem in the case of modular curves, we will end up needing
a very precise understanding of the a.r.t. points for modular Jacobians, in
particular, their relation to other canonically defined subgroups together with
their Galois-theoretic properties. We will review the relevant facts in the next
section.

We close this section with a few lemmas for use in the proof of the main
theorem.
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Lemma 3 Let A/Q be an abelian variety and suppose P ∈ A[n], n > 3, is a
cyclotomic point: σ(P ) = χn(σ)P for all σ ∈ Gal(Q/Q), where χn is the mod
n cyclotomic character. Then P is not a.r.

Proof. As noted above, it is easy to see that if n > 3, then there exist
s, t ∈ (Z/nZ)∗ such that s 6= 1, t 6= 1 and s + t = 2. Find σ, τ such that
χn(σ) = s and χn(τ) = t. Then σ(P )+τ(P ) = 2P but σ(P )−P = sP −P 6= 0.
So P is not a.r.

Lemma 4 Let A/k, k a number field. Let v be prime of k and assume A has
semi-stable reduction at v. Let P ∈ Aa.r.t have order prime to v. Then k(P ) is
unramified at v.

Proof. Let σ ∈ Iv, the inertia group at v. According to Grothendieck ([9],
see also following section), the action of Iv on prime to v torsion is two-step
unipotent. So

(σ − 1)2P = 0 ⇒ σ2P − 2σP + P = 0
⇒ σP + σ−1P = 2P
⇒ σ(P ) = P

the last implication following from the assumption that P is a.r. Therefore, Iv

acts trivially on P .

2 Background on Modular curves

In this section, we summarize the facts we need from the theory of modular
curves, especially results about the Galois representations associated to their
Jacobians. (See [13] and references therein for a general overview.)

Recall that the modular curve X0(N) is the projective smooth model of the
modular curve Y0(N) which parametrizes pairs (E,C) where E is an elliptic
curve and C is a cyclic subgroup of order N . Y0(N) and X0(N) are defined over
Q, and over the complex numbers, we have

Y0(N)(C) = H/Γ0(N)

while
X0(N)(C) = [H ∪ P1(Q)]/Γ0(N)

When N is prime, which is the case that will concern us, Γ0(N) has two orbits
on P1(Q), the orbits of 0 and ∞. We will denote by the same symbols the
corresponding points on X0(N). We denote by J0(N) the Jacobian of X0(N),
which parametrizes divisor classes of degree zero on X0(N). The Abel-Jacobi
embedding X0(N)↪→J0(N) with respect to the point ∞ is described at the level
of points by sending a point P to the class of the divisor [P ]− [∞]. We will use
this to identify X0(N) with its image and think of it as a subvariety of J0(N).
The Manin-Drinfeld theorem says that [0]− [∞] generates a finite subgroup C
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of J0(N) which we call the cuspidal subgroup. We will denote by n the order of
C which is equal to the denominator of (N − 1)/12 ([13] p. 99).

Another important subgroup is the Shimura subgroup Σ of J0(N) defined
as follows. There is a map X1(N)→X0(N) of degree φ(N) = N − 1 from the
compactification X1(N) of the modular curve Y1(N) which parametrizes pairs
(E,P ), where E is an elliptic curve and P is a point of order N . On the
points of Y1(N) this map simply takes (E,P ) to (E, < P >), < P > being the
subgroup generated by P . This gives rise to a map X2(N)→X0(N) which is the
maximal étale intermediate covering to X1(N)→X0(N). Thus we get a map
J2(N)→J0(N), where J2(N) is the Jacobian of X2(N). Σ is simply the kernel
of the dual map. Thus, the points of Σ correspond to line bundles of degree
zero on X0(N) which become trivial when pulled back to X2(N). It has order
n and is isomorphic to µn as a Galois module ([13] p.99).

The modular Jacobians admit an action of the algebra T of Hecke operators
([13], section II.6). This is the Z−algebra of endomorphisms generated by the
correspondences Tl for each prime l 6= N and the Atkin-Lehner involution wN .
They are defined on points of Y0(N) by the formula

Tl : (E, C) 7→ ΣC′(E/C ′, (C + C ′)/C ′)

where C ′ runs over the cyclic subgroups of E of order l and

wN : (E, C) 7→ (E/C,E[N ]/C).

The Eisenstein ideal I of T is the ideal generated by Tl − (l + 1) for l 6= N
and 1 + wN ([13] p.95). Of particular importance will be the structure of the
subgroup J0(N)[I] ⊂ J0(N) annihilated by I.

We now list the main difficult facts we will use:
0. T/I ' Z/n ([13], Prop. 9.7). So if a maximal ideal m is ‘Eisenstein’, i.e.,

contains I, then T/m has characteristic l dividing n.
1. J0(N)[I] = C⊕Σ if n is odd while J0(N)[I] contains C +Σ as a subgroup

of index two and C∩Σ = C[2] = Σ[2] if n is even. This follows from the fact that
C +Σ are contained in J0(N)[I] and that J0(N)[I] is free of rank two over T/I.
(See [13], sections II.16-18, and Prop. II.11.11 together with the explanation in
[20], section 3.)

2. We will need some detailed facts about the action of the Galois group
Gal(Q̄/Q) on the torsion points of J0(N). One analyzes these representations
by breaking them up into simple T[G]-modules. Such simple modules are asso-
ciated to maximal ideals m inside the Hecke algebra T. In fact, for each m there
is a two-dimensional semi-simple representation, unique up to isomorphism,

ρm : G→GL2(T/m)

characterized by the properties (citeRi1, section 5):
-ρm is unramified outside N and l, where l = m ∩ Z.
For p 6= N, l, the Frobenii Frp satisfy
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-Tr(ρm(Frp)) = Tp (mod m)
-and det(ρm(Frp)) = p
Furthermore, one knows that ρm is irreducible if m is non-Eisenstein, i.e.,

when m does not contain the Eisenstein ideal I, and if I ⊂ m, then ρm is Z/l⊕µl

([13] Prop. 14.1 and 14.2).
3. Concerning the action of IN , the inertia group at N , on the torsion of

J0(N), one has Grothendieck’s exact sequence ([9] 11.6 and 11.7)

0→Hom(X, µr)→J0(N)[r]→X/rX→0

for any r, where X is the character group of the toral part of the reduction of
J0(N) mod N . This implies, for example, that the action is 2-step unipotent if
r is prime to N . One notes also that even when N |r, the first and last terms
are finite, in that they extend to finite flat group schemes over ZN .

4. On the other hand, a theorem of Ribet ([20] Prop. 2.2) addresses fine
behaviour of ρm at N for m non-Eisenstein. It says that ρm is not finite at N
if m|N and that it is ramified at N if m is prime to N . This is an instance
of the ‘level-lowering’ theorem [19] together with a result of Tate on mod 2
representations unramified outside 2 [22].

For m|N , ρm occurs in J0(N)[N ], so as an IN module, it fits into an exact
sequence

0→µN→ρm→Z/N→0

which is non-split, since the existence of a splitting would imply finiteness for
ρm. So we draw the conclusion that ρm(IN ) is non-abelian in this case, a fact
which will turn out to be very important in the proof of the Baker-Tamagawa
theorem.

5. A theorem of Ribet says that J0(N)[I] is exactly the set of torsion in J0(N)
that is unramified at N . ([20] Prop. 3.1, 3.2) That J0(N)[I] is unramified at N
for n odd follows obviously from J0(N)[I] = C ⊕ Σ. When n is even, one still
gets an isomorphism

J0(N)[I] = Hom(X/IX, µn)⊕ Σ

: The two groups on right hand side inject into the left by 1 and 3 and the
images do not intersect [13], (Prop. II.11.9). But they also have the same order
by 1. and an argument of [20], theorem 2.3, showing that X/IX is cyclic.

To go the other way, given an unramified torsion point P ∈ J0(N), one uses 4.
to conclude that the simple constituents of the module M := T[G]P +J0(N)[I]
all come from Eisenstein primes, and therefore, are of the form Z/l or µl for
l|n. So the constituents are all annihilated by I. In fact, it is easy to see that
M itself is of the form

0→S→M→Q→0

where Q is constant and S is of µ-type. But Σ is the maximal µ-type group in
J0(N) ([13], theorem 2) so S = Σ. Now, reduction mod N and the isomorphism
between Σ and the component group of J0(N) mod N gives us a splitting of
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this exact sequence. So one need only show that I annihilates Q. The Eichler-
Shimura relation say that

Tl
∼= Frl + lF rt

l

(mod l, l 6= N), and therefore, the constant group Q is annihilated by ηl =
Tl − (1 + l) for l 6= N, (l, n) = 1. (The order of Q divides some power of n, so
reduction mod l is injective on Q for l prime to n.)

To show that it is also annihilated by all of I, we decompose into m-primary
factors for Eisenstein primes m (which is possible since Q is annihilated by some
power of I) and then show that each factor is annihilated using local principality
of the Eisenstein ideal ([13], theorem II.18.10).

6.According to a theorem of Ribet ([20] Theorem I.7), the field k(J0(N)[I])
generated by the Eisenstein torsion is Q(µ2n) while k(C, Σ) = Q(µn) according
to the above-mentioned structure of C and Σ. The proof of the first fact follows
from a careful study of J0(N)[I], but appears a bit too elaborate to summarize
in a few words. Nevertheless, note that for n odd, the first fact follows easily
from the second.

7. Finally, it is explained by Coleman-Kaskel-Ribet [5] that Mazur’s the-
orems imply the useful fact that X0(N) ∩ C = {0,∞}. For most N , that is,
N 6= 37, 43, 67, 163, it is an obvious consequence of the fact that the cusps are
the only rational points of X0(N). The remaining cases can be treated by more
elementary arguments.

3 The theorem of Baker-Tamagawa

The main result which provides the key is the following

Theorem 3 J0(N)a.r.t = C ⊕ Σ[3]

This detailed knowledge is what makes it possible to determine the torsion
points on X0(N) so explicitly.

Let us first show how the theorem implies the theorem of Baker and Tama-
gawa.

This implication divides into two cases. Recall the curve X0(N)+ obtained
as the quotient of X0(N) by the action of w, the Atkin-Lehner involution. The
first case is when X0(N)+ has positive genus. Then the projection

f : X0(N)→X0(N)+

induces a commutative diagram:

X0(N) ↪→ J0(N)
↓ ↓

X0(N)+ ↪→ J0(N)+

where J0(N)+ denotes the Jacobian of X0(N)+. According to the theorem,

J0(N)a.r.t. ⊂ J0(N)[I] ⊂ J0(N)[1 + w]
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Now, if D is a degree zero divisor on X0(N), then

D + wD = f∗f∗(D).

So if D + wD ∼ 0, then the class of f∗(D) is in the kernel of

f∗ : J0(N)+→J0(N).

But since w has a fixed point, this map is injective. Thus,

J0(N)[1 + w]→0 ∈ J0(N)+,

and therefore,
J0(N)a.r.t→0.

But this implies that
X0(N)tor→∞ ∈ X0(N)+

and hence that X0(N)tor = {0,∞} as desired.
The second case is when X0(N)+ fails to have positive genus, that is, when

N = 23, 29, 31, 41, 47, 59, 71. In this case, N is not congruent to 1 mod 9 which in
turn implies that 3 does not divide n. Therefore, by theorem 2 J0(N)a.r.t. = C,
and we get

X0(N)tor ⊂ X0(N) ∩ C = {0,∞}
again.

So it remains to prove the structure theorem for J0(N)a.r.t..
We wish to show first that J0(N)a.r.t. ⊂ J0(N)[I], which is the hard part of

the proof. This is achieved by proving that the points in J0(N)a.r.t. are unram-
ified at N , and using Ribet’s theorem identifying such points with J0(N)[I].

To prove that J0(N)a.r.t consists of points unramified over N it suffices to
show that the points have order prime to N (Lemma 4). So let P ∈ J0(N)a.r.t.

and analyze the module M := T[G]P by breaking it into its simple constituents,
the possibilities for which we described in the previous section. Let r be the
order of P . Thus, we have M ⊂ J0(N)[r].

In order to see that J0(N)a.r.t ⊂ J0(N)[I], recall from the previous section
that as an IN module, J0(N)[r] fits into an exact sequence

0→Hom(X, µr)→J0(N)[r]→X/rX→0

Therefore
I ′N := Ker(χr : IN→(Z/r)∗)

acts on J0(N)[r] by two-step unipotent transformations. But this implies by
the argument of lemma 4 that σ(P ) = P for all σ ∈ I ′N . The same argument
also applies to the conjugates of P since they are also a.r.t. Therefore, I ′N acts
trivially on M . That is, IN acts through the quotient IN/I ′N ↪→(Z/r)∗ on M
and all its constituents. From this, we see that ρm for m|N is ruled out as a
simple factor (since ρm(IN ) is non-abelian in that case) leaving Z/l, µl, and
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ρm, for m not dividing N as possibilities. Since the one-dimensional factors
only occur in the Eisenstein case, we get l|n and therefore, l is relatively prime
to N . We conclude that M must have order prime to N , and hence, so must P .
Therefore, P ∈ J0(N)[I] as desired.

In fact, we claim that P ∈ Σ+C. For if P /∈ Σ+C (which occurs only when
n is even), P must generate J0(N)[I]/(Σ + C), so by the result of Csirik, we
must have Q(P, Σ, C) = Q(µ2n). Also, Q(Σ, C) = Q(µn). Therefore, we can
find σ ∈ G such that σ(P )− P 6= 0 and σ acts trivially on C + Σ. But we have
2P ∈ Σ + C, so that σ(2P )− 2P = 0. This contradicts the assumption that P
is a.r. by our remark following the definition of a.r.

So we have P ∈ Σ + C and we can write P = Q + R for Q ∈ Σ and R ∈ C.
Then R is rational so σP − P = σQ − Q for any σ ∈ G. This implies that Q
is also almost rational. Since the points of Σ are cyclotomic, we have Q ∈ Σ[3]
(lemma 3).

The conjunction of the previous two paragraphs shows that J0(N)a.r.t. ⊂
C ⊕ Σ[3]. To check equality, one notes:

-Rational points are almost rational, so points of C are a.r.
-Σ[3] consists of almost rational points: This is because Σ[3] is either trivial

or isomorphic to µ3. It’s easy to check that points of µ3 are almost rational.
-A translate of an a.r. point by a rational point is a.r.
We are done.
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