MORE DERIVATIVE PRACTICE

Find the indicated derivative in each case. Simplify your answers if you can.

1.
$$f'(t)$$
 for $f(t) = \frac{t}{\sqrt{t^3 + 1}}$

2.
$$h'(y)$$
 for $h(y) = \frac{\ln y}{1 - \ln y}$

3.
$$f'(x)$$
 for $f(x) = \frac{x^2 + bx + c}{a}$

4.
$$\frac{dz}{dm} \text{ for } z = \log(10^{2m})$$

5.
$$\frac{dz}{dx}$$
 for $z = (x+1)^3 (5-x)^4$

6.
$$f'(x)$$
 for $f(x) = \sinh(x^2 + 1)$

7.
$$f'(m)$$
 for $f(m) = \frac{1}{\sec(2m)}$

8.
$$f'(t)$$
 for $f(t) = \sin^{-1}\left(\frac{2}{t}\right)$

9.
$$f''(x)$$
 for $f(x) = 3x \cdot 2^{5x}$

10.
$$g'(\theta)$$
 for $g(\theta) = \sqrt[3]{\tan(5\theta)}$

11.
$$f'(\Gamma)$$
 for $f(\Gamma) = \frac{\beta \Gamma + \Gamma^6}{1 - \beta}$

12.
$$f'(x)$$
 for $f(x) = x \cos(\sqrt[3]{x} + 1)$

13.
$$\frac{dy}{dt}$$
 for $y = \ln \sqrt{5 + x^2}$

14.
$$\frac{dy}{du}$$
 for $y = (\cot 1 + \cot u)^{\pi}$

15.
$$g'(x)$$
 for $g(x) = |x \cdot e^x|$

16.
$$g'(z)$$
 for $g(z) = \frac{e^{az}}{a^2 + z^2}$

17.
$$x'(r)$$
 for $x(r) = \sqrt{3r} + 3\sqrt{r} - \sqrt{\frac{3}{r}} + \sqrt{3}$

18.
$$f'(x)$$
 for $f(x) = \frac{ax^2}{(2-x)^3}$