CONTINUITY

Roughly speaking, a function is said to be continuous on an interval if its graph has no breaks, jumps, or holes in that interval. So, a continuous function has a graph that can be drawn without lifting the pencil from the paper.

1. Which of the functions graphed below are continuous?

More specifically, a function is continuous if nearby values of the independent variable give nearby values of the function.

Example: Let $p(x)$ be the cost of mailing a letter weighing x ounces. According to our current postal rates, $p(1.00)=\$ 0.37$ and $p(0.99)=\$ 0.37$. But $p(1.01)=\$ 0.59$. So values nearby $x=1.00$ do not give nearby values to $p(1.00)$. This function is not continuous at $x=1.00$.
2. Which functions that we have studied so far may not be continuous?
3. Is this function continuous on the given intervals? Why or why not?

$$
\begin{array}{lll}
y=\frac{4}{x-3} & \text { a. on }[0,4] & \text { b. on }[-2.5,2.5]
\end{array}
$$

4. Is this function continuous on the given intervals? Why or why not?

$$
g(x)=\frac{e^{\cos x}}{\sin x} \quad \text { a. on }\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right] \quad \text { b. on }\left[\frac{-\pi}{4}, \frac{\pi}{4}\right]
$$

