MORE PRACTICE.

Find the indicated derivative in each case. You should try to simplify your answers if you can. Try quotient rule on problems 1, 10, 17, and 18.

1.
$$f'(t)$$
 for $f(t) = \frac{t^2}{\sqrt{t+1}}$
2. $f'(x)$ for $f(x) = \frac{x^2 + 1}{x^3}$
3. $\frac{dz}{dx}$ for $z = (x+1)^3(5-x)^4$
4. $f'(\theta)$ for $f(\theta) = \frac{1}{\tan(2\theta)}$
5. $f''(x)$ for $f(x) = 3x \cdot 2^{5x}$
6. $f'(\beta)$ for $f(\beta) = \frac{\beta y + y^6}{1 - \beta}$

7.
$$\frac{dy}{dt}$$
 for $y = \ln(\ln(2t^3))$

8.
$$g'(x)$$
 for $g(x) = x \cdot e^{x^2}$

9.
$$x'(r)$$
 for $x(r) = 3\sqrt[3]{r} - \sqrt{\frac{3}{r}} + \frac{1}{3r}$

10.
$$h'(y)$$
 for $h(y) = \frac{\cos y}{1 - \sin y}$

11.
$$\frac{dz}{dx}$$
 for $z = 10^{2\log x}$

12.
$$f'(x)$$
 for $f(x) = \cosh(4x^2 + 1)$

13.
$$f'(t)$$
 for $f(t) = \arctan\left(\frac{2}{t}\right)$

14.
$$g'(\theta)$$
 for $g(\theta) = \sqrt{3\theta + \tan^2(4\theta)}$

15.
$$f'(x)$$
 for $f(x) = x \cos(e^x)$

16.
$$\frac{dy}{du}$$
 for $y = (\csc 1 + \sec u)^3$

17.
$$g'(z)$$
 for $g(z) = \frac{az^2}{a^2 + z^2}$

18.
$$f'(x)$$
 for $f(x) = \frac{x^2}{(2+x)^3}$

19.
$$a'(t)$$
 for $a(t) = \ln\left(\frac{1 - \cos t}{1 + \cos t}\right)^4$