EXTRA PRACTICE FOR CHAPTER 2

1. Sketch a graph of a function, $f(x)$, with the following properties:
$f(3)=6, \quad f^{\prime}(3)=0, \quad f^{\prime}(8)$ is undefined,
$\lim _{x \rightarrow-\infty} f(x)=0, \quad \lim _{x \rightarrow \infty} f(x)=+\infty$,
$f^{\prime \prime}(x)>0$ for $x<1, x>8$,
$f(x)$ is continuous and defined everywhere.
2. Each of the graphs below shows the position of a particle moving in a line as a function of time. During the indicated time interval, which particle has
A) Constant velocity ____
B) Greatest initial velocity
C) Greatest average velocity \qquad
D) Zero average velocity \qquad E) Zero acceleration \qquad F) Positive acceleration \qquad
I.

II.

III.

IV.

3. Suppose $f(x)$ is increasing and concave up everywhere and $f(A)=4, f^{\prime}(A)=2.2, h=0.05$.
A. Estimate the values of $f(A-h)$ and $f(A+h)$.
B. Are your estimates from part A larger or smaller than the true function values? How do you know?
4. Consider the function $g(x)=\left\{\begin{array}{cc}\ln x & x>1 \\ 1.7^{x}-C & x \leq 1\end{array}\right.$.
A. Determine the value of C so that this function is continuous at $x=1$.
B. Now determine if this function is differentiable at $x=1$. Prove it.
5. Let $p(h)$ be the pressure on a diver (in dynes per square cm) at a depth of h meters below the surface of the ocean. Determine what each of the quantities below represent in practical terms. Include units.
A. $p(100)$
B. $p(h+20)$
C. $p^{-1}(15)$
D. $p^{\prime}(100)$
6. Let $f(t)=\frac{t^{3}|4-2 t|}{t^{2}-4}$. Find the following limits and determine what graphical features they represent. Finally try to sketch an accurate graph of this function showing all its important characteristics.
A. $\lim _{t \rightarrow 2^{+}} f(t)$
B. $\lim _{t \rightarrow 2^{-}} f(t)$
C. $\lim _{t \rightarrow-2^{+}} f(t)$
D. $\lim _{t \rightarrow-2^{+}} f(t)$
