1. As you travel from Tucson to Bisbee (94 miles), you pass through Benson. Benson is 40 miles from Tucson. You can assume that you travel at a fairly constant speed. Sketch graphs to represent the functions below. Label the axes and any important features of your graphs.
A. distance from Tucson as a function of time.
B. distance from Benson as a function of time

C. distance from Bisbee as a function of time.
D. speed as a function of distance.

2. The relationship between the tuition, T, and the number of credits, c, at a particular college is given by

$$
T(c)= \begin{cases}100+120 c & 0 \leq c \leq 6 \\ 800+120(c-6) & 6<c \leq 18\end{cases}
$$

A. What is the tuition for 7 credits?
B. If the tuition was $\$ 1880$, how many credits were taken?
C. What is the domain of this function?
D. What are the practical interpretations of the vertical intercept and the slope?
3. Suppose the rate, R, at which people in a particular town hear a rumor is proportional to the number of people who have not heard the rumor. Let L be the total population of the town.
A. Write a formula for R. Include the sign of the proportionality constant.
B. Find the vertical intercept and the slope.
4. Use the graph at the right to answer the questions below.

A. Find $f(0)$.
B. On what intervals is $f(x)$ increasing?
C. Find x so that $f(x)=2$.
D. For what value is $f(x)=x$?
E. Find the zeros of $f(x)$.
F. What is $f(f(7))$?
5. Sketch $H(\alpha)=H_{o}(1-\alpha \cdot \Delta t)$. Label the axes and the intercepts clearly. The constants are positive.

6. Solve $g(y)=5$ for $g(y)=\sqrt{y^{2}-16^{2}}$.
7. Find the domain and range of $f(x)=\left|\frac{9-x^{2}}{x+3}\right|$.
8. Find an example of a function (in table, graph, or equation form) from the internet, newspaper, or magazine. Cut it out or print it (include appropriate documentation).
A. Give a brief summary of your example. Include why it is an example of a function.
B. Determine the independent and dependent variables. Include your reason.

