1. Determine if $f^{\prime}(0)$ exists for $f(x)=(x+|x|)^{2}+3$. Include an accurate sketch.

2. In each case, use the graph of $f(x)$ to sketch a graph of $f^{\prime}(x)$. Label all important features of each graph. Hint: Each function has some hidden features that you might not see on the standard window.
A. $f(x)=3 x^{2 / 3}-x$

B. $f(x)=3 x^{1 / 3}(2+x)$

C. $f(x)=28+|13-x|+|5-x|$

3. The acceleration due to gravity, g, is a function of the distance from the center of the Earth, r. Let R be the radius of the Earth, M be the mass of the Earth, and G be the gravitational constant.

$$
g(r)= \begin{cases}\frac{G M r}{R^{3}} & r<R \\ \frac{G M}{r^{2}} & r \geq R\end{cases}
$$

A. Sketch a graph of $g(r)$. Label all important features.

B. Is g a continuous function of r ? Is g a differentiable function of r ?
4. Find values for m and b so that $g(\theta)$ is differentiable at $\theta=0 . \quad g(\theta)= \begin{cases}\sin (2 \theta) & \theta \leq 0 \\ m \theta+b & \theta>0\end{cases}$
5. Use the definition of the derivative to determine if $f^{\prime}(0)$ exists in each case.
A. $f(x)=\left\{\begin{array}{cl}x^{2} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$
B. $f(x)=\left\{\begin{array}{cc}x \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$

