$\qquad$

1. Find each limit. Include a table of values to illustrate your answer. Include two tables if you need to consider a two sided limit.
A. $\lim _{x \rightarrow 0}(1+x)^{1 / x}=$
B. $\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{\theta}=$
C. $\lim _{y \rightarrow \infty} \frac{\sqrt{y^{2}+2}}{5 y-6}=$
D. $\lim _{t \rightarrow 1^{+}} \frac{|1-t|}{1-t}=$
2. Find each of these limits. Use the limits to sketch a graph. Be sure to include any asymptotes, holes, or other important characteristics.

$$
f(x)=\frac{x-2}{|x|-2}
$$

$$
\lim _{x \rightarrow-\infty} f(x)=
$$

$$
\lim _{x \rightarrow \infty} f(x)=
$$

$\lim _{x \rightarrow-2^{-}} f(x)=$

$$
\lim _{x \rightarrow-2^{+}} f(x)=
$$


$\lim _{x \rightarrow 2} f(x)=$
3. Find each of these limits. Use the limits to sketch a graph. Be sure to include any asymptotes, holes, or other important characteristics.
$g(\theta)=\ln |\sin \theta|$
$\lim _{\theta \rightarrow n \pi^{+}} g(\theta)=\quad$ For $n=0, \pm 1, \pm 2, \pm 3, \cdots$
$\lim _{\theta \rightarrow n \pi^{-}} g(\theta)=\quad$ For $n=0, \pm 1, \pm 2, \pm 3, \cdots$

4. Find each of these limits. Use the limits to sketch a graph. Be sure to include any asymptotes, holes, or other important characteristics.
$h(r)=e^{-r} \cos (2 r)$
$\lim _{r \rightarrow-\infty} h(r)=$

$$
\lim _{r \rightarrow \infty} h(r)=
$$


5. Find the value of $k$ that would make the function continuous in each case.
A. $g(x)=\left\{\begin{array}{cc}\frac{e^{x}-1}{x} & x \neq 0 \\ k & x=0\end{array}\right.$
B. $h(x)=\left\{\begin{array}{cc}\frac{\sin (5 \pi x)-1}{2 x-1} & x \neq \frac{1}{2} \\ k & x=\frac{1}{2}\end{array}\right.$
6. Find the value of $k$ that would make the limit exist. Find the limit.
A. $\lim _{x \rightarrow \infty} \frac{2 x^{3}-6}{x^{k}+3}$
B. $\lim _{x \rightarrow 2} \frac{x^{2}+k x-10}{x-2}$
7. In each case sketch a graph with the given characteristics.
A. $\quad f(4)$ is undefined and $\lim _{x \rightarrow 4} f(x)=2$
B. $f(3)=2$ and $\lim _{x \rightarrow 3} f(x)$ does not exist.
C. $f(1)=3$ and $\lim _{x \rightarrow 1} f(x)=-2$

