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In [BD92] (see also [HW98]), A. A. Beilinson and P. Deligne constructed the
motivic polylogarithmic sheaf on P1

Q\{0, 1,∞}. Its specializations at primitive d-th
roots of unity give the Beilinson’s elements of H1

M(Q(µd),Q(m)) = K2m−1(Q(µd))⊗
Q (m ≥ 1), whose images under the regulator maps to Deligne cohomology are the
values of m-th polylogarithmic functions at primitive d-th roots of unity. The poly-
logarithmic functions appear as the (complex) period functions. In these notes, we
will show that the following two p-adic realizations correspond to each other via
the theory of crystalline sheaves by G. Faltings [Fal89] V f).

One is the realization in the category of smooth Qp-sheaves on (P1
Qp
\{0, 1,∞})ét.

Its specializations at primitive d-th roots of unity give the images of the Beilinson’s
elements in H1(Qp(µd),Qp(m)) = Ext1RepQp (GK)(Qp,Qp(m)) (m ≥ 1) under the
regulator maps. It is known that they also coincide with the Soulé’s cyclotomic
elements.

The other is the realization in the category of (log) filtered convergent F -isocrystals
on P1

Zp
endowed with the log structure associated to the divisor {0, 1,∞}. In

[Ban00a], K. Bannai constructed the realization in the category of filtered over-
convergent F -isocrystals on P1

Zp
\{0, 1,∞} using rigid syntomic cohomology, gave

an explicit description of it in terms of p-adic polylogarithmic functions, and then
proved that the specializations of the crystalline polylogarithmic sheaf at primitive
d-th roots of unity for d prime to p give the values of p-adic polylogarithmic func-
tions at primitive d-th roots of unity. His construction and calculation also work for
log filtered convergent F -isocrystals and log syntomic cohomology, and we prefer
the log version to the overconvergent one because we have the theory of crystalline
sheaves by G. Faltings for the former.

We will see that some functions which live in a big ring Bcrys and satisfy the
same differential equations as the complex polylogarithmic functions, appear as the
p-adic period functions of these p-adic realizations (Proposition 6.8).

By combining the result of K. Bannai explained above with our comparison
theorem, we immediately obtain a new proof of the following fact: The images of
the Beilinson’s elements in H1(Qp(µd),Qp(m)) (m ≥ 1) under the regulator maps
for d prime to p coincide with the images of the values of m-th p-adic polylogarithmic
functions at primitive d-th roots of unity under the map:

K(m) = K(m)/(1− ϕ)(Fil0K(m))
∼=−→ Ext1MFK(ϕ)(K, K(m))

⊂−→ Ext1RepQp (GK)(Qp,Qp(m)) = H1(K,Qp(m)).

Here K = Qp(µd).
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In [Ban00c], K. Bannai also studied the crystalline realization of the motivic
elliptic polylogarithm on a CM elliptic curve minus 0 and its relation with the values
of the p-adic L-function at positive integers (a p-adic analogue of the Beilinson
conjecture). Our argument also works in this case.

I would like to thank K. Bannai for kindly explaining me some basic facts on the
motivic polylogarithm and for useful discussions.

1. Filtered convergent F -isocrystals

Let K be a complete discrete valuation field of mixed characteristic (0, p) with
perfect residue field k, and let OK denote the ring of integers. let K0 be the field
of fractions of the ring of Witt vectors W (k). For a scheme X0 of finite type
over Spec(k), P. Berthelot and A. Ogus ([Ber86], [Ogu84]) defined the notion of
convergent isocrystals on X0/K, which can be regarded as p-adic local systems
in characteristic p at least in the case X0 is proper over k; they are defined in
an abstract way using the notion of enlargements of X0 in general, but if a global
embedding of X0 into a p-adic smooth formal scheme Y over Spf(OK) is given, then
they can be described more explicitly as modules with connections on the tubular
neighborhood ]X0[YK

of X0 in the rigid analytic space YK associated to Y .
Suppose that X0 is the special fiber of a proper smooth scheme X over Spec(OK).

In this case, G. Faltings ([Fal89] V f)) considered filtered convergent F -isocrystals
on X, which are just convergent isocrystals on X0/K0 endowed with Frobenius
automorphisms Φ and some kind of descending filtrations after the base change
to K, and generalized the theory of Fontaine on crystalline p-adic representations
and filtered ϕ-modules ([Fon82], [Fon94a], [Fon94b]) to crystalline p-adic sheaves
on (XK)ét and filtered convergent F -isocrystals. See §3 for more details.

Using the theory of logarithmic structures in the sense of Fontaine and Illusie
([Kat89]), one can generalize, in an almost straightforward way, the notion of con-
vergent isocrystals to fine log schemes of finite type over Spec(k), and the notion of
filtered convergent F -isocrystals to fine log formal schemes smooth over Spf(OK).
Here we endow Spec(k) and Spf(OK) with the trivial log structures. These gen-
eralizations for a proper smooth scheme X over Spec(OK) with the log structure
defined by a divisor D with relative normal crossings, were also studied by G.
Faltings ([Fal89], [Fal90]). See also [Shi00] 5.1.

In this section, we assume K = K0, consider a p-adic smooth formal scheme
X over Spf(OK) endowed with the log structure M defined by a divisor D with
relative normal crossings and explain the local description of filtered convergent
F -isocrystals on (X, M) in terms of modules with connections. To understand this
description, we do not need any knowledge on log structures.

First assume X is affine and set A = Γ(X,OX). We further assume that there
exist t1, t2, . . . , td ∈ A such that D is defined by the equation t1t2 · · · td = 0,
the divisor defined by ti = 0 is empty or smooth over Spf(OK) for each i, and
{dti|1 ≤ i ≤ d} is a basis of Ω1

X/OK
. We call such set of elements t1, t2, . . . , td a log

coordinate of (X,M).
Set

ΩA(log) := Γ(X, ΩX/OK
(log D)) ∼=

⊕

1≤i≤d

A · dti
ti

and
Ωi

A(log) := ∧i
AΩA(log) (i ∈ Z, i ≥ 0).
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Choose a lifting of the absolute Frobenius of (X,M) ⊗OK
k to (X, M) which is

equivalent to giving a lifting FX : X → X of the absolute Frobenius of X ⊗OK
k

such that FX(ti) = tpi ·(unit) for each i such that ti is not invertible. We denote by
ϕ the endomorphism of A induced by FX .

Giving a filtered convergent F -isocrystal on (X,M) is equivalent to giving the
following data (E , F ili,∇, Φ):

• a finite projective K ⊗A-module E .
• a decreasing filtration FiliE (i ∈ Z) by direct factors of E as K ⊗A-modules

such that FiliE = 0 (i >> 0) and FiliE = E (i << 0).
• an integrable connection ∇ : E → E ⊗A ΩA(log) satisfying:

– Griffiths transversality: ∇(FiliE) ⊂ Fili−1E ⊗A ΩA(log) (i ∈ Z)
– Convergence: For any x ∈ E and any δ ∈ R>0,

p[(n1+n2+···+nd)δ] 1
n1!n2! · · ·nd!

( ∏

1≤i≤d

∏

0≤j<ni

(∇log
i − j)

)
(x),

(n1, n2, . . . , nd) ∈ Nd,

converges to 0 as n1 + n2 + · · · + nd → ∞. Here, for a ∈ R, [a] denotes
the maximal integer ≤ a, the endomorphisms ∇log

i on E are defined by
the formula ∇(y) =

∑
1≤i≤d∇log

i (y)d log(ti) (y ∈ E), and E is endowed
with the p-adic topology induced by a finitely generated A-submodule E0

of E such that K ⊗ E0 = E , which is independent of the choice of E0.
• an isomorphism Φ: Aϕ ⊗A E → E which is horizontal with respect to the

connection ∇.
If you choose another lifting of Frobenius F ′X , then the integrable connection

induces a canonical isomorphism:

Aϕ ⊗A E ∼= Aϕ′ ⊗A E ,(1.1)

which sends 1⊗ x to
∑

(n1,... ,nd)∈Nd

(n1! · · ·nd!)−1
( ∏

1≤i≤d

(ϕ(ti)ϕ′(ti)−1−1)ni

)
⊗

( ∏

1≤i≤d

∏

0≤j<ni

(∇log
i −j)

)
(x).

Here we need the convergence of ∇. Hence the definition of Φ is independent of
the choice of FX . The convergence condition on the connection ∇ is independent
of the choice of t1, t2, . . . , td, but the author does not know a direct proof without
using enlargements which involves the theory of log structures.

For a general (X, M), there exists an étale covering {Xα → X} such that each
Xα satisfies the above conditions. If we choose such an étale covering, then giv-
ing a filtered convergent F -isocrystal on (X,M) is equivalent to giving a data
(Eα, F iliα,∇α, Φα) for each (Xα,Mα) and a descent data in the obvious sense.

In the case that K is ramified i.e. K 6= K0, to describe filtered convergent F -
isocrystals similarly, we need to choose a lifting (X ′, D′) of (X ⊗ k,D ⊗ k) over
OK0 and an isomorphism (X, D) ∼= (X ′, D′)⊗OK0

OK . Once we choose them, the
description is almost the same as in the case K = K0. We denote by

MF∇(X,M)/K(Φ)

the category of filtered convergent F -isocrystals on X with the log structure M
defined by D.
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2. Syntomic cohomology

The syntomic cohomology with constant p-torsion coefficients was introduced
by J.-M. Fontaine and W. Messing ([FM87]) as the cohomology groups of some
sheaves called Sr

n on the syntomic sites in their proof of the crystalline conjecture,
which compares the p-adic étale cohomology and the crystalline cohomology for a
proper smooth scheme over OK . The projections of Sr

n on the étale site, which are
sometimes called the syntomic complexes, can be described explicitly in terms of
the de Rham complexes with coefficients in some PD-envelopes and the Frobenius
endomorphisms on them; the syntomic cohomology is given as the étale cohomology
of the syntomic complex. This construction using de Rham complexes can be gen-
eralized to non-constant coefficients. Such a generalization is studied by W. Niziol
([Niz97], [Niz]) and K. Bannai ([Ban00b]).

Assume K = K0 and let (X, M) and D be as in §1. First assume X is affine
and (X,M) has a log coordinate globally as in §1. Choose a lifting of Frobenius
FX on (X, M) and denote F ∗X on A and Ωq

A(log) by ϕ. In this case, for a filtered
convergent F -isocrystal E corresponding to (E , F ili,∇, Φ), we define the de Rham
complex DRX,FX

((X,M), E) to be E ⊗A Ω•A(log). We define the filtration Fili

(i ∈ Z) on it by Fili(E ⊗A Ωq
A(log)) = Fili−qE ⊗A Ωq

A(log). The isomorphism Φ
induces a semi-linear endomorphism on E , which we denote by ϕ. Note that ϕ
depends on the choice of the lifting of Frobenius FX . Since Φ is horizontal, ϕ⊗ ϕ
defines an endomorphism on DRX,FX

((X, M), E), which we again denote by ϕ.
We define the complex SX,FX

((X, M), E) to be the mapping fiber of

1− ϕ : Fil0(DRX,FX
((X, M), E)) −→ DRX,FX

((X,M), E).

The degree q-part of the complex SX,FX
((X,M), E) is the direct sum:

(Fil−qE)⊗A Ωq
A(log)

⊕
E ⊗A Ωq−1

A (log)

and the differential map is given by

d(x, y) = (∇(x), (1− ϕ)(x)−∇(y)).

We define the crystalline cohomology and the syntomic cohomology of E by

Hm
crys((X, M), E) := Hm(DRX,FX

((X, M), E)),

Hm
syn((X, M), E) := Hm(SX,FX ((X, M), E)).

The endomorphism ϕ on the de Rham complex induces a semi-linear endomorphism
ϕ of the crystalline cohomology. A priori, the definitions of the syntomic cohomol-
ogy and ϕ on the crystalline cohomology depend on the choice of the lifting of
Frobenius FX . To prove the independence, we need a more general construction
which will be explained later.

If we define FiliHm
crys((X, M), E) to be Hm(Fili(DRX((X,M), E))), which may

not be a submodule of Hm
crys((X,M), E), we have a long exact sequence:

→ Hm
syn((X,M), E) → Fil0Hm

crys((X,M), E)
1−ϕ−→ Hm

crys((X, M), E) → · · · .(2.1)

For m = 1, we have the following interpretation of syntomic cohomology, which
generalize [BK90] Lemma 4.4.

Proposition 2.2 (cf. [Ban00a] §4). There exists a canonical isomorphism:

H1
syn((X, M), E) ∼= Ext1MF∇(X,M)/K

(Φ)(O, E),
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where O denotes the constant filtered convergent F -isocrystal, which corresponds to
K ⊗A with Fili(K ⊗A) = K ⊗A (i ≤ 0), 0 (i > 0) and the obvious ∇ and Φ.

Proof. We only give a construction of the map from the LHS to the RHS. The
proof of the isomorphism is straightforward and is left to the reader. Let x ∈
(Fil−1E) ⊗A ΩA(log) and y ∈ E and assume (1 − ϕ)(x) = ∇(y) and ∇(x) = 0.
Then the extension corresponding to the class of the cocycle (x, y) is defined to be
F := (K ⊗ A) ⊕ E with Fili = Fili ⊕ Fili, ∇(1, 0) = (0, x) and Φ(1, 0) = (1,−y).
The integrability of ∇ on F is equivalent to ∇(x) = 0 and the condition that Φ on
F is horizontal is equivalent to (1− ϕ)(x) = ∇(y).

For a general (X, M), the construction becomes more complicated because a
lifting of Frobenius does not exist globally in general. We choose an étale hyper-
covering X• → X, a closed immersion of (X•,M |X•) into a simplicial smooth fine
log formal scheme (Y•, N•) over Spf(OK) and a lifting of Frobenius FY• of (Y•, N•)
such that, for each i ∈ N, Xi and Yi are affine. Such a hypercovering, a closed
immersion and a lifting of Frobenius always exist. We consider the “closed tube
of radius p−

1
n ” (Z(n)

• , L
(n)
• ) of (X•,M |X•) in (Y•, N•). Let Ai, Bi and C

(n)
i denote

the rings of coordinates of Xi, Yi and Z
(n)
i respectively. If M |Xi is the pull-back

of Ni, then C
(n)
i is the p-adic completion of Bi

[ (Ii)
n

p

]
, where Ii denotes the kernel

of Bi → Ai, and L
(n)
i is the pull-back of Ni. The log formal scheme (Z(n)

i , L
(n)
i )

can be naturally regarded as an enlargement of (X, M) over Spf(OK). Hence one
can evaluate a filtered F -isocrystal E on it and obtains a K ⊗ C

(n)
i -module E(n)

i

endowed with an integrable connection, a filtration and a Frobenius. We define the
de Rham complex DRX•,Y•,FY• ((X, M), E) to be the projective limit with respect
to n of the complex associated to the double complex:

E(n)
0 ⊗

B
(n)
0

Ω•
B

(n)
0

(log) −→ E(n)
1 ⊗

B
(n)
1

Ω•
B

(n)
1

(log) −→ E(n)
2 ⊗

B
(n)
2

Ω•
B

(n)
2

(log) −→ · · · ,

which is filtered and has a Frobenius endomorphism ϕ. The differential maps are,
as usual, defined to be alternating sums of the pull-backs by the projections. We
define the syntomic complex SX•,Y•,FY• ((X, M), E) to be the mapping fiber of

1− ϕ : Fil0(DRX•,Y•,FY• ((X, M), E)) −→ DRX•,Y•,FY• ((X, M), E).

The image of the syntomic complex in the derived category D+(Qp-Vect) of the
category Qp-Vect of Qp-vector spaces is unique up to canonical isomorphisms: For
another (X ′

•,M |X•) ↪→ (Y ′
• , N

′
•), FY ′• , we take the fiber product X ′′

• of X• and X ′
•

over X and the fiber product (Y ′′
• , N ′′

• ) of (Y•, N•) and (Y ′
• , N

′
•) over Spf(OK). Then

the natural morphisms from the syntomic complexes for (X•, Y•) and (X ′
•, Y

′
•) to

that for (X ′′
• , Y ′′

• ) are both quasi-isomorphisms. Here we use the Poincaré lemma
and the vanishing of R1 lim←− nE(n)

i . For the Poincaré lemma holds, we need to work
for an “open tube” and that is the reason why we take the projective limit with
respect to n in the definition of the de Rham and syntomic complexes. The above
argument also works for the de Rham complex with Fil• and ϕ.

We define the crystalline cohomology and the syntomic cohomology by

Hm
crys((X, M), E) := Hm(DRX•,Y•,FY• ((X,M), E))

Hm
syn((X, M), E) := Hm(SX•,Y•,FY• ((X,M), E)).
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Proposition 2.2 is still valid for a general (X, M). If we define FiliHm
crys((X, M), E)

to be the cohomology of Fili of the de Rham complex, then we have the exact
sequence (2.1).

Assume (X, M) is the p-adic formal completion of a proper smooth scheme X
over Spec(OK) with the log structure defined by a divisor with relative normal cross-
ings. Set XK := X ×Spec(OK) Spec(K). Then a filtered convergent F -isocrystal on
(X, M) defines a locally free OXK

-module E endowed with an integrable connec-
tion with log poles ∇ and a decreasing filtration Fil• by direct factors, and we have
canonical isomorphisms:

Hm
crys((X,M), E) ∼= Hm(XK , E ⊗OXK

Ω•XK
(log)),

F iliHm
crys((X,M), E) ∼= Hm(XK , F ili−•E ⊗OXK

Ω•XK
(log)).

Hence these are finite dimensional K-vector spaces and Fili = 0 (i >> 0). Fur-
thermore, if the spectral sequence with respect to the filtration Fili−•E ⊗Ω•X (log)
degenerates at E1, then the natural map FiliHm

crys((X,M), E) → Hm
crys((X, M), E)

(i ∈ Z) is injective and the crystalline cohomology can be regarded as a filtered
ϕ-module (= a filtered convergent F -isocrystal on Spec(OK) over K). In this case,
the long exact sequence (2.1) is rewritten as short exact sequences:

(2.3) 0 −→ H1
syn(OK ,Hm−1

crys ((X, M), E)) −→ Hm
syn((X, M), E)

−→ H0
syn(OK ,Hm

crys((X, M), E)) → 0.

We can define a syntomic cohomology even over a ramified base similarly noting
that giving a filtration on a convergent crystal E on X/K0 is equivalent to giving
a filtration on the inverse image of E to X/K. In [Niz], W. Niziol gave a different
construction in the case D = ∅ generalizing the method of of Bloch-Kato in [BK90]
§3, where they treat the case X = Spec(OK).

3. Crystalline sheaves

Let X be a proper smooth scheme over Spec(OK) and let M be the log struc-
ture on X defined by a divisor D with relative normal crossings. In [Fal89] V f),
G. Faltings defined the notion “crystalline” for smooth Qp-sheaves on the étale site
of Xtriv := XK\DK generalizing the Fontaine’s theory of crystalline p-adic rep-
resentations of Gal(K/K) ([Fon82], [Fon94a], [Fon94b]). Similarly as crystalline
p-adic representations, we have a fully-faithful functor from the category of crys-
talline sheaves to the category of filtered convergent F -isocrystals on (X,M) over
K. Note that, in the case X = Spec(OK), the latter category coincides with the
category MFK(ϕ) of filtered ϕ-modules over K considered by Fontaine.

In this section, we will explain crystalline sheaves in the case K = K0. Our
approach is slightly different from Faltings’; we use the description of filtered con-
vergent F -isocrystals as modules with connections, which is reviewed in §1, while
Faltings consider their values on every enlargement.

Assume K = K0. Let X be a smooth affine formal scheme over Spf(OK) endowed
with the fine log structure M defined by a divisor D with relative normal crossings.
We set A = Γ(X,OX). We assume that (X, M) has a log coordinate t1, t2, . . . , td ∈
A globally as in §1. We choose a lifting of Frobenius FX of the log formal scheme
(X, M). We further assume that X is connected and hence A is a regular domain.
Choose an algebraic closure Frac(A) of the field of fractions Frac(A) of A, and
define A to be the union of the normalization of A in L, where L ranges over
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all finite extensions of Frac(A) contained in Frac(A) such that the normalizations
of A[(pt1t2 · · · td)−1] in L are étale. We set G := Gal(Frac(A)/Frac(A)), which is
canonically isomorphic to the fundamental group of Spec(A[(pt1t2 · · · td)−1]) for the
base point Spec(Frac(A)).

Associated to the ring A with the natural action of G and (X, M), FX , there
exists a K ⊗A-algebra Bcrys(A) endowed with the following structures:

• an action of G.
• a decreasing filtration FiliBcrys(A) (i ∈ Z) by K ⊗ A-submodules such that
∪iFiliBcrys(A) = Bcrys(A) and ∩iFiliBcrys(A) = 0.

• an integrable connection: ∇ : Bcrys(A) → Bcrys(A)⊗A ΩA(log) satisfying Grif-
fiths transversality: ∇(Fili) ⊂ Fili−1 ⊗A ΩA(log) (i ∈ Z).

• an injective endomorphism (called the Frobenius) ϕ : Bcrys(A) → Bcrys(A)
horizontal with respect to the connection and semi-linear with respect to FX .

The filtration is stable under the action of G and the connection and the Frobe-
nius commute with the action of G. If we set Bcrys(A) := Bcrys(A)∇=0 and endow
it with the induced filtration, then Qp(i) (i ∈ Z) is contained in FiliBcrys(A) and

griBcrys(A) is canonically embedded into (K ⊗OK
Â)(i). If we use the surjectivity

of the absolute Frobenius of A/pA, which follows from of the theory of almost étale
extensions by Faltings, then we can prove that this embedding is an isomorphism.

The ring Bcrys(A) is defined along the following lines. We first define the ring
RA to be the perfection of A/pA i.e. the projective limit of A/pA ← A/pA ←
A/pA ← · · · where the transition maps are the absolute Frobenius. We have a
canonical embedding Zp(1)(A) ↪→ R∗

A
sending ε = (εn)n≥0, ε0 = 1, εp

n+1 = εn to
ε := (εn mod p)n≥0. We define the ring Acrys(A) to be the p-adic completion of
some subring of Qp ⊗ (A⊗OK W (RA)) containing A⊗W (RA). For any ε ∈ Zp(1),
log(1⊗ [ε]− 1) converges in Acrys p-adically and we obtain a canonical embedding
Zp(1) ↪→ Acrys. We regard Zp(1) as a submodule of Acrys. The ring Bcrys(A) is
defined to be Acrys[p−1, ε−1], where ε is any non-zero element of Zp(1).

The following two properties are important.

Proposition 3.1. (1) The G-invariant part of Bcrys(A) is K ⊗OK
A.

(2) Qp with the trivial action of G is quasi-isomorphic to the mapping fiber of
the morphism of complexes of G-modules:

1− ϕ⊗ ϕ : Fil0(Bcrys(A)⊗A Ω•A(log)) → Bcrys(A)⊗A Ω•A(log).

Here the degree q-part of Fil0 is defined to be Fil−qBcrys(A)⊗A Ωq
A(log).

Let V be a p-adic representation of G, i.e. a finite dimensional Qp-vector space
endowed with a continuous and linear action of G, which corresponds to a smooth
Qp-sheaf on the étale site of Spec(A[(pt1t2 · · · td)−1]). Similarly as the Fontaine’s
theory, we define Dcrys(V ) and a filtration on it by

Dcrys(V ) := (Bcrys(A)⊗Qp V )G,

F iliDcrys(V ) := (FiliBcrys(A)⊗Qp V )G (i ∈ Z).

Here an element g ∈ G acts on Bcrys(A) ⊗Qp V by g ⊗ g. The connection and
the Frobenius on Bcrys(A) induce those on Dcrys(V ) and they satisfy ∇(Fili) ⊂
Fili−1 ⊗A ΩA(log) and ∇ ◦ ϕ = (ϕ⊗ ϕ) ◦ ∇.
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Definition 3.2. We say that V is crystalline if it satisfies the following two con-
ditions:

(1) The canonical map Bcrys(A) ⊗K⊗A Dcrys(V ) → Bcrys(A) ⊗Qp
V is a filtered

isomorphism.
(2) Dcrys(V ) and griDcrys(V ) (i ∈ Z) are finite projective K ⊗OK

A-modules.

If we use the flatness of K ⊗OK
Â (where Â denotes the p-adic completion of A)

over K⊗OK
A, which follows from the theory of almost étale extensions by Faltings,

then we can prove (1) implies (2). However we avoid to use this fact here because
it is very hard to understand all the details of the Faltings’ theory.

If V is crystalline, then (Dcrys(V ), F iliDcrys(V ),∇, ϕ) defines a filtered conver-
gent F -isocrystal on (X,M) over K, which we also denote by Dcrys(V ).

Theorem 3.3 (G. Faltings [Fal89] Lemma 5.5). The functor

Dcrys : Repcrys(G) −→ MF∇(X,M)/K(Φ)

from the category of crystalline representations of G to the category of filtered con-
vergent F -isocrystals is fully faithful and exact. Furthermore the essential image is
stable under extensions.

Proof of fully faithfulness. By Proposition 3.1 (2), we have

V = Fil0(Bcrys(A)⊗K⊗A Dcrys(V ))∇=0,ϕ=1,

which immediately implies the fully faithfulness.

Let V be a crystalline p-adic representation of G and let E be the corresponding
filtered convergent F -isocrystal on (X, M)/K. Then we can construct canonical
homomorphisms:

Hm
syn((X, M), E) −→ Hm

cont(G,V ) (m ∈ Z)(3.4)

functorial on V as follows. See [Niz] for the case D = ∅. By tensoring V to the
resolution of Qp of Proposition 3.1 (2) and using the filtered isomorphism in Defini-
tion 3.2 (1), we obtain the resolution of V by the mapping fiber SX,FX

((X, M), E)
of the morphism of complexes:

1− ϕ : Fil0(Bcrys(A)⊗K⊗A E ⊗A Ω•A(log)) −→ Bcrys(A)⊗K⊗A E ⊗A Ω•A(log).

We define the homomorphisms (3.4) by taking the cohomology of the following
maps:

SX,FX ((X, M), E) → Γ(G,SX,FX ((X, M), E))

→ “RΓcont(G,SX,FX
((X,M), E))” ∼← RΓcont(G,V )

The ring Bcrys(A) can be described as a union ∪m≥0t
−mAcrys(A) of p-adically

complete and separated G-stable submodules t−mAcrys(A) (where 0 6= t ∈ Zp(1) ⊂
Acrys(A)) and it induces a description of SX,FX

((X, M), E) as a union of complexes
of G-modules Sm (m ∈ N) p-adically complete and separated. The third term
“RΓcont . . . ” is defined to be the inductive limit of the inhomogeneous continuous
cochain complexes of Sm with the p-adic topology.

Lemma 3.5. The homomorphism (3.4) for m = 1 coincides with the map:

H1
syn((X, M), E)) ∼= Ext1MF∇(X,M)/K

(Φ)(O, E) → Ext1RepQp (G)(Qp, V ) ∼= H1
cont(G,V )

induced by Dcrys.
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Proof. Choose x ∈ Fil−1E⊗AΩA(log) and y ∈ E and assume (1−ϕ)(x) = ∇(y) and
∇(y) = 0. Then there exists a ∈ Fil0(Bcrys⊗K⊗AE) ∼= Fil0(Bcrys⊗Qp V ) unique up
to addition by an element of V such that y = (1−ϕ)(a) and x = ∇(a) and the map
(3.4) sends the class of (x, y) to the class of the cocycle G → V ; g 7→ −(g(a)−a). On
the other hand, if we define the extension F of O by E as in the proof of Proposition
2.2, then the element (1,−a) ∈ Bcrys ⊗ F = Bcrys ⊕ (Bcrys ⊗ E) is contained in the
extension of Qp by V corresponding to F .

We still assume K = K0 and let X be a proper smooth scheme over Spec(OK)
endowed with the fine log structure M defined by a divisor D with relative normal
crossings. Set Xtriv := XK\DK . For a Qp-smooth sheaf V on (Xtriv)ét, we say
that V is crystalline if, for each affine étale scheme U = Spec(A) of X having a
global log coordinate t1, t2, . . . , td, the pull-back of V on Spec(Â[(pt1t2 · · · td)−1])
is crystalline. Here Â denotes the p-adic completion of A. By gluing the functor
Dcrys for Spf(Â) with the inverse image of M , we obtain a functor Dcrys from
the category of crystalline sheaves on (Xtriv)ét to the category MF∇(X,M)/K(Φ) of
filtered convergent F -isocrystals on (X, M)/K and Theorem 3.3 holds. By taking
X•, (X•,M |X•) ↪→ (Y•, N•), FY• as in the definition of the syntomic cohomology
in the general case and using Bcrys associated to these data, one can construct
canonical homomorphisms:

Hm
syn((X, M), Dcrys(V )) → Hm

ét (Xtriv, V )(3.6)

similarly as (3.4). Here the RHS is the continuous étale cohomology ([Jan88]). See
[Niz] in the case D = ∅. Lemma 3.5 is still valid.

4. Log

In this section, we review the realizations of the motivic pro-sheaf Log = (Log(n))n≥1

on Gm,Q = P1
Q\{0,∞} in the category of smooth Qp-sheaves on (Gm,Qp)ét and the

category of filtered convergent F -isocrystals on P1
Zp

with the log structure defined
by {0,∞}. The realization in filtered overconvergent F -isocrystals on Gm,Zp was
studied by K. Bannai in [Ban00a], but from his explicit description, it is clear that
it actually comes from log filtered convergent F -isocrystals.

Let Glog
m,Zp

be P1
Zp

endowed with the fine log structure define by {0,∞}. We
denote by K(r) the object of MFQp(ϕ) i.e. the filtered ϕ-module over Qp corre-
sponding to the crystalline p-adic representation Qp(r) (r ∈ Z) and by O(r) its
inverse image in MF∇Glog

m,Zp /Qp
(Φ). Then we have the following exact sequences. See

(2.3) for the syntomic case.

(4.1)

0 −→ H1
ét(Qp,Qp(1))

(∗)−→ H1
ét(Gm,Qp ,Qp(1)) −→ H0(Qp,H

1
ét(Gm,Qp

,Qp(1)))

−→ H2
ét(Qp,Qp(1))

(∗)−→ H2
ét(Gm,Qp ,Qp(1)),

0 → H1
syn(Zp,K(1))

(∗)−→ H1
syn(Glog

m,Zp
,O(1)) → H0

syn(Zp,H
1
crys(G

log
m,Zp

,O(1))) → 0.

(4.2)

Here H∗
ét denotes the continuous étale cohomology ([Jan88]). The pull-backs by the

point 1 give the splittings of the homomorphisms (∗). On the other hand the third
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terms of the above exact sequences are both canonically isomorphic to Qp. Thus
we obtain isomorphisms:

H1
ét(Gm,Qp

,Qp(1)) ∼= H1
ét(Qp,Qp(1))⊕Qp,(4.3)

H1
syn(Glog

m,Zp
,O(1)) ∼= H1

syn(Zp,K(1))⊕Qp.(4.4)

We define the smooth Qp-sheaf Log(1)
ét on (Gm,Qp

)ét and the filtered convergent
F -isocrystal Log(1)

crys on Glog
m,Zp

to be the extensions:

0 −→ Qp(1) −→ Log(1)
ét −→ Qp −→ 0,

0 −→ O(1) −→ Log(1)
crys −→ O −→ 0

corresponding to the elements (0, 1) via the above isomorphisms. See Proposition
2.2 for the interpretation of the first syntomic cohomology as Ext1. The specializa-
tions of these extensions at the point 1 split.

We define Log(n)
ét and Log(n)

crys to be the n symmetric tensors of Log(1)
ét and Log(1)

crys

respectively. Let pr denote the projections from Log(1)
ét to Qp and Log(1)

crys to O
and let pri : (Log(1)

• )⊗n → (Log(1)
• )⊗(n−1) (1 ≤ i ≤ n) be the tensor product of

pr on the i-th term and id on the other terms. Then the sum
∑n

i=1 pri induces
Log(n)

• → Log(n−1)
• . We have short exact sequences:

0 −→ Qp(n) −→ Log(n)
ét −→ Log(n−1)

ét −→ 0,(4.5)

0 −→ O(n) −→ Log(n)
crys −→ Log(n−1)

crys −→ 0.(4.6)

Proposition 4.7. Let d be a positive integer. Then the pull-back of Log(n)
ét by

Spec(Qp(µd)) = Spec(Qp[t]/Φd(t)) ↪→ Gm,Qp is canonically isomorphic to ⊕0≤r≤nQp(r),
and the pull-back of Log(n)

crys by Spec(Zp[µd]) = Spec(Zp[t]/Φd(t)) ↪→ Glog
m,Zp

is canon-
ically isomorphic to ⊕0≤r≤nQp(µd)(r).

Proof. It suffices to prove the claim in the case n = 1. Let [d] denote the multi-
plication by d on Gm,Qp . Then the pull-back by [d] preserves the decomposition
(4.3) and it induces a multiplication by d on the factor Qp. Hence [d]∗(Log(1)

ét ) is

isomorphic to the fiber product of Log(1)
ét → Qp

d←
∼
Qp. Since [d]∗(Log(1)

ét ) splits at

Spec(Qp(µd)) ↪→ Gm,Qp , so does Log(1)
ét . If d is prime to p, [d] induces a morphism

of log schemes Glog
m,Zp

→ Glog
m,Zp

and we can prove the second claim similarly.

Proposition 4.8. Log(n)
ét is crystalline and Dcrys(Log(n)

ét ) is canonically isomor-
phic to Log(n)

crys.

Proof. It suffices to prove in the case n = 1. We have a commutative diagram:

Γ(Gm,Zp ,O∗) −−−−→ H1
syn(Glog

m,Zp
,O(1))∥∥∥

y∩
Γ(Gm,Zp ,O∗) −−−−→ H1

ét(Gm,Qp ,Qp(1))

and the images of the canonical coordinate t under the horizontal maps are the
extensions Log(1)

ét and Log(1)
crys. Locally on Glog

m,Zp
, the upper horizontal map is

defined by f 7→ (df, p−1 log(fpϕ(f)−1))
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If we define the lifting of Frobenius on the log scheme Glog
m,Zp

by t 7→ tp, then

using the construction of Log(1)
crys in the proof of Proposition 4.8, we obtain the

following explicit description of Log(n)
crys ([Ban00a] Definition 5.1):

Log(n)
crys =

⊕

0≤r≤n

O · er,

F iliLog(n)
crys =

⊕

i≤−r,0≤r≤n

O · er,(4.9)

∇(er) =

{
er+1 · dt

t (0 ≤ r ≤ n− 1),
0 (r = n),

Φ(1⊗ er) = p−rer.

5. Pol

In this section, we review the realizations of the motivic polylogarithmic pro-
sheaf Pol = (Pol (n))n≥1 on P1

Q\{0, 1,∞} in the category of smooth Qp-sheaves
on (PQp\{0, 1,∞})ét and the category of filtered convergent F -isocrystals on P1

Zp

with the log structure defined by {0, 1,∞}. The realization in the category of fil-
tered overconvergent F -isocrystals on P1

Zp
\{0, 1,∞} is constructed by K. Bannai

in [Ban00a] and as we will see below, his construction works also for filtered con-
vergent F -isocrystals and syntomic cohomology with log poles. As in [Ban00a], we
follow the construction by A. Huber and J. Wildeshaus in [HW98]§2.

Let U denote the scheme P1
Qp
\{0, 1,∞} and let U log be the scheme P1

Zp
en-

dowed with the log structure defined by the divisor {0, 1,∞}. The pro-sheaf Pol ét

(resp. Pol crys) is a compatible system of an extension of Qp (resp. O) by the pull-
back of Log(n)

ét (resp. Log(n)
crys) on U (resp. U log) or equivalently a compatible system

of a class in H1
ét(U,Log(n)

ét |U ) (resp. H1
syn(U log,Log(n)

crys|U log)). See Proposition 2.2

for the second case. To simplify the notation, we will denote the pull-back of Log(n)
ét

and Log(n)
crys on U and U log by the same symbols.

Let us consider the Gysin exact sequences:

(5.1) 0 → H1
ét(Gm,Qp ,Log(n)

ét ) → H1
ét(U,Log(n)

ét )

→ H0
ét(Qp, i

∗
1(Log(n)

ét (−1))) → H2
ét(Gm,Qp ,Log(n)

crys)

(5.2) 0 → H1
syn(Glog

m,Zp
,Log(n)

crys) → H1
syn(U log,Log(n)

crys)

→ H0
syn(Zp, i

∗
1(Log(n)

crys(−1))) → H2
syn(Glog

m,Zp
,Log(n)

crys)

for the unit sections i1 : Spec(Qp) ↪→ Gm,Qp and i1 : Spec(Zp) ↪→ Glog
m,Zp

. Since

i∗1(Log(n)
ét ) and i∗1(Log(n)

crys) are canonically isomorphic to
⊕

0≤r≤nQp(r) and
⊕

0≤r≤n K(r)
respectively by definition, the third terms of the above exact sequences are canoni-
cally isomorphic to Qp. On the other hand, the first and the fourth terms have the
following properties.
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Proposition 5.3. The homomorphisms induced by the projections:

H1
ét(Gm,Qp

,Log(n+1)
ét ) → H1

ét(Gm,Qp
,Log(n)

ét ),

H1
syn(Glog

m,Zp
,Log(n+1)

crys ) → H1
syn(Glog

m,Zp
,Log(n)

crys)

are 0 for all n ≥ 1 and we have

H2
ét(Gm,Qp ,Log(n)

ét ) = 0 (n ≥ 2),

H2
syn(Glog

m,Zp
,Log(n)

crys) = 0 (n ≥ 1).

To prove this proposition, we first calculate the geometric étale cohomology of
Log(n)

ét and the crystalline cohomology of Log(n)
crys.

Proposition 5.4. (1) The natural homomorphisms

Qp(n) = H0
ét(Gm,Qp

,Qp(n)) → H0
ét(Gm,Qp

,Log(n)
ét )

H1
ét(Gm,Qp

,Log(n)
ét ) → H1

ét(Gm,Qp
,Qp) ∼= Qp(−1)

are isomorphisms and

Hi
ét(Gm,Qp

,Log(n)
ét ) = 0 (i ≥ 2)

for all n ≥ 1.
(2) The Hodge spectral sequence for H∗

crys(G
log
m,Zp

,Log(n)
crys) degenerates at E1 and

these cohomology groups can be naturally regard as filtered ϕ-modules over Qp in the
sense of Fontaine. Furthermore, the natural homomorphisms of filtered ϕ-modules:

K(n) = H0
crys(G

log
m,Zp

,K(n)) → H0
crys(G

log
m,Zp

,Log(n)
crys)

H1
crys(G

log
m,Zp

,Log(n)
crys) → H1

crys(G
log
m,Zp

, K) ∼= K(−1)

are isomorphisms and

Hi
syn(Glog

m,Zp
,Log(n)

crys) = 0 (i ≥ 2)

for all n ≥ 1.

Proof. We will give a proof of (2). The proof of (1) is similar. It is well-known that
the Hodge spectral sequence for the de Rham cohomology of P1

Qp
with log poles

along {0, 1,∞} degenerates at E1. The crystalline cohomology Hi
crys(G

log
m,Zp

,O) is
isomorphic to K if i = 0, K(−1) if i = 1, and 0 if i ≥ 2 as filtered ϕ-modules. By
definition, the class of Log(1)

crys in H1
crys(G

log
m,Zp

,O) is non-trivial. Hence, by looking
at the long exact sequence of crystalline cohomology associated to the extension, we
obtain the claim for n = 1. One can prove the claim for the general n by induction
using the commutative diagram

0 −−−−→ O(n) −−−−→ Log(n)
crys −−−−→ Log(n−1)

crys −−−−→ 0
∥∥∥

x∪
x∪

0 −−−−→ O(n) −−−−→ Log(1)
crys(n− 1) −−−−→ K(n− 1) −−−−→ 0

and the non-triviality of the lower extension.
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Proof of Proposition 5.3. By Propositions 5.4 (2) and (2.3), we have a short exact
sequence

0 → H1
syn(Zp,K(n)) → H1

syn(Glog
m,Zp

,Log(n)
crys) → H0

syn(Zp,K(−1)) → 0

and the last term vanishes. Furthermore the projection Log(n+1)
crys → Log(n)

crys sends
K(n+1) to 0. This implies the claim for the first syntomic cohomology. By Propo-
sitions 5.4 (2) and (2.3) again, we see H2

syn(Glog
m,Zp

,Log(n)
crys) ∼= H1

syn(Zp,K(−1)) = 0.
One can verify the claim for étale cohomology similarly using Proposition 5.4 (1)
and the Leray spectral sequence. The difference from the syntomic case arises from
the non-vanishing of H2

ét(Qp,Qp(1)). Note H2
ét(Qp,Qp(r)) = 0 for r ≥ 2.

By taking the projective limit of the Gysin exact sequences (5.1), (5.2) with
respect to n and using Proposition 5.3, we obtain isomorphisms:

lim←− nH1
ét(U,Log(n)

ét ) ∼→ Qp,(5.5)

lim←− nH1
syn(U log,Log(n)

crys)
∼→ Qp.(5.6)

Definition 5.7. We define Pol ét = (Pol (n)
ét )n≥1 and Pol crys = (Pol (n)

crys)n≥1 to be
the projective systems of extensions corresponding to 1 by the above isomorphisms
(5.5) and (5.6) respectively.

Let U log
1 be the p-adic formal completion of the scheme P1

Zp
\{1} endowed with the

log structure defined by the divisor {0,∞} and let FU log
1

be the lifting of Frobenius
defined by t 7→ tp, where t denotes the canonical coordinate. Note that one can
also define a lifting of Frobenius on P1

Zp
in the same way, but it does not give a

lifting of Frobenius on U log because 1 − tp 6= (1 − t)p·unit. K. Bannai gave the
following explicit description of Pol (n)

crys. Strictly speaking, he proved this theorem
for the realization in the category of filtered overconvergent F -isocrystals but his
proof still works in our settings with a slight modification.

Theorem 5.8 (K. Bannai [Ban00a] Theorem 2). The restriction of Pol (n)
crys on U log

1

with FU log
1

is explicitly described as follows. (See (4.9) for the explicit description

of Log(n)
crys.)

Pol (n)
crys = O · e⊕ Log(n)

crys,

F ili(Pol (n)
crys) =

{
O · e⊕ Fili(Log(n)

crys) (i ≤ 0),
0 (i > 0),

∇(e) =
dt

t− 1
e1,

Φ(1⊗ e) = e +
n∑

r=1

(−1)r−1l(p)
r (t)er,

where l
(p)
r (t) denote the p-adic polylogarithmic functions defined inductively by the

following differential equations:

l
(p)
1 (0) = 0, dl

(p)
1 (t) =

(
1−

F ∗U log
1

p

)( dt

1− t

)
,

l
(p)
r+1(0) = 0, dl

(p)
r+1(0) = l(p)

r (t)⊗ dt

t
(r ≥ 1).
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6. p-adic periods and comparison

Since Log(n)
crys (resp. Pol (n)

crys) is a successive extension of O(r) (0 ≤ r ≤ n), it
comes from a crystalline sheaf on (Gm,Qp

)ét (resp. (P1
Qp
\{0, 1,∞})ét) by Theorem

3.3. In this section, we will calculate the p-adic periods of Log(n)
crys and Pol (n)

crys and
show that the crystalline sheaf associated to Pol (n)

crys coincides with Pol (n)
ét .

Let U log
1,∞ be the p-adic formal completion of P1

Zp
\{1,∞} endowed with the log

structure defined by 0 and let A be its ring of coordinates. We define the lifting of
Frobenius F on U log

1,∞ by t 7→ tp. Choose an algebraic closure of Frac(A) and define
A as in §3. We set G = Gal(Frac(A)/Frac(A)) as in §3 and simply write Bcrys

for Bcrys(A) in the following. By the proof of Theorem 3.3, the p-adic crystalline
representation of G corresponding to Log(n)

crys is

Fil0(Bcrys ⊗Qp⊗A Log(n)
crys)

∇=0,ϕ=1.(6.1)

If we use the explicit description (4.9) of Log(n)
crys, we have

Fil0(Bcrys ⊗ Log(n)
crys) =

⊕

0≤r≤n

FilrBcrys · er

and for its element f =
∑n

r=0 fr · er (fr ∈ FilrBcrys), we have:

∇(f) = 0 ⇐⇒ ∇(f0) = 0, ∇(fr) = −fr−1 · dt

t
(1 ≤ r ≤ n).(6.2)

ϕ(f) = f ⇐⇒ ϕ(fr) = prfr. (0 ≤ r ≤ n)(6.3)

Choose a compatible system {tn}n≥1, tpn+1 = tn, t0 = t of pn-th roots of t in A and
define the element t of RA to be (tn mod p)n≥0. Then the element [t] of W (RA) ⊂
Acrys = A∇=0

crys satisfies ϕ([t]) = [t]p and its image in Acrys/F il1Acrys ⊂ Qp ⊗ Â is t.
Set u := [t]t−1. Then, thanks to the log structure at the point 0, u is contained in
1 + Fil1Acrys and log(u) converges in Acrys p-adically. We have log(u) ∈ Fil1Acrys

and

∇(log(u)) = −dt

t
, ϕ(log(u)) = p log(u).

Using the fact that the dimension of (6.1) is n + 1, we obtain the following propo-
sition:

Proposition 6.4. Choose a non-zero element ε of Qp(1). Then
{

ε⊗r
(
er + log(u)er+1 + · · ·+ 1

(n− r)!
log(u)n−ren

)∣∣∣0 ≤ r ≤ n
}

is a basis of the Qp-vector space (6.1).

Next we will calculate a lifting of 1 ∈ Qp = Fil0(Bcrys)∇=0,ϕ=1 in the p-adic
crystalline representation of G associated to Pol (n)

crys:

Fil0(Bcrys ⊗Qp⊗A Pol (n)
crys)

∇=0,ϕ=1.(6.5)

By the explicit description of K. Bannai (Theorem 5.8), we have

Fil0(Bcrys ⊗Qp⊗A Pol (n)
crys) = Fil0Bcrys · e⊕

⊕

0≤r≤n

FilrBcrys · er
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and for its element e +
∑

0≤r≤n frer, we have:

∇(f) = 0 ⇐⇒ ∇(f0) = 0, ∇(f1) = − dt

t− 1
− f0

dt

t
,(6.6)

∇(fr) = −fr−1
dt

t
(2 ≤ r ≤ n),

ϕ(f) = f ⇐⇒ ϕ(f0) = f0, (1− p−rϕ)(fr) = (−1)r−1l(p)
r (1 ≤ r ≤ n).(6.7)

The equations for f0 imply f0 ∈ Qp. Hence by subtracting an element of (6.1), we
may assume f0 = 0.

Proposition 6.8. There exist lr ∈ FilrBcrys (r ≥ 1) satisfying the following equa-
tions:

∇(l1) =
dt

1− t
, ∇(lr) = lr−1

dt

t
(r ≥ 2), (1− p−rϕ)(lr) = l(p)

r (r ≥ 1),

where l
(p)
r are as in Theorem 5.8. Choose one solution {lr ∈ FilrBcrys|r ≥ 1}.

Then

e +
n∑

r=1

(−1)r−1lr · er

is an element of (6.5) lifting 1 in Qp = Fil0B∇=0,ϕ=1
crys .

Proof. Choose a non-zero element ε of Qp(1) ⊂ Fil1Bcrys. Then ε is invertible in
Bcrys, ∇(ε) = 0, ϕ(ε) = pε and the multiplication by εr induces an isomorphism
Fil0Bcrys

∼→ FilrBcrys. Hence by Proposition 3.1 (2), we have the following exact
sequence:

0 −→ Qp(r) −→ FilrBcrys

α−→ (Filr−1Bcrys ⊗A Ω1
A(log))⊕ Bcrys

β−→ Bcrys ⊗A Ω1
A(log) −→ 0,

where α(x) = (∇(x), (1 − p−rϕ)(x)) and β((y, z)) = (1 − p−rϕ)(y) − ∇(z). Since
(1 − p−1ϕ)( dt

1−t ) = ∇(l(p)
1 ), there exists a solution l1 unique up to addition by an

element of Qp(1). For r ≥ 2, if we are given a solution ls for 1 ≤ s ≤ r − 1,
then (1− p−rϕ)(lr−1

dt
t ) = (1− p−(r−1)ϕ)(lr−1)dt

t = l
(p)
r−1

dt
t = ∇(l(p)

r ). Hence there
exists a solution lr unique up to addition by an element of Qp(r). The second claim
follows from (6.6) and (6.7).

As the proof shows, the solution {lr} is not unique. If we choose a point 0: Spec(Zp) →
Spec(A) over the point 0: Spec(Zp) → Spec(A), then there exists a unique solution
such that each lr is “regular at 0” and its “value at 0” is 0.

If we choose a compatible system of pn-th roots of 1 − t in A and define the
element [1− t] in Bcrys(A) similarly as [t], then log([1− t](1− t)−1) ∈ Fil1Bcrys is
well defined and satisfies the equations for l1.

Here it is worthwhile to mention that the equations (6.2), (6.3), (6.6) and (6.7)
depend on the special choice F of liftings of Frobenius, but their solutions do not.
Indeed, if we choose another lifting of Frobenius, then the Frobenius endomorphism
on Bcrys ⊗ E is twisted by the canonical isomorphism:

Aϕ′ ⊗A (Bcrys ⊗ E) ∼= Aϕ ⊗A (Bcrys ⊗ E)

induced by the connection. However, for any horizontal element x ∈ (Bcrys⊗E)∇=0,
the image of 1⊗ x is again 1⊗ x (cf. (1.1)).
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In order to calculate the residue at 1 of the crystalline sheaf associated to Pol (n)
crys,

we need to work on the p-adic formal completion of an open log subscheme of U log

containing 1. Let U log
0,∞ be the p-adic completion of P1

Zp
\{0,∞} endowed with the

log structure defined by {1}. Then (t− 1) 7→ (t− 1)p defines a lifting of Frobenius
on U log

0,∞, which we denote by F ′. By the construction of Log(1)
crys in the proof

of Proposition 4.8 (or by calculating the twist of the Frobenius endomorphism
directly), we see that the Frobenius of Log(1)

crys with respect to F ′ is given by

ϕ(e0) = e0 + p−1 log(F ′∗(t)t−p)e1.

By taking its symmetric powers, we see that the Frobenius of Log(n)
crys is given by

ϕ(er) = p−r
∑

r≤s≤n

1
(s− r)!

(p−1 log(F ′∗(t)t−p))s−r · es (0 ≤ r ≤ n).

The solution of (6.1) for U log
0,∞ is again given by the same formula as Proposition

6.4 using log([t]t−1) in Bcrys associated to U log
0,∞.

The Frobenius endomorphism of Pol (2)
crys with respect to F ′ is simply given by

ϕ(e) = e and we see that e + log([1− t](1− t)−1)e1 is an element of (6.5) for U log
0,∞

and n = 2. Note that log([1− t](1−t)−1) is well defined thanks to the log structure
at 1.

Theorem 6.9. The sheaf Pol (n)
ét is crystalline and we have a canonical isomor-

phism Dcrys(Pol (n)
ét ) ∼= Pol (n)

crys.

Proof. Let F (n) be the crystalline sheaf on P1
Qp
\{0, 1,∞} associated to Pol (n)

crys.

Then by Proposition 4.8, F (n) is an extension of Qp by Log(n)
ét and is compatible

with n. Hence by the definition of Pol (n)
ét , it suffices to prove that the residue of F (2)

at 1 is 1. The pull-back of F (2) on Spec(A0,∞[(p(t− 1))−1]) is given by the p-adic
representation (6.5) for U log

0,∞ and n = 2. Here A0,∞ denotes the ring of coordinates
of U log

0,∞. Since the natural injection Zp[t, t−1, (t−1)−1] → Qp[[t−1]][(t−1)−1] factors
through A0,∞[(p(t− 1))−1], the inertia group acts through this representation. For
the element g of the inertia at 1 corresponding to an element ε of Ẑ(1), we have
g(log([1− t](1 − t)−1)) = ε + log([1− t](1 − t)−1). Hence, by the remark before
Theorem 6.9 the residue at 1 of F (2) is 1.
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