FILL IN THE BLANK

NAME _____

1. If $f(x)$ is increasing, then $f'(x)$ is
2. $f'(x)$ is negative if $f(x)$ is
3. $f''(x)$ is positive if $f(x)$ is
4. $f''(x)$ is negative if $f'(x)$ is
5. If $f(x)$ is concave down, then $f'(x)$ is
6. If $f'(x)$ is increasing, then $f''(x)$ is
7. If $f'(x)$ is decreasing, then $f(x)$ is
8. If $f'(x) > 0$ and $f''(x) < 0$, then $f(x)$ looks like
9. If $f(x)$ is an exponential decay curve, then $f'(x)$ is and
10. If $f(x)$ has an inflection point, then $f(x)$ has a change in
11. If $f(x)$ has a horizontal tangent, then $f'(x)$ has a
11. If $f(x)$ has a horizontal tangent, then $f'(x)$ has a 12. If $f'(a) = 0$, then $f(x)$ has a at
 11. If f(x) has a horizontal tangent, then f'(x) has a 12. If f'(a) = 0, then f(x) has a at 13. If f'(x) has a change of sign and is always defined, then f(x) has either a
 11. If f(x) has a horizontal tangent, then f'(x) has a 12. If f'(a) = 0, then f(x) has a at 13. If f'(x) has a change of sign and is always defined, then f(x) has either a 14. If f(x) has a corner at x = a, then f'(a) is
11. If $f(x)$ has a horizontal tangent, then $f'(x)$ has a 12. If $f'(a) = 0$, then $f(x)$ has a at 13. If $f'(x)$ has a change of sign and is always defined, then $f(x)$ has either a 14. If $f(x)$ has a corner at $x = a$, then $f'(a)$ is 15. If $f'(x) = 0$ for all values of x , then $f(x)$ is
11. If $f(x)$ has a horizontal tangent, then $f'(x)$ has a 12. If $f'(a) = 0$, then $f(x)$ has a at 13. If $f'(x)$ has a change of sign and is always defined, then $f(x)$ has either a 14. If $f(x)$ has a corner at $x = a$, then $f'(a)$ is 15. If $f'(x) = 0$ for all values of x, then $f(x)$ is 16. If $f''(x) = 0$ for all values of x, then $f(x)$ is
 11. If f(x) has a horizontal tangent, then f'(x) has a 12. If f'(a) = 0, then f(x) has a at 13. If f'(x) has a change of sign and is always defined, then f(x) has either a 13. If f'(x) has a change of sign and is always defined, then f(x) has either a 14. If f(x) has a corner at x = a, then f'(a) is 15. If f'(x) = 0 for all values of x, then f(x) is 16. If f''(x) = 0 for all values of x, then f(x) is 17. If f'(a) = 2 and g(x) = f(x) - 5, then g'(a) =