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Let K be an imaginary quadratic field of class number 1 and let E be an elliptic
curve over K with complex multiplication in the ring of integers OK of K. Let ψ be
the Grössencharacter of K associated to E and let p be an odd prime over which E
has good reduction. In [Kato93], K. Kato defined the zeta element which is, roughly
speaking, a compatible system in the Galois cohomology of abelian extensions of
K with coefficients in Zp(1) defined using the elliptic units. Then he proved that,
for any positive integer k and a finite Hecke character λ, the zeta element gives
exactly the value at s = 0 of the Hecke L-function L(ψ−kλ, s) through the dual
exponential map (see §3) for H1(K ⊗Q Qp,Fk(λ)∗(1)), where Fk(λ) denotes the p-
adic abelian representation of Gal(K/K) corresponding to ψ−kλ (loc. cit. Chap. III,
Theorem 1.2.6). A key ingredient of the proof of this theorem is the generalized
explicit reciprocity law for Lubin-Tate formal groups proven in loc. cit. Chap. II, §2,
which, in the above special case, describes the dual exponential maps for the Galois
cohomology of abelian extensions of K with coefficients in Fk(1)∗(1) explicitly.
Here 1 denotes the trivial representation.

The generalization of the above Kato’s result on the zeta element to the Hecke
character of K of the form ψ−kψ

j
λ (0 ≤ j < k) was proven by L. Guo [Guo99],

B. Han [Han97] and K. Kimura [Kim93] in the case p splits in K. L. Guo and
K. Kimura proved it by generalizing the Kato’s explicit reciprocity law. In the case
p is inert, B. Han [Han97] proved a partial result: a result up to p-adic units for
trivial λ. However a generalization of the Kato’s explicit reciprocity law was not
known in the inert case, and it is the main theme of these notes. As a consequence
of our explicit reciprocity law, we obtain the expected relation between the zeta
element and L(ψ−kψ

j
λ, 0) (under some condition on λ in the case k− j = 2.) Our

explicit reciprocity law holds for any Lubin-Tate formal group for a finite unramified
extension of Qp. However, in these notes, we will deal with only the Lubin-Tate
formal group of height 2 coming from E in order to explain how the formulation of
our explicit reciprocity law is inspired by the work of N. Katz [Katz78], [Katz80]
on the special values of the Hecke L-functions of K.

1. Special values of Hecke L-functions of K

In this section, we will review the description of the Hecke L-functions of K as
values of some algebraic or p-adic derivatives of the functions θa (0 6= a ∈ Z, (6, a) =
1) on the elliptic curve E or on the universal elliptic curve. In the case j = 0, the
special values L(ψ−kλ, 0) are described as values of holomorphic Eisenstein series
of weight k, which is actually algebraic. However, in the case j > 0, the special
values L(ψ−kψ

j
λ, 0) are related to real analytic Eisenstein series of weight k + j; a

p-adic description of these values was obtained by N. Katz ([Katz78], [Katz80]) by
1
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giving an interpretation of the real analytic differential operator

−π

Im(ω1ω2)

(
ω1

∂

∂ω1
+ ω2

∂

∂ω2

)
(1.1)

on the space of C∞ elliptic modular forms in terms of the Gauss-Manin connection
and the Hodge decomposition of the relative de Rham cohomology of the universal
elliptic curve.

First let us review the case j = 0.

Proposition 1.2 ([Kato93] Chap. III, Proposition 1.1.5). For any non-zero inte-
ger a prime to 6, there exists a unique rational function θa on E characterized
by

(1) div(θa) = −∑
P∈aE P + a2 ·O.

(2) Normb(θa) = θa for any non-zero integer b prime to a, where Normb denotes
the norm map with respect to the morphism b : E → E; P 7→ b · P .

By Abel’s theorem, there exists a function satisfying (1), which is obviously
unique up to K∗, and it is uniquely determined by the property (2).

Choose a basis ω of Γ(E, Ω1
E) = coLie(E) and an OK-basis γ ∈ H1(E(C),Z).

Then we have

C/L
∼=−→ E(C), L = OK ·

∫

γ

ω(1.3)

such that ω corresponds to dz on the LHS.
Let ∂ denote the differential operators

Ω⊗r
E −→ Ω⊗(r+1)

E (r ∈ N)

defined by
∂(f · η) = df ⊗ η (f ∈ OE , η ∈ coLie(E)⊗r).

If we identify Ω⊗r
E with OE using the basis ω⊗r, then these differential operators

become the operator d
ω , which corresponds to d

dz on C/L via the isomorphism (1.3).
If we apply ∂ to log(θa) repeatedly, we obtain the following differential forms on

E ([Wei76], [dS87] Chap. II, §3):

∂r(log(θa)) = (−1)r−1(r−1)!

(
a2

∑

l∈L

1
(z + l)r

−ar
∑

l∈L

1
(az + l)r

)
⊗(dz)⊗r (r ≥ 3).

Let f be the conductor of ψ. For an integer N > 0 such that f|N , if we take
the values at primitive N -torsion points of the power series in the RHS, then they
become the Dirichlet power series at s = 0 of the partial L-functions of ψ−r for the
abelian extension K(NE) of K generated by N -torsion points of E (up to some
powers of a period of ω). Thus we obtain a description of the special values of the
partial L-functions of ψ−r at s = 0 in terms of the values of ∂r(log(θa)) at torsion
points. In fact, this also holds for r = 1 and r = 2.

In order to generalize this to ψ−kψ
j

(0 ≤ j < k), we need to work over the
moduli spaces and our description involves some differential operators on them.

Let N be an integer≥ 4, let Y1(N) be the moduli scheme over Q of elliptic curves
with N -torsion points, let Euniv be the universal elliptic curve over Y1(N) and let
ξN : Y1(N) → Euniv be the universal N -torsion point.
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First one can easily generalize Proposition 1.2 to Euniv/Y1(N) and obtains the
function θa on Euniv for a non-zero integer a prime to 6. One can also define the
differential operators

∂ : Ω⊗r
Euniv/Y1(N)

−→ Ω⊗(r+1)

Euniv/Y1(N)
(r ∈ N)

in the same way.
Set ω := coLie(Euniv) and H1

dR := H1
dR(Euniv/Y1(N)). We define the real

analytic differential operators

D : ω⊗r −→ ω⊗(r+2) (r ∈ N)

to be the composite of

ω⊗r ↪→ SymrH1
dR

∇−→ SymrH1
dR ⊗OY1(N) Ω1

Y1(N)

∼=←− SymrH1
dR ⊗OY1(N) ω⊗2

−→ ω⊗(r+2)

Here the second map is the Gauss-Manin connection, the third one is the isomor-
phism induced by the Kodaira-Spencer isomorphism and the last one is given by
the Hodge decomposition of H1

dR. Note that the last map is real analytic and the
remaining ones are all algebraic.

In [Katz78], N. Katz showed that for a C∞-modular form f ∈ Γ(Y1(N)C, ω⊗r(C∞))
of weight r, if we regard it as a C∞ function f(ω1, ω2) on {(ω1, ω2) ∈ C2|Im((ω1)−1ω2) >
0} such that f((ω1, ω2)γ) = f(ω1, ω2) (γ ∈ Γ1(N)) and f(a−1ω1, a

−1ω2) = arf(ω1, ω2)
(a ∈ C∗), then the modular form D(f) of weight r + 2 corresponds to the deriv-
ative of f(ω1, ω2) by the differential operator (1.1). This implies ([Wei76], [dS87]
Chap. II, §3) that, for 0 ≤ j < k, k − j ≥ 3, the values of

Dj ◦ ξ∗N ◦ ∂k−j(log(θa)) ∈ ω⊗(k+j)

at (E,α), α ∈ NE(C) is

(−1)k−j−1(k−1)!A(L)−j

(
a2

∑

l∈L

(z(α) + l)j

(z(α) + l)k
−ak−j

∑

l∈L

(az(α) + l)j

(az(α) + l)k

)
⊗(dz)⊗(k+j).

Here we define A(L) to be π−1Im(l1l2) for a basis l1, l2 of L such that Im(l2/l1) > 0.
Note that we have(

ω1
∂

∂ω1
+ ω2

∂

∂ω2

)
(N−1ω1 + nω1 + mω2)j

(N−1ω1 + nω1 + mω2)k
= −k · (N−1ω1 + nω1 + mω2)j+1

(N−1ω1 + nω1 + mω2)k+1

for integers n,m.
Thus we obtain the following real analytic description of the special values at 0

of the partial L-functions of ψ−kψ
j
. (For k−j = 1, 2, we need a little more delicate

argument.)

Theorem 1.4. Let L be the abelian extension of K contained in C and generated by
N -torsion points of E. Let γ be a generator of the free OK-module N−1H1(E(C),Z)
of rank 1, and set α := exp(γ) ∈ NE(C) = NE(L). Let a be a non-zero ideal of
OK prime to 6N and satisfying ψ(a) ∈ Z. Set σa := (a, L/K) ∈ Gal(L/K). For
g ∈ Gal(L/K), we denote by xE,gα the point of Y1(N)(C) corresponding to the
elliptic curve E ⊗K C endowed with the N -torsion point gα ∈ NE(C) = NE(L).
Then for any g ∈ Gal(L/K) and any k, j ∈ Z such that 0 ≤ j < k, the value of

Dj ◦ ξ∗N ◦ ∂k−j(log(θψ(a))) ∈ ω⊗(k+j)(1.5)
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at the point xE,gα is

(−1)k−j−1(k − 1)!(π−1A(C/OK)N2)−j
( ∫

γ

ω
)−k−j

·

{N(a)L(ψ−kψ
j
, g-part, 0)− ψkψ

−j
(a)L(ψ−kψ

j
, gσa-part, 0)} · ω⊗(k+j).

Here A(C/OK) denotes the area of a fundamental parallelogram of the lattice OK

in C.

Remark 1.6. Since the Hodge decomposition of H1
dR(EC/C) = H1

dR(E/K)⊗K C is
defined over K (by the eigen-spaces of the action of K ∼= Q ⊗ EndK(E)), we see
that the value of (1.5) at xE,gα is contained in coLie(E)⊗(k+j) ⊗K L (Damerell’s
theorem).

In order to study these values p-adically, we will replace the Hodge decomposition
in the definition of the operator D by a p-adically analytic decomposition on the
formal moduli space.

Let p be an inert prime of K at which E has good reduction, let K be the
completion of K at p, let E/OK be the proper smooth model of the base change
of E/K to K, and let Euniv/M be the formal moduli of E/OK. Then on the PD-
envelope MPD of Spec(OK) ↪→M, we have an isomorphism

H1
dR
∼= OMPD ⊗OK H1

dR(E/OK)

(the Gauss-Manin connection has enough solutions on MPD), and hence the Hodge
decomposition of H1

dR(E/K) (which is, in fact, defined over OK because K is
unramified at p over Q) gives rise to a splitting of the short exact sequence:

0 −→ coLie(Euniv) −→ H1
dR −→ Lie(Euniv) −→ 0.

Note that the composite of

OMPD ⊗OK Lie(E) ↪→ H1
dR → Lie(Euniv)

is an isomorphism. By replacing the Hodge decomposition with this splitting in
the definition of the operator D, we define the differential operators on MPD:

Dp : ω⊗r −→ ω⊗(r+2) (r ∈ N).

Let MN be the kernel of the multiplication by N on Euniv and let ξN : MN →
Euniv ×MMN be the N -torsion point induced by the canonical inclusion MN ↪→
Euniv. Since MN is étale over M after inverting p, the differential operators Dp

are naturally extended to K ⊗OK ω⊗r → K⊗OK ω⊗(r+2) on MN ×MMPD, which
we again denote by Dp.

For any primitive N -torsion point α ∈ E(K(NE)), the morphism Spec(OK) ↪→
M is uniquely extended to a morphism εα : Spec(K(NE)⊗K K) →MN such that
the inverse image of ξN is α.

Proposition 1.7. For any integers 0 ≤ j < k, the value of Dj ◦ ξ∗N ◦∂k−j(log(θa))
on Y1(N) at (E,α) considered in Theorem 1.4 coincides with ε∗α ◦ (Dp)j ◦ ξ∗N ◦
∂k−j(log(θa)).

By combining Theorem 1.4 with Proposition 1.7, we obtain a p-adic description
of the values at s = 0 of the partial Hecke L-functions of ψ−kψ

j
(0 ≤ j < k).
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2. Lifting of Coleman power series

The p-adic description of the special values of Hecke L-functions in §1 involves
differential operators on the formal moduli space or on the universal elliptic curve
over it. Hence such differential operators should appear in an explicit reciprocity
law related to such special values, and we are naturally led to the question of lifting
Coleman power series to the universal elliptic curve on the formal moduli space.

First let us recall the main theorem in the theory of Coleman power series in our
special setting. We keep the notation in the previous section and set π := ψ(p).
First note that the completion Ê is the Lubin-Tate formal group associated to
(K, π). Let H be a finite unramified extension of K, let σ be the Frobenius of H

over K and let ϕ denote the morphism σ ⊗ [π] : OH⊗̂OK Ê → OH⊗̂OK Ê , where [π]
denotes the multiplication by π ∈ OK on Ê . ϕ is a lifting of the square of the
absolute Frobenius. Let Hn be the extension of H generated by πn-torsion points
of Ê (or equivalently E).

Theorem 2.1 (R. Coleman [Col79]). Let η = (ηm)m≥1 be a basis of the Tate mod-
ule T Ê = lim←− n(πn Ê)(K) of Ê as an OK-module. Then we have an isomorphism

Γ(OH⊗̂OK Ê ,O∗
OH b⊗bE)Normϕ=1 ∼−→ lim←−mO∗

Hm

which sends f to ((σ−m(f))(ηm))m≥1. In the RHS, we take the projective limit with
respect to the norm maps.

For a norm compatible system u = (um)m≥1 of a unit um of Hm, we call the
corresponding function on OH⊗̂OK Ê the Coleman power series of u. Note that we
have a non-canonical isomorphism Γ(OH⊗̂OKE ,O) ∼= OH [[X]].

By the universal property, ϕ is naturally extended to OH⊗̂OK Êuniv and Coleman
power series can be canonically lifted to Êuniv as follows:

Proposition 2.2 ([Tsu00] Proposition 5.2). The specialization map

Γ(OH⊗̂OK Êuniv,O∗)Normϕ=1 ∼−→ Γ(OH⊗̂OKE ,O∗)Normϕ=1

is an isomorphism.

3. Exponential maps and dual exponential maps

In this section, K denotes a finite extension of Qp and K0 denotes the maximal
unramified extension of Qp contained in K. In [BK90], S. Bloch and K. Kato
generalize the exponential maps

K
exp−→ Qp ⊗ K̂∗ ∼= H1(K,Qp(1)),

Lie(AK)
exp−→ Qp ⊗ Â(K) ↪→ H1(K,Qp ⊗ TpA)

for Gm and an abelian scheme A over OK to any crystalline representation of
Gal(K/K).

By the theory of J.-M. Fontaine ([Fon82], [Fon94a], [Fon94b]), we have the notion
“crystalline” for p-adic representations of Gal(K/K) and a fully faithful functor
Dcrys from the category of crystalline p-adic representations of Gal(K/K) to the
category MFK(ϕ) of finite dimensional filtered ϕ-modules over K. Here a p-adic
representation of Gal(K/K) means a finite dimensional Qp-vector space V endowed
with a continuous and linear action of Gal(K/K) and a finite dimensional filtered
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ϕ-module over K is a finite dimensional K-vector space D endowed with a separated
and exhaustive decreasing filtration FiliD (i ∈ Z) by K-subspaces, a K0-structure
D0 and a semi-linear automorphism ϕ on D0.

The crystalline conjecture, which is now a theorem, asserts that for any proper
smooth scheme over OK , the p-adic representation Hm

ét (XK ,Qp) is crystalline and
the corresponding filtered ϕ-module is canonically isomorphic to the de Rham co-
homology Hm

dR(XK/K) endowed with the Hodge filtration and the K0-structure
with ϕ given by the crystalline cohomology of the special fiber of X.

The essential image of the functor Dcrys is stable under extensions and hence
Dcrys defines a natural injective homomorphism:

Ext1MFK(ϕ)(K,D) ↪→ H1(K,V )

for any crystalline representation V of Gal(K/K) and D = Dcrys(V ). On the other
hand, we have a natural map:

D/Fil0D → Ext1MFK(ϕ)(K, D)

sending the class of a ∈ D to K ⊕D whose filtration is twisted by a:

Fili(K ⊕D) =

{
FiliD (i > 0),
F iliD ⊕K · (1, a) (i ≤ 0).

The K0-structure and the Frobenius are the direct sums. We define the exponential
map:

exp: D/Fil0D → H1(K,V )

to be the composite of these two maps. Using Tate duality, we obtain the dual
exponential map:

exp∗ : H1(K, V ) → Fil0D.

Note that in the case V = Qp ⊗ TpA for an abelian scheme A over OK , D is
canonically isomorphic to the dual of H1

dR(AK/K) and D/Fil0D is isomorphic to
Lie(AK).

4. Explicit reciprocity law

Before giving our generalized explicit reciprocity law, we shall review how the
classical explicit reciprocity law for Qp(µpn) (n ≥ 1) by Artin-Hasse and K. Iwasawa
can be reformulated in terms of the dual exponential maps for the trivial p-adic
representation Qp.

By the definition of the dual exponential map, we have

u ∪ c = TraceQp(µpn )/Qp
(log(u) exp∗(c))

for u ∈ Qp ⊗ Zp[µpn ]∗ ⊂ H1(Qp(µpn),Qp(1)) and c ∈ H1(Qp(µpn),Qp). Hence the
classical explicit reciprocity law says that the image of f ∈ (Zp[[X − 1]]∗)Normϕ=1

under the composite of

(Zp[[X − 1]]∗)Normϕ=1 ∼−→
Coleman

lim←−mZp[µpm ]∗ → lim←−mH1(Qp(µpm),Zp(1))
∼−→ lim←−mH1(Qp(µpm),Z/pmZ(1)) ∼−→

t⊗(−1)
lim←−mH1(Qp(µpm),Zp/pmZ)

∼←− lim←−mH1(Qp(µpm),Zp)
proj−→ H1(Qp(µpn),Zp)

exp∗−→ Qp(µpn)
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is

p−n
(
X

d

dX

)
log(f)

∣∣∣
X=ζn

for n ≥ 1. Here we choose a generator t = (ζm)m≥1 of Zp(1) and the first map is
defined by taking the values at X = ζm (m ≥ 1).

The generalized explicit reciprocity law of Bloch-Kato in [BK90] §2 and K. Kato
in [Kato93] Chap. II, §2 asserts that, if we replace t⊗(−1) by t⊗(−r) (r ≥ 2) and Zp

by Zp(1− r), then we obtain

1
(r − 1)!

p−nr
((

X
d

dX

)r

log(f)
)∣∣∣

X=ζn

.

The classical explicit reciprocity law of Artin-Hasse and K. Iwasawa is generalized
by A. Wiles [Wil78] to a finite extension K of Qp and the abelian extensions K
generated by torsion points of the Lubin-Tate formal group associated to K and a
uniformizer π of K. In [Kato93], K. Kato also showed that the above generalized
explicit reciprocity law still holds if we replace Qp(µpn) by the extension of K
generated by πn-torsion points of the Lubin-Tate group, t by a basis η of the Tate
module T of the Lubin-Tate group as an OK-module and the derivation X d

dX by
∂ defined in the same way as in §1. If we apply this to K and E , then by §1, we see
that the translations of θa by torsion points of order prime to p are related to the
values at s = 0 of the partial Hecke L-functions of ψ−r (r ≥ 1) through the dual
exponential maps for T⊗(−r)(1).

Now we will give the precise statement of our generalization of the above Kato’s
explicit reciprocity law. We keep the notation of §1 and §2. Let T be the Tate
module of Ê , let T be the same Zp-representation of Gal(K/K) as T with the
action of OK twisted by the unique non-trivial automorphism of K/Qp, and set
Tk,j := T⊗(−k)⊗OK T

⊗j
for integers 0 ≤ j < k. Choose and fix a basis η = (ηn)n≥1

of T = lim←− n(πn Ê)(K) and let η be the same element as η regarded as an element
of T .

Theorem 4.1 ([Tsu00] Theorem 6.3). For any integers 0 ≤ j < k, the image of
an element f of Γ(OH⊗̂OK Êuniv,O∗)Normϕ=1 under the composite of the maps

Γ(OH⊗̂OK Êuniv,O∗)Normϕ=1 ∼−→ Γ(OH⊗̂OK Ê ,O∗)Normϕ=1 ∼−→
Coleman

lim←−mO∗
Hm

−→ lim←−mH1(Hm,Zp(1))
η⊗(−k)⊗η⊗j

−→ lim←−mH1(Hm, Tk,j(1))
proj−→ H1(Hn, Tk,j(1))

exp∗−→ (coLie(E))⊗(k+j) ⊗K Hn

is
(−1)j 1

(k − 1)!
π−nkπnj · ε∗ηn

◦Dj
p ◦ ξ∗pn ◦ ∂k−j(log(σ−n(f))).

See §1 for the definition of ∂, Dp, ξpn and εηn . Here π denotes the image of π ∈ K
under the unique non-trivial automorphism of K/Qp.

If we apply this theorem to the translation of θa by torsion points of E of order
prime to p, then, by §1, the images are related to the special values at s = 0 of the
partial L-functions of ψ−kψ

j
. By the similar argument as in [Kato93] Chap. III, we

see that the Kato’s zeta element gives (−1)k−j−1 times the special value at 0 of the
Hecke L-function of ψ−kψ

j
λ (for integers 0 < j ≤ k and a finite Hecke character
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λ) through the dual exponential map for H1(K,Fk,j(λ)∗(1)) under some condition
on λ in the case k− j = 2 ([Tsu00] Theorem 12.8). Here Fk,j(λ) denotes the p-adic
representation of Gal(K/K) such that, for any prime ideal p of OK prime to the
conductor of ψ−kψ

j
λ, Fk,j(λ) is unramified at p and the action of the geometric

Frobenius at p is given by the multiplication by (ψ−kψ
j
λ)(p).

The above explicit reciprocity law can be generalized to any Lubin-Tate formal
group for a finite unramified extension of Qp using the formal moduli space of the
Lubin-Tate group. See [Tsu00] for details.
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Séminaire de Bures, 1988, Astérisque 223, pages 113–183, 1994.

[Guo99] L. Guo. Hecke characters and formal group characters. In Topics in number theory
(University Park, PA, 1997), Math. Appl. 467, pages 181–192. Kluwer Acad. Publ.,
1999.

[Han97] B. Han. On Bloch-Kato conjecture of Tamagawa numbers for Hecke characters of imag-
inary quadratic number field. PhD thesis, University of Chicago, 1997.

[Katz78] N. Katz. p-adic L-functions for CM fields. Inv. math., 49:199–297, 1978.
[Katz80] N. Katz. p-adic L-functions, Serre-Tate local moduli, and ratios of solutions of dif-

ferential equations. In Proceedings of the ICM Helsinki, 1978, Vol. I, pages 365–371.
Academia Scientiarum Fennica, 1980.

[Kato93] K. Kato. Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions
via BdR. Part I. In Arithmetic algebraic geometry, Trento, 1991, Lecture Notes in
Math. 1553, pages 50–163. Springer, 1993.

[Kim93] K. Kimura. Special values of Hecke L-functions of imaginary quadratic fields and explicit
reciprocity law (in japanese). Master’s thesis, University of Tokyo, 1993.

[Tsu00] T. Tsuji. Explicit reciprocity law and formal moduli for Lubin-Tate formal groups, 2000,
preprint.

[Wei76] A. Weil. Elliptic functions according to Eisenstein and Kronecker. Springer, 1976.
[Wil78] A. Wiles. Higher explicit reciprocity laws. Ann. Math., 107:235–254, 1978.

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba,
Meguro, Tokyo 153-8914, Japan

E-mail address: t-tsuji@ms.u-tokyo.ac.jp


