Chapter 5 \& 6 Review

1. Suppose the rate at which a filter removes sediment from a tank is given by the data below. Use $N=4$ to find an lower estimate for the amount of sediment removed during the first two hours.

Time (hr)	0	0.5	1	1.5	2
Rate of Sediment Removal (gr/hr)	8.2	7.5	6.0	5.3	3.9

2. Estimate the area of the region bounded by $f(x)=e^{-x^{2}}$, the x-axis, $x=0$, and $x=0.5$. Estimate the average value of $f(x)$ over the interval [0, 0.5]. Include an illustration of these two quantities.
3. Use the Fundamental Theorem of Calculus to find the exact value of the area bounded by $y=3 \sqrt{x}-5, y=0, x=4$ and $x=9$. Include a sketch.
4. A car, initially moving at $88 \mathrm{ft} / \mathrm{sec}$, has a constant deceleration and stops in a distance of 200 feet. Determine the car's deceleration in feet $/ \mathrm{sec}^{2}$. Include a sketch of the velocity graph.
5. Use the graph of $g^{\prime}(x)$ below to sketch an accurate graph of $g(x)$ so that $g(0)=5$.

6. Consider $\int_{1}^{x} \sin \left(t^{2}\right) d t$.
A. Is this a function of x or t ?
B. What does this function represent? Be specific.
C. Give a point on the graph of this function.
