Chapter 5 & 6 Review

•

1. Suppose the rate at which a filter removes sediment from a tank is given by the data below. Use N = 4 to find an <u>lower</u> estimate for the amount of sediment removed during the first two hours.

Time (hr)	0	0.5	1	1.5	2
Rate of Sediment	87	75	6.0	5.3	3.0
Removal (gr/hr)	0.2	7.5	0.0	5.5	5.9

2. Estimate the area of the region bounded by $f(x) = e^{-x^2}$, the *x*-axis, x = 0, and x = 0.5. Estimate the average value of f(x) over the interval [0, 0.5]. Include an illustration of these two quantities.

3. Use the Fundamental Theorem of Calculus to find the exact value of the area bounded by $y = 3\sqrt{x} - 5$, y = 0, x = 4 and x = 9. Include a sketch.

4. A car, initially moving at 88 ft/sec, has a constant deceleration and stops in a distance of 200 feet. Determine the car's deceleration in feet/sec². Include a sketch of the velocity graph.

5. Use the graph of g'(x) below to sketch an <u>accurate</u> graph of g(x) so that g(0) = 5.

- 6. Consider $\int_1^x \sin(t^2) dt$.
- A. Is this a function of *x* or *t*?
- B. What does this function represent? Be specific.
- C. Give a point on the graph of this function.